Skip to content
2000
image of LINC-PINT: A Distinctive Long Non-Coding RNA Functioning as a Potential Suppressor in Tumorigenesis

Abstract

Introduction

Long noncoding RNAs are essential regulators in numerous biological processes and have been linked to various diseases including cancer. Despite their initial classification as transcriptional byproducts lncRNAs have been shown to modulate chromatin structure transcription RNA processing protein translation and intranuclear transport. LINC-PINT a lncRNA induced by P53 is particularly noteworthy for its role in tumor suppression across multiple cancers

Methods

By utilizing the PubMed database and applying inclusion criteria based on relevance literature quality and data availability we conducted a comprehensive analysis of 128 studies to provide an overview of the functions of LINC-PINT and its mechanisms of action in cancers

Results

LINC-PINT was confirmed to function as a tumor suppressor factor in many cancers such as triple-negative breast cancer non-small cell lung cancer gastric cancer glioma melanoma osteosarcoma laryngeal squamous cell carcinoma esophageal cancer colorectal cancer nasopharyngeal carcinoma retinoblastoma ovarian cancer thyroid cancer hepatocellular carcinoma and pancreatic cancer by promoting apoptosis and senescence inhibiting proliferation migration invasion drug resistance cell stemness EMT radioresistance and DNA damage repair

Discussion

LINC-PINT serves as a tumor suppressor with its ability to sponge miRNAs regulate epigenetic modulation DNA damage repair . Despite the promising findings the complex and tissue-specific functions of LINC-PINT along with the need for further clinical validation underscore the importance of continued research to fully understand its mechanisms and potential as a therapeutic target

Conclusion

LINC-PINT is a potential target in cancer progression and treatment

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266372915250716225540
2025-07-22
2025-09-13
Loading full text...

Full text loading...

