Skip to content
2000
image of Computer-aided Drug Design for Alzheimer's Disease: Recent 
Advancements and Future Perspectives

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder marked by a decline in cognitive function and memory loss, primarily resulting from cholinergic dysfunction, the accumulation of amyloid plaques, the formation of tau tangles, and the progressive degeneration of neurons. While existing treatments offer limited symptomatic relief, they do not effectively halt or reverse the underlying progression of the disease, presenting a major global challenge in Alzheimer’s research. Developing therapeutic strategies for AD remains complex, largely due to the inability of current medications to significantly slow neurodegeneration. Traditional drug discovery processes are often lengthy, costly, and inefficient, further complicating the search for effective treatments. To overcome these obstacles, researchers have turned to a combination of computational approaches alongside conventional drug design techniques. These integrated methodologies help accelerate the discovery process by significantly reducing both time and costs. This review delves into the underlying physiological and pathological mechanisms of Alzheimer's disease, while identifying potential drug targets such as acetylcholinesterase, butyrylcholinesterase, β-Secretase (BACE-1), A2A adenosine receptor, Dickkopf-1 protein, glycogen synthase kinase-3β, indoleamine 2,3-dioxygenase, monoamine oxidase-B, NMDA receptor, Wnt inhibitory factor, cyclin-dependent kinase-5, glutaminyl cyclase, and cathepsin-B. Furthermore, the review examines various computer-aided drug design (CADD) methodologies, including structure-based and ligand-based approaches, virtual screening, pharmacophore modeling, molecular modelling, and simulation techniques. These computational strategies are playing an increasingly important role in Alzheimer’s research, particularly in drug discovery. By investigating promising drug candidates and lead molecules that target key proteins involved in Alzheimer’s pathogenesis, the review highlights their binding modes with these targets and assesses the chemical properties essential for the development of effective clinical candidates. The aim is to provide researchers with critical insights and tools to design novel compounds with the necessary chemical and physical characteristics required for the successful treatment of Alzheimer’s disease.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266343814250713100224
2025-07-22
2025-09-02
Loading full text...

Full text loading...

References

  1. Chung C.G. Lee H. Lee S.B. Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 2018 75 17 3159 3180 10.1007/s00018‑018‑2854‑4 29947927
    [Google Scholar]
  2. Golde T.E. Alzheimer’s disease - The journey of a healthy brain into organ failure. Mol. Neurodegener. 2022 17 1 18 10.1186/s13024‑022‑00523‑1 35248124
    [Google Scholar]
  3. Stelzmann R.A. Norman Schnitzlein H. Reed Murtagh F. Murtagh F.R. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clin. Anat. 1995 8 6 429 431 10.1002/ca.980080612 8713166
    [Google Scholar]
  4. Bernier G. Nardini E. Hogan R. Flamier A. Alzheimer’s disease: A tale of two diseases? Neural Regen. Res. 2021 16 10 1958 1964 10.4103/1673‑5374.308070 33642366
    [Google Scholar]
  5. Quan M. Cao S. Wang Q. Wang S. Jia J. Genetic phenotypes of alzheimer’s disease: Mechanisms and potential therapy. Phenomics 2023 3 4 333 349 10.1007/s43657‑023‑00098‑x 37589021
    [Google Scholar]
  6. Kim J. Basak J.M. Holtzman D.M. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009 63 3 287 303 10.1016/j.neuron.2009.06.026 19679070
    [Google Scholar]
  7. Rossiello F. Jurk D. Passos J.F. d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 2022 24 2 135 147 10.1038/s41556‑022‑00842‑x 35165420
    [Google Scholar]
  8. Puentes-Díaz N. Chaparro D. Morales-Morales D. Flores-Gaspar A. Alí-Torres J. Role of metal cations of copper, iron, and aluminum and multifunctional ligands in alzheimer’s disease: Experimental and computational insights. ACS Omega 2023 8 5 4508 4526 10.1021/acsomega.2c06939 36777601
    [Google Scholar]
  9. Pless A. Ware D. Saggu S. Rehman H. Morgan J. Wang Q. Understanding neuropsychiatric symptoms in Alzheimer’s disease: Challenges and advances in diagnosis and treatment. Front. Neurosci. 2023 17 1263771 10.3389/fnins.2023.1263771 37732300
    [Google Scholar]
  10. Paramanick D. Singh V.D. Singh V.K. Neuroprotective effect of phytoconstituents via nanotechnology for treatment of Alzheimer diseases. J. Control. Release 2022 351 638 655 10.1016/j.jconrel.2022.09.058 36191675
    [Google Scholar]
  11. Barage S.H. Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015 52 1 18 10.1016/j.npep.2015.06.008 26149638
    [Google Scholar]
  12. Checler F. Afram E. Pardossi-Piquard R. Lauritzen I. Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J. Biol. Chem. 2021 296 100489 10.1016/j.jbc.2021.100489 33662398
    [Google Scholar]
  13. Jamasbi E. Wade J. Separovic F. Hossain M. Amyloid beta (Aβ) peptide and factors that play important roles in alzheimer’s disease. Curr. Med. Chem. 2016 23 9 884 892 10.2174/0929867323666160229113911 26923680
    [Google Scholar]
  14. Arnsten A.F.T. Datta D. Del Tredici K. Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimers Dement. 2021 17 1 115 124 10.1002/alz.12192 33075193