References

  1. Functional classification and experimental dissection of long Noncoding RNAs. Cell 2018 172 3 393 407 10.1016/j.cell.2018.01.011 29373828
    [Google Scholar]
  2. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017 36 41 5661 5667 10.1038/onc.2017.184 28604750
    [Google Scholar]
  3. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023 24 6 430 447 10.1038/s41580‑022‑00566‑8 36596869
    [Google Scholar]
  4. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J. Exp. Med. 2020 217 3 e20190950 10.1084/jem.20190950 31816634
    [Google Scholar]
  5. LncRNA NRON down-regulates lncRNA snaR and inhibits cancer cell proliferation in TNBC. Biosci. Rep. 2019 39 5 BSR20190468 10.1042/BSR20190468 30996114
    [Google Scholar]
  6. LncRNA LINC00649 promotes the growth and metastasis of triple-negative breast cancer by maintaining the stability of HIF-1α through the NF90/NF45 complex. Cell Cycle 2022 21 10 1034 1047 10.1080/15384101.2022.2040283 35188449
    [Google Scholar]
  7. Targeting lncRNA DDIT4‐AS1 sensitizes triple negative breast cancer to chemotherapy via suppressing of autophagy. Adv. Sci. 2023 10 17 2207257 10.1002/advs.202207257 37096846
    [Google Scholar]
  8. lncRNA MIR503HG inhibits cell proliferation and promotes apoptosis in TNBC cells via the miR-224-5p/HOXA9 axis. Mol. Ther. Oncolytics 2021 21 62 73 10.1016/j.omto.2021.03.009 33869743
    [Google Scholar]
  9. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci. 2021 17 10 2606 2621 10.7150/ijbs.60292 34326697
    [Google Scholar]
  10. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J. Zhejiang Univ. Sci. B 2023 24 12 1123 1140 10.1631/jzus.B2300067 38057269
    [Google Scholar]
  11. Identification of a novel RNA transcript TISPL upregulated by stressors that stimulate ATF4. Gene 2024 917 148464 10.1016/j.gene.2024.148464 38615981
    [Google Scholar]
  12. MKLN1-AS promotes pancreatic cancer progression as a crucial downstream mediator of HIF-1α through miR-185-5p/TEAD1 pathway. Cell Biol. Toxicol. 2024 40 1 30 10.1007/s10565‑024‑09863‑8 38740637
    [Google Scholar]
  13. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 2016 17 1 67 10.1186/s13059‑016‑0932‑1 27081004
    [Google Scholar]
  14. LncRNA LINC-PINT increases SOCS1 expression by sponging miR-155-5p to inhibit the activation of ERK signaling pathway in rheumatoid arthritis synovial fibroblasts induced by TNF-α. Int. Immunopharmacol. 2020 84 106497 10.1016/j.intimp.2020.106497 32289665
    [Google Scholar]
  15. Long noncoding RNA LINC-PINT retards the abnormal growth of airway smooth muscle cells via regulating the microRNA-26a-5p/PTEN axis in asthma. Int. Immunopharmacol. 2021 99 107997 10.1016/j.intimp.2021.107997 34315115
    [Google Scholar]
  16. Hepatitis C virus evades interferon signaling by suppressing long noncoding RNA Linc-Pint involving C/EBP-β. J. Virol. 2021 95 17 e00952 e21 10.1128/JVI.00952‑21 34160260
    [Google Scholar]
  17. Inhibition of long noncoding RNA Linc‐Pint by hepatitis C virus in infected hepatocytes enhances lipogenesis. Hepatology 2021 74 1 41 54 10.1002/hep.31656 33236406
    [Google Scholar]
  18. LINC-PINT activates the mitogen-activated protein kinase pathway to promote acute myocardial infarction by regulating miR-208a-3p. Circ. J. 2018 82 11 2783 2792 10.1253/circj.CJ‑18‑0396 30249926
    [Google Scholar]
  19. Clinical implications of lncRNA LINC-PINT in cancer. Front. Mol. Biosci. 2023 10 1097694 10.3389/fmolb.2023.1097694 37006616
    [Google Scholar]
  20. Single-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapy. Cell Death Discov. 2021 7 1 23 10.1038/s41420‑020‑00383‑y 33495450
    [Google Scholar]
  21. LINC-PINT suppresses breast cancer cell proliferation and migration via MEIS2/PPP3CC/NF-κB pathway by sponging miR-576-5p. Am. J. Med. Sci. 2024 367 3 201 211 10.1016/j.amjms.2023.08.013 37660994
    [Google Scholar]
  22. Emerging nanomedicines of paclitaxel for cancer treatment. J. Control. Release 2022 342 280 294 10.1016/j.jconrel.2022.01.010 35016919
    [Google Scholar]
  23. RNA‐binding protein NONO promotes breast cancer proliferation by post‐transcriptional regulation of SKP2 and E2F8. Cancer Sci. 2020 111 1 148 159 10.1111/cas.14240 31733123
    [Google Scholar]
  24. Non-POU Domain-Containing Octomer-Binding (NONO) protein expression and stability promotes the tumorigenicity and activation of Akt/MAPK/β-catenin pathways in human breast cancer cells. Cell Commun. Signal. 2023 21 1 157 10.1186/s12964‑023‑01179‑0 37370134
    [Google Scholar]
  25. Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim. Biophys. Sin. 2020 52 8 801 809 10.1093/abbs/gmaa072 32632453
    [Google Scholar]
  26. The biology and management of non-small cell lung cancer. Nature 2018 553 7689 446 454 10.1038/nature25183 29364287
    [Google Scholar]
  27. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021 27 8 1345 1356 10.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  28. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015 1 1 15009 10.1038/nrdp.2015.9 27188576
    [Google Scholar]
  29. Update 2020: Management of non-small cell lung cancer. Lung 2020 198 6 897 907 10.1007/s00408‑020‑00407‑5 33175991
    [Google Scholar]
  30. Downregulation of long non coding RNA LINC PINT serves as a diagnostic and prognostic biomarker in patients with non small cell lung cancer. Oncol. Lett. 2021 21 3 210 10.3892/ol.2021.12471 33552292
    [Google Scholar]
  31. LINC‐PINT alleviates lung cancer progression via sponging miR‐543 and inducing PTEN. Cancer Med. 2020 9 6 1999 2009 10.1002/cam4.2822 31981466
    [Google Scholar]
  32. The deubiquitinase USP10 restores PTEN activity and inhibits non–small cell lung cancer cell proliferation. J. Biol. Chem. 2021 297 3 101088 10.1016/j.jbc.2021.101088 34416231
    [Google Scholar]
  33. The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp. Mol. Med. 2022 54 11 1814 1821 10.1038/s12276‑022‑00887‑w 36385557
    [Google Scholar]
  34. Characterization and validation of a ferroptosis-related LncRNA signature as a novel prognostic model for lung adenocarcinoma in tumor microenvironment. Front. Immunol. 2022 13 903758 10.3389/fimmu.2022.903758 36016939
    [Google Scholar]
  35. miR-208a-3p suppresses cell apoptosis by targeting PDCD4 in gastric cancer. Oncotarget 2016 7 41 67321 67332 10.18632/oncotarget.12006 27634902
    [Google Scholar]
  36. MiR-208a-3p aggravates autophagy through the PDCD4-ATG5 pathway in Ang II-induced H9c2 cardiomyoblasts. Biomed. Pharmacother. 2018 98 1 8 10.1016/j.biopha.2017.12.019 29241069
    [Google Scholar]
  37. Long noncoding RNA LINC-PINT inhibits non-small cell lung cancer progression through sponging miR-218-5p/PDCD4. Artif. Cells Nanomed. Biotechnol. 2019 47 1 1595 1602 10.1080/21691401.2019.1605371 31010333
    [Google Scholar]
  38. Gastric cancer. Lancet 2020 396 10251 635 648 10.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  39. Recent advances in the surgical treatment of advanced gastric cancer: A review. Med. Sci. Monit. 2019 25 3537 3541 10.12659/MSM.916475 31080234
    [Google Scholar]
  40. Current status and future perspectives in HER2 positive advanced gastric cancer. Clin. Transl. Oncol. 2022 24 6 981 996 10.1007/s12094‑021‑02760‑0 35091998
    [Google Scholar]
  41. Advanced gastric cancer: Current treatment landscape and future perspectives. World J. Gastroenterol. 2016 22 8 2403 2414 10.3748/wjg.v22.i8.2403 26937129
    [Google Scholar]
  42. Long noncoding RNA LINC‐PINT is inhibited in gastric cancer and predicts poor survival. J. Cell. Biochem. 2019 120 6 9594 9600 10.1002/jcb.28236 30569513
    [Google Scholar]