    [Google Scholar]
  15. Lauretti E. Dincer O. Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 5 118664 10.1016/j.bbamcr.2020.118664 32006534
    [Google Scholar]
  16. Brandt R. Bakota L. Microtubule dynamics and the neurodegenerative triad of Alzheimer’s disease: The hidden connection. J. Neurochem. 2017 143 4 409 417 10.1111/jnc.14011 28267200
    [Google Scholar]
  17. Dong X. Wang Y. Qin Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009 30 4 379 387 10.1038/aps.2009.24 19343058
    [Google Scholar]
  18. Carvajal F.J. Mattison H.A. Cerpa W. Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies. Neural Plast. 2016 2016 1 20 10.1155/2016/2701526 27630777
    [Google Scholar]
  19. Marambaud P. Dreses-Werringloer U. Vingtdeux V. Calcium signaling in neurodegeneration. Mol. Neurodegener. 2009 4 1 20 10.1186/1750‑1326‑4‑20 19419557
    [Google Scholar]
  20. Wang L. Yin Y.L. Liu X.Z. Shen P. Zheng Y.G. Lan X.R. Lu C.B. Wang J.Z. Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl. Neurodegener. 2020 9 1 10 10.1186/s40035‑020‑00189‑z 32266063
    [Google Scholar]
  21. Chen L.L. Fan Y.G. Zhao L.X. Zhang Q. Wang Z.Y. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem. 2023 131 106301 10.1016/j.bioorg.2022.106301 36455485
    [Google Scholar]
  22. Ferreira-Vieira T.H. Guimaraes I.M. Silva F.R. Ribeiro F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016 14 1 101 115 10.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  23. Huang Q. Liao C. Ge F. Ao J. Liu T. Acetylcholine bidirectionally regulates learning and memory. J. Neurorestoratology 2022 10 2 100002 10.1016/j.jnrt.2022.100002
    [Google Scholar]
  24. Dwomoh L. Tejeda G.S. Tobin A.B. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neuronal Signal. 2022 6 1 NS20210004 10.1042/NS20210004 35571495
    [Google Scholar]
  25. Kaul I. Sawchak S. Correll C.U. Kakar R. Breier A. Zhu H. Miller A.C. Paul S.M. Brannan S.K. Efficacy and safety of the muscarinic receptor agonist KarXT (xanomeline-trospium) in schizophrenia (EMERGENT-2) in the USA: Results from a randomised, double-blind, placebo-controlled, flexible-dose phase 3 trial. Lancet 2024 403 10422 160 170 10.1016/S0140‑6736(23)02190‑6 38104575
    [Google Scholar]
  26. Zou S. Kumar U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 2018 19 3 833 10.3390/ijms19030833 29533978
    [Google Scholar]
  27. Aso E. Ferrer I. Cannabinoids for treatment of Alzheimer’s disease: Moving toward the clinic. Front. Pharmacol. 2014 5 37 10.3389/fphar.2014.00037 24634659
    [Google Scholar]
  28. Aso E. Palomer E. Juvés S. Maldonado R. Muñoz F.J. Ferrer I. CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AβPP/PS1 mice. J. Alzheimers Dis. 2012 30 2 439 459 10.3233/JAD‑2012‑111862 22451318
    [Google Scholar]
  29. Burke A.D. Goldfarb D. Bollam P. Khokher S. Diagnosing and treating depression in patients with alzheimer’s disease. Neurol. Ther. 2019 8 2 325 350 10.1007/s40120‑019‑00148‑5 31435870
    [Google Scholar]
  30. Cirrito J.R. Disabato B.M. Restivo J.L. Verges D.K. Goebel W.D. Sathyan A. Hayreh D. D’Angelo G. Benzinger T. Yoon H. Kim J. Morris J.C. Mintun M.A. Sheline Y.I. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc. Natl. Acad. Sci. USA 2011 108 36 14968 14973 10.1073/pnas.1107411108 21873225
    [Google Scholar]
  31. Ramos-Rodriguez J.J. Molina-Gil S. Rey-Brea R. Berrocoso E. Garcia-Alloza M. Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice. PLoS One 2013 8 11 79947 10.1371/journal.pone.0079947 24278223
    [Google Scholar]
  32. Marcinkowska M. Bucki A. Panek D. Siwek A. Fajkis N. Bednarski M. Zygmunt M. Godyń J. Del Rio Valdivieso A. Kotańska M. Kołaczkowski M. Więckowska A. Anti‐Alzheimer’s multitarget‐directed ligands with serotonin 5‐HT 6 antagonist, butyrylcholinesterase inhibitory, and antioxidant activity. Arch. Pharm. 2019 352 7 1900041 10.1002/ardp.201900041 31162703
    [Google Scholar]
  33. Millan M.J. Dekeyne A. Gobert A. Brocco M. Mannoury la Cour C. Ortuno J.C. Watson D. Fone K.C.F. Dual-acting agents for improving cognition and real-world function in Alzheimer’s disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 2020 177 108099 10.1016/j.neuropharm.2020.108099 32525060
    [Google Scholar]
  34. Zhong K. Cummings J. A critical review of brexpiprazole oral tablets as the first drug approved to treat agitation symptoms associated with dementia due to Alzheimer’s disease. Expert Rev. Neurother. 2025 25 1 5 13 10.1080/14737175.2024.2407836 39344050
    [Google Scholar]
  35. Wang H.Y. Lee D.H.S. D’Andrea M.R. Peterson P.A. Shank R.P. Reitz A.B. β-amyloid1-42 binds to α7 nicotinic acetylcholine receptor with high affinity. J. Biol. Chem. 2000 275 8 5626 5632 10.1074/jbc.275.8.5626 10681545
    [Google Scholar]
  36. Wang H.Y. Li W. Benedetti N.J. Lee D.H.S. Alpha 7 nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J. Biol. Chem. 2003 278 34 31547 31553 10.1074/jbc.M212532200 12801934
    [Google Scholar]
  37. Wang H.Y. Bakshi K. Frankfurt M. Stucky A. Goberdhan M. Shah S.M. Burns L.H. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J. Neurosci. 2012 32 29 9773 9784 10.1523/JNEUROSCI.0354‑12.2012 22815492
    [Google Scholar]