  43. LncRNA PTCSC3 Inhibits Tumor Growth and Cancer Cell Stemness in Gastric Cancer by Interacting with lncRNA Linc-pint. Cancer Manag. Res. 2019 11 10393 10399 10.2147/CMAR.S231369 31849528
    [Google Scholar]
  44. Significance of microRNA 21 in gastric cancer. Clin. Res. Hepatol. Gastroenterol. 2016 40 5 538 545 10.1016/j.clinre.2016.02.010 27179559
    [Google Scholar]
  45. miR 21 5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int. J. Mol. Med. 2018 41 4 1855 1866 10.3892/ijmm.2018.3405 29393355
    [Google Scholar]
  46. MiR-21 promotes the invasion and metastasis of gastric cancer cells by activating epithelial-mesenchymal transition. Eur. Surg. Res. 2019 60 5-6 208 218 10.1159/000504133 31722341
    [Google Scholar]
  47. Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 2022 52 102312 10.1016/j.redox.2022.102312 35447413
    [Google Scholar]
  48. Neutrophil extracellular traps induced by the hypoxic microenvironment in gastric cancer augment tumour growth. Cell Commun. Signal. 2023 21 1 86 10.1186/s12964‑023‑01112‑5 37127629
    [Google Scholar]
  49. Linc pint overexpression inhibits the growth of gastric tumors by downregulating HIF 1α. Mol. Med. Rep. 2019 20 3 2875 2881 10.3892/mmr.2019.10531 31524232
    [Google Scholar]
  50. Dissecting the role of the Atg12–Atg5-Atg16 complex during autophagosome formation. Autophagy 2013 9 3 424 425 10.4161/auto.22931 23321721
    [Google Scholar]
  51. ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion. Dev. Cell 2023 58 10 866 884.e8 10.1016/j.devcel.2023.03.014 37054706
    [Google Scholar]
  52. Triangular relationship between p53, autophagy, and chemotherapy resistance. Int. J. Mol. Sci. 2020 21 23 8991 10.3390/ijms21238991 33256191
    [Google Scholar]
  53. LINC-PINT suppresses cisplatin resistance in gastric cancer by inhibiting autophagy activation via epigenetic silencing of ATG5 by EZH2. Front. Pharmacol. 2022 13 968223 10.3389/fphar.2022.968223 36091809
    [Google Scholar]
  54. Glioma subclassifications and their clinical significance. Neurotherapeutics 2017 14 2 284 297 10.1007/s13311‑017‑0519‑x 28281173
    [Google Scholar]
  55. Long noncoding RNA LINC-PINT suppresses cell proliferation, invasion, and EMT by blocking Wnt/β-Catenin signaling in glioblastoma. Front. Pharmacol. 2021 11 586653 10.3389/fphar.2020.586653 33505307
    [Google Scholar]
  56. TWIST1 methylation by SETD6 selectively antagonizes LINC-PINT expression in glioma. Nucleic Acids Res. 2022 50 12 6903 6918 10.1093/nar/gkac485 35694846
    [Google Scholar]
  57. Coordinated regulation of RNA polymerase II pausing and elongation progression by PAF1. Sci. Adv. 2022 8 13 eabm5504 10.1126/sciadv.abm5504 35363521
    [Google Scholar]
  58. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II. Cell 2015 162 5 1003 1015 10.1016/j.cell.2015.07.042 26279188
    [Google Scholar]
  59. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 2018 9 1 4475 10.1038/s41467‑018‑06862‑2 30367041
    [Google Scholar]
  60. A lncRNA survey finds increases in neuroprotective LINC‐PINT in Parkinson’s disease substantia nigra. Aging Cell 2020 19 3 e13115 10.1111/acel.13115 32080970
    [Google Scholar]
  61. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2013 2 e01749 10.7554/eLife.01749 24381249
    [Google Scholar]
  62. Malignant melanoma: Skin cancer-diagnosis, prevention, and treatment. Crit. Rev. Eukaryot. Gene Expr. 2020 30 4 291 297 10.1615/CritRevEukaryotGeneExpr.2020028454 32894659
    [Google Scholar]
  63. Immunotherapy in acral and mucosal melanoma: Current status and future directions. Front. Immunol. 2021 12 680407 10.3389/fimmu.2021.680407 34149718
    [Google Scholar]
  64. Role of lncRNA BANCR in Human Cancers: An updated review. Front. Cell Dev. Biol. 2021 9 689992 10.3389/fcell.2021.689992 34409032
    [Google Scholar]