  38. Li G. Bien-Ly N. Andrews-Zwilling Y. Xu Q. Bernardo A. Ring K. Halabisky B. Deng C. Mahley R.W. Huang Y. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 2009 5 6 634 645 10.1016/j.stem.2009.10.015 19951691
    [Google Scholar]
  39. Sun B. Halabisky B. Zhou Y. Palop J.J. Yu G. Mucke L. Gan L. Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of alzheimer’s disease. Cell Stem Cell 2009 5 6 624 633 10.1016/j.stem.2009.10.003 19951690
    [Google Scholar]
  40. Li Y. Sun H. Chen Z. Xu H. Bu G. Zheng H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci. 2016 8 31 10.3389/fnagi.2016.00031 26941642
    [Google Scholar]
  41. Hernandez G.D. Brinton R.D. Allopregnanolone: Regenerative therapeutic to restore neurological health. Neurobiol. Stress 2022 21 100502 10.1016/j.ynstr.2022.100502 36532370
    [Google Scholar]
  42. Wilson B.W. Cholinesterases. Hayes’ Handbook of Pesticide Toxicology. Elsevier 2010 1457 1478 10.1016/B978‑0‑12‑374367‑1.00068‑9
    [Google Scholar]
  43. Haam J. Yakel J.L. Cholinergic modulation of the hippocampal region and memory function. J. Neurochem 2017 142 S2 111 121.(Suppl. 2) 10.1111/jnc.14052 28791706
    [Google Scholar]
  44. Zhou S. Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed. Pharmacother. 2022 146 112556 10.1016/j.biopha.2021.112556 34953393
    [Google Scholar]
  45. Aljanabi R. Alsous L. Sabbah D.A. Gul H.I. Gul M. Bardaweel S.K. Monoamine Oxidase (MAO) as a Potential Target for Anticancer Drug Design and Development. Molecules 2021 26 19 6019 10.3390/molecules26196019 34641563
    [Google Scholar]
  46. Schedin-Weiss S. Inoue M. Hromadkova L. Teranishi Y. Yamamoto N.G. Wiehager B. Bogdanovic N. Winblad B. Sandebring-Matton A. Frykman S. Tjernberg L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther. 2017 9 1 57 10.1186/s13195‑017‑0279‑1 28764767
    [Google Scholar]
  47. Behl T. Kaur D. Sehgal A. Singh S. Sharma N. Zengin G. Andronie-Cioara F.L. Toma M.M. Bungau S. Bumbu A.G. Role of monoamine oxidase activity in alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021 26 12 3724 10.3390/molecules26123724 34207264
    [Google Scholar]
  48. Epstein P.M. Different phosphodiesterases (PDEs) regulate distinct phosphoproteomes during cAMP signaling. Proc. Natl. Acad. Sci. USA 2017 114 30 7741 7743 10.1073/pnas.1709073114 28710333
    [Google Scholar]
  49. Hesse R. Lausser L. Gummert P. Schmid F. Wahler A. Schnack C. Kroker K.S. Otto M. Tumani H. Kestler H.A. Rosenbrock H. von Arnim C.A.F. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression. Alzheimers Res. Ther. 2017 9 1 17 10.1186/s13195‑017‑0245‑y 28274265
    [Google Scholar]
  50. Ugarte A. Gil‐Bea F. García‐Barroso C. Cedazo‐Minguez Á. Ramírez M.J. Franco R. García‐Osta A. Oyarzabal J. Cuadrado‐Tejedor M. Neuropathol. Appl. Neurobiol. 2015 41 471 482 10.1111/nan.12203 25488891
    [Google Scholar]
  51. Ribaudo G. Ongaro A. Zagotto G. Memo M. Gianoncelli A. Therapeutic potential of phosphodiesterase inhibitors against neurodegeneration: The perspective of the medicinal chemist. ACS Chem. Neurosci. 2020 11 12 1726 1739 10.1021/acschemneuro.0c00244 32401481
    [Google Scholar]
  52. Russwurm C. Koesling D. Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J. Biol. Chem. 2015 290 19 11936 11947 10.1074/jbc.M114.595769 25762721
    [Google Scholar]
  53. Cuadrado-Tejedor M. Garcia-Barroso C. Sanzhez-Arias J. Mederos S. Rabal O. Ugarte A. Franco R. Pascual-Lucas M. Segura V. Perea G. Oyarzabal J. Garcia-Osta A. Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clin. Epigenetics 2015 7 1 108 10.1186/s13148‑015‑0142‑9 26457123
    [Google Scholar]
  54. Sheng M. Lu H. Liu P. Li Y. Ravi H. Peng S.L. Diaz-Arrastia R. Devous M.D. Womack K.B. Sildenafil improves vascular and metabolic function in patients with alzheimer’s disease. J. Alzheimers Dis. 2017 60 4 1351 1364 10.3233/JAD‑161006 29036811
    [Google Scholar]
  55. MacLeod R. Hillert E.K. Cameron R.T. Baillie G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci. OA 2015 1 3 FSO11 10.4155/fso.15.9 28031886
    [Google Scholar]
  56. Peron R. Vatanabe I. Manzine P. Camins A. Cominetti M. Alpha-secretase ADAM10 regulation: Insights into alzheimer’s disease treatment. Pharmaceuticals 2018 11 1 12 10.3390/ph11010012 29382156
    [Google Scholar]
  57. Zhang Y. Thompson R. Zhang H. Xu H. APP processing in Alzheimer’s disease. Mol. Brain 2011 4 1 3 10.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  58. Ohline S.M. Chan C. Schoderboeck L. Wicky H.E. Tate W.P. Hughes S.M. Abraham W.C. Effect of soluble amyloid precursor protein-alpha on adult hippocampal neurogenesis in a mouse model of Alzheimer’s disease. Mol. Brain 2022 15 1 5 10.1186/s13041‑021‑00889‑1 34980189
    [Google Scholar]
  59. Colciaghi F. Borroni B. Pastorino L. Marcello E. Zimmermann M. Cattabeni F. Padovani A. Di Luca M. [α]-Secretase ADAM10 as well as [α]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol. Med. 2002 8 2 67 74 10.1007/BF03402076 12080182
    [Google Scholar]
  60. Ray B. Maloney B. Sambamurti K. Karnati H.K. Nelson P.T. Greig N.H. Lahiri D.K. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl. Psychiatry 2020 10 1 47 10.1038/s41398‑020‑0709‑x 32066688
    [Google Scholar]
  61. Takami M. Nagashima Y. Sano Y. Ishihara S. Morishima-Kawashima M. Funamoto S. Ihara Y. γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 2009 29 41 13042 13052 10.1523/JNEUROSCI.2362‑09.2009 19828817
    [Google Scholar]
  62. Vassar R. Kovacs D.M. Yan R. Wong P.C. The β-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential. J. Neurosci. 2009 29 41 12787 12794 10.1523/JNEUROSCI.3657‑09.2009 19828790
    [Google Scholar]
  63. Cole S.L. Vassar R. The Alzheimer’s disease Beta-secretase enzyme, BACE1. Mol. Neurodegener. 2007 2 1 22 10.1186/1750‑1326‑2‑22 18005427
    [Google Scholar]
  64. Zhang S. Wang Z. Cai F. Zhang M. Wu Y. Zhang J. Song W. BACE1 cleavage site selection critical for amyloidogenesis and alzheimer’s pathogenesis. J. Neurosci. 2017 37 29 6915 6925 10.1523/JNEUROSCI.0340‑17.2017 28626014
    [Google Scholar]
  65. Deng Y. Wang Z. Wang R. Zhang X. Zhang S. Wu Y. Staufenbiel M. Cai F. Song W. Amyloid‐β protein (Aβ) Glu11 is the major β‐secretase site of β‐site amyloid‐β precursor protein‐cleaving enzyme 1(BACE1), and shifting the cleavage site to Aβ Asp1 contributes to Alzheimer pathogenesis. Eur. J. Neurosci. 2013 37 12 1962 1969 10.1111/ejn.12235 23773065
    [Google Scholar]
  66. Zhang X. Song W. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation. Alzheimers Res. Ther. 2013 5 5 46 10.1186/alzrt211 24103387
    [Google Scholar]
  67. Neumann U. Machauer R. Shimshek D.R. The β‐secretase (BACE) inhibitor NB‐360 in preclinical models: From amyloid‐β reduction to downstream disease‐relevant effects. Br. J. Pharmacol. 2019 176 18 3435 3446 10.1111/bph.14582 30657591
    [Google Scholar]
  68. Waiker D.K. Verma A. Gajendra T.A. Namrata; Roy, A.; Kumar, P.; Trigun, S.K.; Srikrishna, S.; Krishnamurthy, S.; Davisson, V.J.; Shrivastava, S.K. Design, synthesis, and biological evaluation of some 2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)-N-phenylacetamide hybrids as MTDLs for Alzheimer’s disease therapy. Eur. J. Med. Chem. 2024 271 116409 10.1016/j.ejmech.2024.116409 38663285
    [Google Scholar]
  69. Zaręba P. Łątka K. Mazur G. Gryzło B. Pasieka A. Godyń J. Panek D. Skrzypczak-Wiercioch A. Höfner G.C. Latacz G. Maj M. Espargaró A. Sabaté R. Jóźwiak K. Wanner K.T. Sałat K. Malawska B. Kulig K. Bajda M. Discovery of novel multifunctional ligands targeting GABA transporters, butyrylcholinesterase, β-secretase, and amyloid β aggregation as potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2023 261 115832 10.1016/j.ejmech.2023.115832 37837674
    [Google Scholar]
  70. Fraering P.C. Ye W. Strub J.M. Dolios G. LaVoie M.J. Ostaszewski B.L. van Dorsselaer A. Wang R. Selkoe D.J. Wolfe M.S. Purification and characterization of the human γ-secretase complex. Biochemistry 2004 43 30 9774 9789 10.1021/bi0494976 15274632
    [Google Scholar]
  71. Murphy M.P. Hickman L.J. Eckman C.B. Uljon S.N. Wang R. Golde T.E. γ-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid β peptides of varying length. J. Biol. Chem. 1999 274 17 11914 11923 10.1074/jbc.274.17.11914 10207012
    [Google Scholar]
  72. Rynearson K.D. Ponnusamy M. Prikhodko O. Xie Y. Zhang C. Nguyen P. Hug B. Sawa M. Becker A. Spencer B. Florio J. Mante M. Salehi B. Arias C. Galasko D. Head B.P. Johnson G. Lin J.H. Duddy S.K. Rissman R.A. Mobley W.C. Thinakaran G. Tanzi R.E. Wagner S.L. Preclinical validation of a potent γ-secretase modulator for Alzheimer’s disease prevention. J. Exp. Med. 2021 218 4 20202560 10.1084/jem.20202560 33651103
    [Google Scholar]
  73. Cynis H. Scheel E. Saido T.C. Schilling S. Demuth H.U. Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-β. Biochemistry 2008 47 28 7405 7413 10.1021/bi800250p 18570439
    [Google Scholar]
  74. Hook G. Yu J. Toneff T. Kindy M. Hook V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer’s disease therapeutic. J. Alzheimers Dis. 2014 41 1 129 149 10.3233/JAD‑131370 24595198
    [Google Scholar]
  75. Schilling S. Zeitschel U. Hoffmann T. Heiser U. Francke M. Kehlen A. Holzer M. Hutter-Paier B. Prokesch M. Windisch M. Jagla W. Schlenzig D. Lindner C. Rudolph T. Reuter G. Cynis H. Montag D. Demuth H.U. Rossner S. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology. Nat. Med. 2008 14 10 1106 1111 10.1038/nm.1872 18836460
    [Google Scholar]
  76. Bridel C. Hoffmann T. Meyer A. Durieux S. Koel-Simmelink M.A. Orth M. Scheltens P. Lues I. Teunissen C.E. Glutaminyl cyclase activity correlates with levels of Aβ peptides and mediators of angiogenesis in cerebrospinal fluid of Alzheimer’s disease patients. Alzheimers Res. Ther. 2017 9 1 38 10.1186/s13195‑017‑0266‑6 28587659
    [Google Scholar]
  77. Scheidt H.A. Korn A. Schwarze B. Krueger M. Huster D. Conformation of Pyroglutamated Amyloid β (3-40) and (11-40) Fibrils - Extended or Hairpin? J. Phys. Chem. B 2024 128 7 1647 1655 10.1021/acs.jpcb.3c07285 38334278
    [Google Scholar]
  78. Vijayan D.K. Zhang K.Y.J. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol. Res. 2019 147 104342 10.1016/j.phrs.2019.104342 31288079
    [Google Scholar]
  79. Valenti M.T. Bolognin S. Zanatta C. Donatelli L. Innamorati G. Pampanin M. Zanusso G. Zatta P. Carbonare L.D. Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. J. Alzheimers Dis. 2013 34 1 263 271 10.3233/JAD‑120517 23207485
    [Google Scholar]
  80. Gunn A.P. Wong B.X. McLean C. Fowler C. Barnard P.J. Duce J.A. Roberts B.R. Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. J. Neurochem. 2021 156 6 979 987 10.1111/jnc.15114 32614980
    [Google Scholar]