  65. lncRNA LINC PINT is downregulated in melanoma and regulates cell proliferation by downregulating lncRNA BANCR. Oncol. Lett. 2019 18 3 2917 2922 10.3892/ol.2019.10631 31452772
    [Google Scholar]
  66. Long non-coding RNA LINC-PINT suppresses cell proliferation and migration of melanoma via recruiting EZH2. Front. Cell Dev. Biol. 2019 7 350 10.3389/fcell.2019.00350 31921860
    [Google Scholar]
  67. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021 500 1 10 10.1016/j.canlet.2020.12.024 33359211
    [Google Scholar]
  68. Tumor-associated macrophages in osteosarcoma: From mechanisms to therapy. Int. J. Mol. Sci. 2020 21 15 5207 10.3390/ijms21155207 32717819
    [Google Scholar]
  69. Translational biology of osteosarcoma. Nat. Rev. Cancer 2014 14 11 722 735 10.1038/nrc3838 25319867
    [Google Scholar]
  70. The critical roles of lncRNAs in the development of osteosarcoma. Biomed. Pharmacother. 2021 135 111217 10.1016/j.biopha.2021.111217 33433358
    [Google Scholar]
  71. LncRNA LINC-PINT regulating proliferation and apoptosis of osteosarcoma cells by targeting miR-524-5p. Zhonghua Zhong Liu Za Zhi 2020 42 4 325 330 10.3760/cma.j.cn112152‑20190726‑00471 32375449
    [Google Scholar]
  72. LncRNA LINC-PINT inhibits cancer cell proliferation, invasion, and migration in osteosarcoma by downregulating miRNA-21. Cancer Biother. Radiopharm. 2019 34 4 258 263 10.1089/cbr.2018.2684 31070482
    [Google Scholar]
  73. MicroRNA-524 promotes cell proliferation by down-regulating PTEN expression in osteosarcoma. Cancer Cell Int. 2018 18 1 114 10.1186/s12935‑018‑0612‑1 30123092
    [Google Scholar]
  74. microRNA-524-5p inhibits proliferation and induces cell cycle arrest of osteosarcoma cells via targeting CDK6. Biochem. Biophys. Res. Commun. 2020 530 3 566 573 10.1016/j.bbrc.2020.07.092 32747087
    [Google Scholar]
  75. Hsa_circ_0008259 modulates miR-21-5p and PDCD4 expression to restrain osteosarcoma progression. Aging 2021 13 23 25484 25495 10.18632/aging.203769 34905503
    [Google Scholar]
  76. MiR-21-5p inhibition attenuates Warburg effect and stemness maintenance in osteosarcoma cells via inactivation of Wnt/β-catenin signaling. Acta Biochim. Pol. 2021 68 4 725 732 10.18388/abp.2020_5631 34694765
    [Google Scholar]
  77. Exosomal miR‐21‐5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J. Cell. Mol. Med. 2021 25 23 11016 11030 10.1111/jcmm.17024 34741385
    [Google Scholar]
  78. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus dna with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc. 2023 33 4 1537 1557 10.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
  79. Biomarkers of laryngeal squamous cell carcinoma: A review. Ann. Diagn. Pathol. 2021 54 151787 10.1016/j.anndiagpath.2021.151787 34242969
    [Google Scholar]
  80. Long noncoding RNA LINC‐PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR‐425‐5p/PTCH1/SHH axis. J. Cell. Physiol. 2019 234 12 23111 23122 10.1002/jcp.28874 31131448
    [Google Scholar]
  81. LncRNA LINC-PINT inhibits malignant behaviors of laryngeal squamous cell carcinoma cells via inhibiting ZEB1. Pathol. Oncol. Res. 2021 27 584466 10.3389/pore.2021.584466 34257531
    [Google Scholar]
  82. Esophageal cancer in China: Practice and research in the new era. Int. J. Cancer 2023 152 9 1741 1751 10.1002/ijc.34301 36151861
    [Google Scholar]
  83. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 2018 41 3 210 215 10.1016/j.asjsur.2016.10.005 27986415
    [Google Scholar]
  84. Downregulation of lncRNA LINC-PINT participates in the recurrence of esophageal squamous cell carcinoma possibly by interacting miRNA-21. Cancer Biother. Radiopharm. 2021 36 3 273 279 10.1089/cbr.2019.3167 32401035
    [Google Scholar]
  85. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 2021 518 35 48 10.1016/j.canlet.2021.06.009 34139285
    [Google Scholar]