  81. Vijverberg E.G.B. Axelsen T.M. Bihlet A.R. Henriksen K. Weber F. Fuchs K. Harrison J.E. Kühn-Wache K. Alexandersen P. Prins N.D. Scheltens P. Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD—VIVIAD. Alzheimers Res. Ther. 2021 13 1 142 10.1186/s13195‑021‑00882‑9 34425883
    [Google Scholar]
  82. Kelley N. Jeltema D. Duan Y. He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019 20 13 3328 10.3390/ijms20133328 31284572
    [Google Scholar]
  83. Hafner-Bratkovič I. Benčina M. Fitzgerald K.A. Golenbock D. Jerala R. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell. Mol. Life Sci. 2012 69 24 4215 4228 10.1007/s00018‑012‑1140‑0 22926439
    [Google Scholar]
  84. Campden R.I. Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch. Biochem. Biophys. 2019 670 32 42 10.1016/j.abb.2019.02.015 30807742
    [Google Scholar]
  85. Yuyama K. Sun H. Fujii R. Hemmi I. Ueda K. Igeta Y. Extracellular vesicle proteome unveils cathepsin B connection to Alzheimer’s disease pathogenesis. Brain 2024 147 2 627 636 10.1093/brain/awad361 38071653
    [Google Scholar]
  86. Hook V. Toneff T. Bogyo M. Greenbaum D. Medzihradszky K.F. Neveu J. Lane W. Hook G. Reisine T. Inhibition of cathepsin B reduces β-amyloid production in regulated secretory vesicles of neuronal chromaffin cells: evidence for cathepsin B as a candidate β-secretase of Alzheimer’s disease. Biol. Chem. 2005 386 9 931 940 10.1515/BC.2005.108 16164418
    [Google Scholar]
  87. Singh S.K. Sharma A. Swetha R. Bajad N.G. Ganeshpurkar A. Singh R. Kumar A. Cathepsin B-A neuronal death mediator in alzheimer’s disease leading to neurodegeneration. Mini Rev. Med. Chem. 2022 22 15 2012 2023 10.2174/1389557522666220214095859 35156579
    [Google Scholar]
  88. Hook V. Yu J. Hook G. Kindy M. O1-08-02: Cathepsin B produces brain pyro‐glu‐beta‐amyloid in a transgenic Alzheimer’s disease mouse model. Alzheimers Dement 2013 9 4S_Part_3 9 10.1016/j.jalz.2013.04.093
    [Google Scholar]
  89. Chitranshi N. Kumar A. Sheriff S. Gupta V. Godinez A. Saks D. Sarkar S. Shen T. Mirzaei M. Basavarajappa D. Abyadeh M. Singh S.K. Dua K. Zhang K.Y.J. Graham S.L. Gupta V. Identification of novel cathepsin b inhibitors with implications in alzheimer’s disease: Computational refining and biochemical evaluation. Cells 2021 10 8 1946 10.3390/cells10081946 34440715
    [Google Scholar]
  90. Jangra J. Bajad N.G. Singh R. Kumar A. Singh S.K. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer’s disease. Mol. Divers. 2024 28 6 4381 4401 10.1007/s11030‑024‑10821‑z 38517648
    [Google Scholar]
  91. Saroha B. Kumar G. Arya P. Raghav N. Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg. Chem. 2023 140 106805 10.1016/j.bioorg.2023.106805 37634269
    [Google Scholar]
  92. Wang C. Cui Y. Xu T. Zhou Y. Yang R. Wang T. New insights into glycogen synthase kinase-3: A common target for neurodegenerative diseases. Biochem. Pharmacol. 2023 218 115923 10.1016/j.bcp.2023.115923 37981175
    [Google Scholar]
  93. Barbier P. Zejneli O. Martinho M. Lasorsa A. Belle V. Smet-Nocca C. Tsvetkov P.O. Devred F. Landrieu I. Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Front. Aging Neurosci. 2019 11 204 10.3389/fnagi.2019.00204 31447664
    [Google Scholar]
  94. Sydow A. Van der Jeugd A. Zheng F. Ahmed T. Balschun D. Petrova O. Drexler D. Zhou L. Rune G. Mandelkow E. D’Hooge R. Alzheimer C. Mandelkow E.M. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J. Neurosci. 2011 31 7 2511 2525 10.1523/JNEUROSCI.5245‑10.2011 21325519
    [Google Scholar]
  95. Guillozet A.L. Weintraub S. Mash D.C. Mesulam M.M. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch. Neurol. 2003 60 5 729 736 10.1001/archneur.60.5.729 12756137
    [Google Scholar]
  96. Kitagishi Y. Nakanishi A. Ogura Y. Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res. Ther. 2014 6 3 35 10.1186/alzrt265 25031641
    [Google Scholar]
  97. Sharma V. Chander Sharma P. Reang J. Yadav V. Kumar Tonk R. Majeed J. Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg. Chem. 2024 147 107378 10.1016/j.bioorg.2024.107378 38643562
    [Google Scholar]
  98. Salcedo-Tello P. Ortiz-Matamoros A. Arias C. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration. Int. J. Alzheimers Dis. 2011 2011 189728 10.4061/2011/189728
    [Google Scholar]
  99. Abdo Moustafa E. Abdelrasheed Allam H. Fouad M.A. El Kerdawy A.M. Nasser Eid El-Sayed N. Wagner C. Abdel-Aziz H.A. Abdel Fattah Ezzat M. Discovery of novel quinolin-2-one derivatives as potential GSK-3β inhibitors for treatment of Alzheimer’s disease: Pharmacophore-based design, preliminary SAR, in vitro and in vivo biological evaluation. Bioorg. Chem. 2024 146 107324 10.1016/j.bioorg.2024.107324 38569322
    [Google Scholar]
  100. Batra S. Jahan S. Ashraf A. Alharby B. Jawaid T. Islam A. Hassan I. A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int. J. Biol. Macromol. 2023 230 123259 10.1016/j.ijbiomac.2023.123259 36641018
    [Google Scholar]
  101. Liu S.L. Wang C. Jiang T. Tan L. Xing A. Yu J.T. The Role of Cdk5 in Alzheimer’s Disease. Mol. Neurobiol. 2016 53 7 4328 4342 10.1007/s12035‑015‑9369‑x 26227906
    [Google Scholar]
  102. Patrick G.N. Zukerberg L. Nikolic M. de la Monte S. Dikkes P. Tsai L.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999 402 6762 615 622 10.1038/45159 10604467
    [Google Scholar]