  86. miR-21 regulates the proliferation and apoptosis of ovarian cancer cells through PTEN/PI3K/AKT. Eur. Rev. Med. Pharmacol. Sci. 2019 23 10 4149 4155 10.26355/eurrev_201905_17917 31173285
    [Google Scholar]
  87. Linc‐PINT acted as a tumor suppressor by sponging miR‐543 and miR‐576‐5p in esophageal cancer. J. Cell. Biochem. 2019 120 12 19345 19357 10.1002/jcb.28699 31464068
    [Google Scholar]
  88. Colorectal Cancer and Nutrition Nutrients 2019 11 1 164 10.3390/nu11010164 30646512
    [Google Scholar]
  89. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021 35 11-12 787 820 10.1101/gad.348226.120 34074695
    [Google Scholar]
  90. Up regulation of long non-coding RNAs BACE1 and down regulation of LINC-PINT are associated with CRC clinicopathological characteristics. Mol. Biol. Rep. 2022 49 11 10259 10267 10.1007/s11033‑022‑07707‑4 36087249
    [Google Scholar]
  91. LncRNA AGAP2-AS1 promotes cancer cell proliferation, migration and invasion in colon cancer by forming a negative feedback loop with LINC-PINT. Cancer Manag. Res. 2021 13 2153 2161 10.2147/CMAR.S260371 33688258
    [Google Scholar]
  92. Copy number variations primed lncRNAs deregulation contribute to poor prognosis in colorectal cancer. Aging 2019 11 16 6089 6108 10.18632/aging.102168 31442207
    [Google Scholar]
  93. Nasopharyngeal carcinoma. Lancet 2019 394 10192 64 80 10.1016/S0140‑6736(19)30956‑0 31178151
    [Google Scholar]
  94. The evolution of nasopharyngeal carcinoma staging. Br. J. Radiol. 2019 92 1102 20190244 10.1259/bjr.20190244 31298937
    [Google Scholar]
  95. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017 18 8 495 506 10.1038/nrm.2017.48 28512351
    [Google Scholar]
  96. Structural basis of long-range to short-range synaptic transition in NHEJ. Nature 2021 593 7858 294 298 10.1038/s41586‑021‑03458‑7 33854234
    [Google Scholar]
  97. Cytosolic Ku70 regulates Bax-mediated cell death. Tumour Biol. 2016 37 10 13903 13914 10.1007/s13277‑016‑5202‑z 27488115
    [Google Scholar]
  98. Degradation of MCL-1 by bufalin reverses acquired resistance to osimertinib in EGFR-mutant lung cancer. Toxicol. Appl. Pharmacol. 2019 379 114662 10.1016/j.taap.2019.114662 31301315
    [Google Scholar]
  99. Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis. Cell Death Differ. 2014 21 7 1160 1169 10.1038/cdd.2014.42 24769731
    [Google Scholar]
  100. LINC-PINT plays an anti-tumor role in nasopharyngeal carcinoma by binding to XRCC6 and affecting its function. Pathol. Res. Pract. 2024 260 155460 10.1016/j.prp.2024.155460 39032384
    [Google Scholar]
  101. LINC-PINT impedes DNA repair and enhances radiotherapeutic response by targeting DNA-PKcs in nasopharyngeal cancer. Cell Death Dis. 2021 12 5 454 10.1038/s41419‑021‑03728‑2 33963177
    [Google Scholar]
  102. Modern treatment of retinoblastoma: A 2020 review. Indian J. Ophthalmol. 2020 68 11 2356 2365 10.4103/ijo.IJO_721_20 33120616
    [Google Scholar]
  103. Advances in the treatment of retinoblastoma. Modern Oncology 2023 31 8 1563 1567
    [Google Scholar]
  104. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022 29 5 946 960 10.1038/s41418‑022‑00988‑z 35361964
    [Google Scholar]
  105. Four autophagy-related long noncoding RNAs provide coexpression and cerna mechanisms in retinoblastoma through bioinformatics and experimental evidence. ACS Omega 2021 6 49 33976 33984 10.1021/acsomega.1c05259 34926945
    [Google Scholar]
  106. TM7SF1 (GPR137B): A novel lysosome integral membrane protein. Mol. Biol. Rep. 2012 39 9 8883 8889 10.1007/s11033‑012‑1755‑0 22729905
    [Google Scholar]
  107. TM7SF1, an important autophagy regulatory protein in mouse podocytes. Biochem. Biophys. Res. Commun. 2020 528 1 213 219 10.1016/j.bbrc.2020.05.004 32482387
    [Google Scholar]
  108. LncRNA Linc-PINT inhibits miR-523-3p to hamper retinoblastoma progression by upregulating Dickkopf-1 (DKK1). Biochem. Biophys. Res. Commun. 2020 530 1 47 53 10.1016/j.bbrc.2020.06.120 32828314
    [Google Scholar]
  109. Expression and role of Dickkopf-1 (Dkk1) in tumors: From the cells to the patients. Cancer Manag. Res. 2021 13 659 675 10.2147/CMAR.S275172 33536782
    [Google Scholar]
  110. Clinical and translational advances in ovarian cancer therapy. Nat. Can. 2023 4 9 1239 1257 10.1038/s43018‑023‑00617‑9 37653142
    [Google Scholar]
  111. Ovarian cancer: An integrated review. Semin. Oncol. Nurs. 2019 35 2 151 156 10.1016/j.soncn.2019.02.001 30867104
    [Google Scholar]
  112. Ovarian cancer prevention and screening. Obstet. Gynecol. 2018 131 5 909 927 10.1097/AOG.0000000000002580 29630008
    [Google Scholar]
  113. LINC‐PINT suppresses tumour cell proliferation, migration and invasion through targeting miR ‐374a‐5p in ovarian cancer. Cell Biochem. Funct. 2020 38 8 1089 1099 10.1002/cbf.3565 32638404
    [Google Scholar]
  114. Microarray profiling and co-expression network analysis of lncRNAs and mRNAs in ovarian cancer. Cell Death Discov. 2019 5 1 93 10.1038/s41420‑019‑0173‑7 31098301
    [Google Scholar]
  115. TGFBI Production by Macrophages Contributes to an Immunosuppressive Microenvironment in Ovarian Cancer. Cancer Res. 2021 81 22 5706 5719 10.1158/0008‑5472.CAN‑21‑0536 34561272
    [Google Scholar]
  116. Retracted: KDM6B promotes ovarian cancer cell migration and invasion by induced transforming growth factor‐β1 expression. J. Cell. Biochem. 2019 120 1 493 506 10.1002/jcb.27405 30277596
    [Google Scholar]
  117. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells. Autophagy 2017 13 2 333 344 10.1080/15548627.2016.1256520 27875077
    [Google Scholar]
  118. SLFN11 and ATR as targets for overcoming cisplatin resistance in ovarian cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 8 167448 10.1016/j.bbadis.2024.167448 39117290
    [Google Scholar]
  119. Thyroid cancer. Lancet 2023 401 10387 1531 1544 10.1016/S0140‑6736(23)00020‑X 37023783
    [Google Scholar]
  120. Standardized and individualized treatment improves survival rate and quality of life for advanced thyroid cancer. Zhonghua Yi Xue Za Zhi 2023 103 40 3152 3154 10.3760/cma.j.cn112137‑20230605‑00939 37879867
    [Google Scholar]
  121. LINC-PINT suppresses the aggressiveness of thyroid cancer by downregulating miR-767-5p to induce TET2 expression. Mol. Ther. Nucleic Acids 2020 22 319 328 10.1016/j.omtn.2020.05.033 33230437
    [Google Scholar]
  122. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 589 604 10.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  123. Predictors of early and late hepatocellular carcinoma recurrence. World J. Gastroenterol. 2023 29 8 1243 1260 10.3748/wjg.v29.i8.1243 36925456
    [Google Scholar]
  124. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics 2021 11 10 4929 4944 10.7150/thno.55672 33754036
    [Google Scholar]
  125. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015 20 1 122 128 10.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  126. Peptide–drug conjugates with different linkers for cancer therapy. J. Med. Chem. 2021 64 1 216 232 10.1021/acs.jmedchem.0c01530 33382619
    [Google Scholar]
  127. Plasma and tumor levels of Linc-pint are diagnostic and prognostic biomarkers for pancreatic cancer. Oncotarget 2016 7 44 71773 71781 10.18632/oncotarget.12365 27708234
    [Google Scholar]
  128. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol. 2017 18 1 202 10.1186/s13059‑017‑1331‑y 29078818
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266372915250716225540
Loading
/content/journals/ctmc/10.2174/0115680266372915250716225540
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: tumorigenesis ; cancers ; miRNAs ; LINC-PINT ; mechanism ; lncRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test