  103. Shukla R. Singh T.R. Identification of small molecules against cyclin dependent kinase-5 using chemoinformatics approach for Alzheimer’s disease and other tauopathies. J. Biomol. Struct. Dyn. 2022 40 6 2815 2827 10.1080/07391102.2020.1844050 33155527
    [Google Scholar]
  104. Shukla R. Singh T.R. Virtual screening, pharmacokinetics, molecular dynamics and binding free energy analysis for small natural molecules against cyclin-dependent kinase 5 for Alzheimer’s disease. J. Biomol. Struct. Dyn. 2020 38 1 248 262 10.1080/07391102.2019.1571947 30688165
    [Google Scholar]
  105. Singh R. Bhardwaj V. Das P. Purohit R. Natural analogues inhibiting selective cyclin-dependent kinase protein isoforms: A computational perspective. J. Biomol. Struct. Dyn. 2020 38 17 5126 5135 10.1080/07391102.2019.1696709 31760872
    [Google Scholar]
  106. Klein H.U. McCabe C. Gjoneska E. Sullivan S.E. Kaskow B.J. Tang A. Smith R.V. Xu J. Pfenning A.R. Bernstein B.E. Meissner A. Schneider J.A. Mostafavi S. Tsai L.H. Young-Pearse T.L. Bennett D.A. De Jager P.L. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 2019 22 1 37 46 10.1038/s41593‑018‑0291‑1 30559478
    [Google Scholar]
  107. Chen H.P. Zhao Y.T. Zhao T.C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog. 2015 20 1-2 35 47 10.1615/CritRevOncog.2015012997 25746103
    [Google Scholar]
  108. De Simone A. Milelli A. Histone deacetylase inhibitors as multitarget ligands: New players in alzheimer’s disease drug discovery? ChemMedChem 2019 14 11 1067 1073 10.1002/cmdc.201900174 30958639
    [Google Scholar]
  109. Yang C-X. Bao F. Zhong J. Zhang L. Deng L-B. Sha Q. Jiang H. The inhibitory effects of class I histone deacetylases on hippocampal neuroinflammatory regulation in aging mice with postoperative cognitive dysfunction. Eur. Rev. Med. Pharmacol. Sci. 2020 24 19 10194 10202 33090427
    [Google Scholar]
  110. Schmauss C. The roles of class I histone deacetylases (HDACs) in memory, learning, and executive cognitive functions: A review. Neurosci. Biobehav. Rev. 2017 83 63 71 10.1016/j.neubiorev.2017.10.004 29017914
    [Google Scholar]
  111. Wu Y. Hou F. Wang X. Kong Q. Han X. Bai B. Aberrant expression of histone deacetylases 4 in cognitive disorders: Molecular mechanisms and a potential target. Front. Mol. Neurosci. 2016 9 114 10.3389/fnmol.2016.00114 27847464
    [Google Scholar]
  112. Han B. Wang M. Li J. Chen Q. Sun N. Yang X. Zhang Q. Perspectives and new aspects of histone deacetylase inhibitors in the therapy of CNS diseases. Eur. J. Med. Chem. 2023 258 115613 10.1016/j.ejmech.2023.115613 37399711
    [Google Scholar]
  113. Li Y. Lin S. Gu Z. Chen L. He B. Zinc-dependent deacetylases (HDACs) as potential targets for treating Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2022 76 129015 10.1016/j.bmcl.2022.129015 36208870
    [Google Scholar]
  114. He F. Ran Y. Li X. Wang D. Zhang Q. Lv J. Yu C. Qu Y. Zhang X. Xu A. Wei C. Chou C.J. Wu J. Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for Alzheimer’s disease. Bioorg. Chem. 2020 103 104109 10.1016/j.bioorg.2020.104109 32768741
    [Google Scholar]
  115. Yao C. Jiang X. Zhao R. Zhong Z. Ge J. Zhu J. Ye X.Y. Xie Y. Liu Z. Xie T. Bai R. HDAC1/MAO-B dual inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation of N-propargylamine-hydroxamic acid/o-aminobenzamide hybrids. Bioorg. Chem. 2022 122 105724 10.1016/j.bioorg.2022.105724 35305483
    [Google Scholar]
  116. Qin P. Ran Y. Xie F. Liu Y. Wei C. Luan X. Wu J. Design, synthesis, and biological evaluation of novel N-Benzyl piperidine derivatives as potent HDAC/AChE inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. 2023 80 117178 10.1016/j.bmc.2023.117178 36706609
    [Google Scholar]
  117. Walker L.C. Aβ Plaques. Free Neuropathol 2020 1 31 33345256
    [Google Scholar]
  118. Theodoridis X. Papaemmanouil A. Papageorgiou N. Savopoulos C. Chourdakis M. Triantafyllou A. The association between lifestyle interventions and trimethylamine N-oxide: A systematic-narrative hybrid literature review. Nutrients 2025 17 7 1280 10.3390/nu17071280 40219037
    [Google Scholar]
  119. Cullen K.M. Kócsi Z. Stone J. Microvascular pathology in the aging human brain: Evidence that senile plaques are sites of microhaemorrhages. Neurobiol. Aging 2006 27 12 1786 1796 10.1016/j.neurobiolaging.2005.10.016 17063559
    [Google Scholar]
  120. Fiala M. Liu Q.N. Sayre J. Pop V. Brahmandam V. Graves M.C. Vinters H.V. Cyclooxygenase‐2‐positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur. J. Clin. Invest. 2002 32 5 360 371 10.1046/j.1365‑2362.2002.00994.x 12027877
    [Google Scholar]
  121. Tomimoto H. Akiguchi I. Suenaga T. Nishimura M. Wakita H. Nakamura S. Kimura J. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke 1996 27 11 2069 2074 10.1161/01.STR.27.11.2069 8898818
    [Google Scholar]
  122. McLarnon J.G. A leaky blood-brain barrier to fibrinogen contributes to oxidative damage in alzheimer’s disease. Antioxidants 2021 11 1 102 10.3390/antiox11010102 35052606
    [Google Scholar]
  123. Singh H. Das A. Khan M.M. Pourmotabbed T. New insights into the therapeutic approaches for the treatment of tauopathies. Neural Regen. Res. 2024 19 5 1020 1026 10.4103/1673‑5374.385288 37862204
    [Google Scholar]
  124. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  125. Aparoy P. Kumar Reddy K. Reddanna P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem. 2012 19 22 3763 3778 10.2174/092986712801661112 22680930
    [Google Scholar]
  126. Pasrija P. Jha P. Upadhyaya P. Khan M.S. Chopra M. Machine learning and artificial intelligence: A paradigm shift in big data-driven drug design and discovery. Curr. Top. Med. Chem. 2022 22 20 1692 1727 10.2174/1568026622666220701091339 35786336
    [Google Scholar]
  127. Peitzika S.C. Pontiki E. A review on recent approaches on molecular docking studies of novel compounds targeting acetylcholinesterase in alzheimer disease. Molecules 2023 28 3 1084 10.3390/molecules28031084 36770750
    [Google Scholar]
  128. Kesharwani M.K. Ganguly B. Das A. Bandyopadhyay T. Differential binding of bispyridinium oxime drugs with acetylcholinesterase. Acta Pharmacol. Sin. 2010 31 3 313 328 10.1038/aps.2009.193 20140002
    [Google Scholar]
  129. Harel M. Schalk I. Ehret-Sabatier L. Bouet F. Goeldner M. Hirth C. Axelsen P.H. Silman I. Sussman J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1993 90 19 9031 9035 10.1073/pnas.90.19.9031 8415649
    [Google Scholar]
  130. Budryn G. Majak I. Grzelczyk J. Szwajgier D. Rodríguez-Martínez A. Pérez-Sánchez H. Hydroxybenzoic acids as acetylcholinesterase inhibitors: Calorimetric and docking simulation studies. Nutrients 2022 14 12 2476 10.3390/nu14122476 35745206
    [Google Scholar]
  131. Wiesner J. Kříž Z. Kuča K. Jun D. Koča J. Acetylcholinesterases - The structural similarities and differences. J. Enzyme Inhib. Med. Chem. 2007 22 4 417 424 10.1080/14756360701421294 17847707
    [Google Scholar]
  132. Roca C. Requena C. Sebastián-Pérez V. Malhotra S. Radoux C. Pérez C. Martinez A. Antonio Páez J. Blundell T.L. Campillo N.E. Identification of new allosteric sites and modulators of AChE through computational and experimental tools. J. Enzyme Inhib. Med. Chem. 2018 33 1 1034 1047 10.1080/14756366.2018.1476502 29873262
    [Google Scholar]
  133. Dvir H. Silman I. Harel M. Rosenberry T.L. Sussman J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010 187 1-3 10 22 10.1016/j.cbi.2010.01.042 20138030
    [Google Scholar]
  134. Kaczor A.A. Zięba A. Matosiuk D. The application of WaterMap-guided structure-based virtual screening in novel drug discovery. Expert Opin. Drug Discov. 2024 19 1 73 83 10.1080/17460441.2023.2267015 37807912
    [Google Scholar]
  135. Hussein B.A. Karimi I. Yousofvand N. Computational insight to putative anti-acetylcholinesterase activity of Commiphora myrrha (Nees), engler, burseraceae: A lessen of archaeopharmacology from mesopotamian medicine I. In Silico Pharmacol. 2019 7 1 3 10.1007/s40203‑019‑0052‑1 31114748
    [Google Scholar]
  136. Chatonnet A. Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 1989 260 3 625 634 10.1042/bj2600625 2669736
    [Google Scholar]
  137. David B. Schneider P. Schäfer P. Pietruszka J. Gohlke H. Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: Virtual screening and in vitro characterisation. J. Enzyme Inhib. Med. Chem. 2021 36 1 491 496 10.1080/14756366.2021.1876685 33478277
    [Google Scholar]
  138. Sağlık B.N. Levent S. Osmaniye D. Evren A.E. Karaduman A.B. Özkay Y. Kaplancıklı Z.A. Design, synthesis, and in vitro and in silico approaches of novel indanone derivatives as multifunctional anti-alzheimer agents. ACS Omega 2022 7 50 47378 47404 10.1021/acsomega.2c06906 36570177
    [Google Scholar]
  139. Spronk S.A. Carlson H.A. The role of tyrosine 71 in modulating the flap conformations of BACE1. Proteins 2011 79 7 2247 2259 10.1002/prot.23050 21590744
    [Google Scholar]
  140. Babu A.P. Chitti S. Rajesh B. Prasanth V.V. Kishen R.J.V. Vali K.R. In silico based ligand design and docking studies of GSK-3β inhibitors. Chem. Bioinform. J. 2010 10 1 12 10.1273/cbij.10.1
    [Google Scholar]
  141. Kumar A. Grewal A. Kumar P. Chauhan R. Saini V. Kumar A. Molecular docking analysis of marine phytochemicals with BACE-1. Bioinformation 2024 20 2 151 155 10.6026/973206300200151 38497071
    [Google Scholar]
  142. Verma S. Paramanick D. β-secretase as a primary drug target of alzheimer disease: Function, structure, and inhibition. Deciphering Drug Targets for Alzheimer’s Disease Springer Nature Singapore: Singapore 2023 95 109
    [Google Scholar]
  143. Iqbal D. Rehman M.T. Alajmi M.F. Alsaweed M. Jamal Q.M.S. Alasiry S.M. Albaker A.B. Hamed M. Kamal M. Albadrani H.M. Multitargeted virtual screening and molecular simulation of natural product-like compounds against GSK3β, NMDA-Receptor, and BACE-1 for the management of alzheimer’s disease. Pharmaceuticals 2023 16 4 622 10.3390/ph16040622 37111379
    [Google Scholar]
  144. Adeowo F.Y. Elrashedy A.A. Ejalonibu M.A. Lawal I.A. Lawal M.M. Kumalo H.M. Pharmacophore mapping of the crucial mediators of acetylcholinesterase and butyrylcholinesterase dual inhibition in Alzheimer’s disease. Mol. Divers. 2022 26 5 2761 2774 10.1007/s11030‑022‑10377‑w 35067751
    [Google Scholar]
  145. Kushwaha P. Singh V. Somvanshi P. Bhardwaj T. Barreto G.E. Ashraf G.M. Mishra B.N. Chundawat R.S. Haque S. Identification of new BACE1 inhibitors for treating Alzheimer’s disease. J. Mol. Model. 2021 27 2 58 10.1007/s00894‑021‑04679‑3 33517514
    [Google Scholar]
  146. Hunt K.W. Cook A.W. Watts R.J. Clark C.T. Vigers G. Smith D. Metcalf A.T. Gunawardana I.W. Burkard M. Cox A.A. Geck Do M.K. Dutcher D. Thomas A.A. Rana S. Kallan N.C. DeLisle R.K. Rizzi J.P. Regal K. Sammond D. Groneberg R. Siu M. Purkey H. Lyssikatos J.P. Marlow A. Liu X. Tang T.P. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: From hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J. Med. Chem. 2013 56 8 3379 3403 10.1021/jm4002154 23537249
    [Google Scholar]
  147. Trinh P.N.H. Baltos J.A. Hellyer S.D. May L.T. Gregory K.J. Adenosine receptor signalling in Alzheimer’s disease. Purinergic Signal. 2022 18 3 359 381 10.1007/s11302‑022‑09883‑1 35870032
    [Google Scholar]
  148. Tang S.J. Synaptic activity-regulated Wnt signaling in synaptic plasticity, glial function and chronic pain. CNS Neurol. Disord. Drug Targets 2014 13 5 737 744 10.2174/1871527312666131223114457 24365183
    [Google Scholar]
  149. Manandhar S. Sankhe R. Priya K. Hari G. Kumar B.H. Mehta C.H. Nayak U.Y. Pai K.S.R. Molecular dynamics and structure-based virtual screening and identification of natural compounds as Wnt signaling modulators: Possible therapeutics for Alzheimer’s disease. Mol. Divers. 2022 26 5 2793 2811 10.1007/s11030‑022‑10395‑8 35146638
    [Google Scholar]
  150. Prajapat M. Singh H. Chaudhary G. Sarma P. Kaur G. Prakash Patel A. Medhi B. A novel inhibitor of DKK1/LRP6 interactions against the alzheimer disease: An insilco approach. Bioinform. Biol. Insights 2023 17 11779322231183762 10.1177/11779322231183762 37424708
    [Google Scholar]
  151. Chen X. Fang L. Liu J. Zhan C.G. Reaction pathway and free energy profiles for butyrylcholinesterase-catalyzed hydrolysis of acetylthiocholine. Biochemistry 2012 51 6 1297 1305 10.1021/bi201786s 22304234
    [Google Scholar]
  152. Ha Z.Y. Mathew S. Yeong K.Y. Butyrylcholinesterase: A multifaceted pharmacological target and tool. Curr. Protein Pept. Sci. 2020 21 1 99 109 10.2174/1389203720666191107094949 31702488
    [Google Scholar]
  153. Gao H. Jiang Y. Zhan J. Sun Y. Pharmacophore-based drug design of AChE and BChE dual inhibitors as potential anti-Alzheimer’s disease agents. Bioorg. Chem. 2021 114 105149 10.1016/j.bioorg.2021.105149 34252860
    [Google Scholar]
  154. Liang Y. Xie S. He Y. Xu M. Qiao X. Zhu Y. Wu W. Kynurenine pathway metabolites as biomarkers in alzheimer’s disease. Dis. Markers 2022 2022 1 15 10.1155/2022/9484217 35096208
    [Google Scholar]
  155. Huang Y.S. Ogbechi J. Clanchy F.I. Williams R.O. Stone T.W. IDO and kynurenine metabolites in peripheral and CNS disorders. Front. Immunol. 2020 11 388 10.3389/fimmu.2020.00388 32194572
    [Google Scholar]
  156. Rosenberry T.L. Brazzolotto X. Macdonald I.R. Wandhammer M. Trovaslet-Leroy M. Darvesh S. Nachon F. Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules 2017 22 12 2098 10.3390/molecules22122098 29186056
    [Google Scholar]
  157. Sridhar G.R. Sekhar T. Rao P.V.N. Rao A.A. Human butyrylcholinesterase knock-out equivalent: Potential to assess role in Alzheimer’s disease. Adv. Alzheimer Dis. 2012 1 1 1 11 10.4236/aad.2012.11001
    [Google Scholar]
  158. De Simone A. Tumiatti V. Andrisano V. Milelli A. Glycogen synthase kinase 3β: A new gold rush in anti-alzheimer’s disease multitarget drug discovery? J. Med. Chem. 2021 64 1 26 41 10.1021/acs.jmedchem.0c00931 33346659
    [Google Scholar]
  159. Aoki M. Yokota T. Sugiura I. Sasaki C. Hasegawa T. Okumura C. Ishiguro K. Kohno T. Sugio S. Matsuzaki T. Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3β. Acta Crystallogr. D Biol. Crystallogr. 2004 60 3 439 446 10.1107/S090744490302938X 14993667
    [Google Scholar]
  160. Shukla R. Singh T.R. High-throughput screening of natural compounds and inhibition of a major therapeutic target HsGSK-3β for Alzheimer’s disease using computational approaches. J. Genet. Eng. Biotechnol. 2021 19 1 61 10.1186/s43141‑021‑00163‑w 33945025
    [Google Scholar]
  161. Garemilla S. Kumari R. Kumar R. CDK5 as a therapeutic tool for the treatment of Alzheimer’s disease: A review. Eur. J. Pharmacol. 2024 978 176760 10.1016/j.ejphar.2024.176760 38901526
    [Google Scholar]
  162. Di Stefano M. Galati S. Ortore G. Caligiuri I. Rizzolio F. Ceni C. Bertini S. Bononi G. Granchi C. Macchia M. Poli G. Tuccinardi T. Machine learning-based virtual screening for the identification of Cdk5 inhibitors. Int. J. Mol. Sci. 2022 23 18 10653 10.3390/ijms231810653 36142566
    [Google Scholar]
  163. Hoang V.H. Tran P.T. Cui M. Ngo V.T.H. Ann J. Park J. Lee J. Choi K. Cho H. Kim H. Ha H.J. Hong H.S. Choi S. Kim Y.H. Lee J. Discovery of potent human glutaminyl cyclase inhibitors as anti-alzheimer’s agents based on rational design. J. Med. Chem. 2017 60 6 2573 2590 10.1021/acs.jmedchem.7b00098 28234463
    [Google Scholar]
  164. Jia Z. Hasnain S. Hirama T. Lee X. Mort J.S. To R. Huber C.P. Crystal structures of recombinant rat cathepsin B and a cathepsin B-inhibitor complex. Implications for structure-based inhibitor design. J. Biol. Chem. 1995 270 10 5527 5533 10.1074/jbc.270.10.5527 7890671
    [Google Scholar]
  165. Yoon M.C. Christy M.P. Phan V.V. Gerwick W.H. Hook G. O’Donoghue A.J. Hook V. Molecular features of CA-074 pH-dependent inhibition of cathepsin B. Biochemistry 2022 61 4 228 238 10.1021/acs.biochem.1c00684 35119840
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266343814250713100224
Loading
/content/journals/ctmc/10.2174/0115680266343814250713100224
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test