Skip to content
2000
image of Barrier Tissue-Resident Macrophages: Natural Compounds as Modulators in Immune Function and Disease

Abstract

Tissue-Resident Macrophages (TRMs) are essential cells of the immune system, strategically located in barrier tissues such as the skin, lungs, and intestines. They can originate from progenitor cells in the yolk sac and fetal liver, developing distinct features that enable them to respond effectively to local challenges and maintain tissue homeostasis. The functional plasticity of TRMs allows them to adapt to diverse microenvironments, facilitating their roles in tissue repair, inflammation, and immune surveillance. Recent studies have highlighted the potential of Natural Compounds (NCs) to modulate macrophage function, offering promising therapeutic strategies for managing inflammatory diseases. These compounds have been shown to enhance or suppress specific macrophage activities, influencing immune responses and promoting healing processes. This review highlights the importance of understanding TRMs and the role of natural compounds in modulating TRM activation and function. Deciphering the potential of NCs in macrophages may shed light on the development of innovative treatments for various immune-related diseases.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266369409250701072727
2025-07-17
2025-09-13
Loading full text...

Full text loading...

References

  1. Varol C. Mildner A. Jung S. Macrophages: Development and tissue specialization. Annu. Rev. Immunol. 2015 33 1 643 675 10.1146/annurev‑immunol‑032414‑112220 25861979
    [Google Scholar]
  2. Gordon S. The macrophage: Past, present and future. Eur J. Immunol. 2007 37 s1 S9 S17 (Suppl. 1) 10.1002/eji.200737638 17972350
    [Google Scholar]
  3. van Furth R. Cohn Z.A. Hirsch J.G. Humphrey J.H. Spector W.G. Langevoort H.L. The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 1972 46 6 845 852 10.1002/eji.200737638 4538544
    [Google Scholar]
  4. van Furth R. Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968 128 3 415 435 10.1084/jem.128.3.415 5666958
    [Google Scholar]
  5. Enzan H. Electron microscopic studies of macrophages in early human yolk sacs. Acta Pathol. Jpn. 1986 36 1 49 64 10.1111/j.1440‑1827.1986.tb01460.x 3962674
    [Google Scholar]
  6. Tagliani E. Shi C. Nancy P. Tay C.S. Pamer E.G. Erlebacher A. Coordinate regulation of tissue macrophage and dendritic cell population dynamics by CSF-1. J. Exp. Med. 2011 208 9 1901 1916 10.1084/jem.20110866 21825019
    [Google Scholar]
  7. Epelman S. Lavine K.J. Beaudin A.E. Sojka D.K. Carrero J.A. Calderon B. Brija T. Gautier E.L. Ivanov S. Satpathy A.T. Schilling J.D. Schwendener R. Sergin I. Razani B. Forsberg E.C. Yokoyama W.M. Unanue E.R. Colonna M. Randolph G.J. Mann D.L. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014 40 1 91 104 10.1016/j.immuni.2013.11.019 24439267
    [Google Scholar]
  8. Gentek R. Ghigo C. Hoeffel G. Jorquera A. Msallam R. Wienert S. Klauschen F. Ginhoux F. Bajénoff M. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J. Exp. Med. 2018 215 12 2994 3005 10.1084/jem.20181206 30409784
    [Google Scholar]
  9. Niec R.E. Rudensky A.Y. Fuchs E. Inflammatory adaptation in barrier tissues. Cell 2021 184 13 3361 3375 10.1016/j.cell.2021.05.036 34171319
    [Google Scholar]
  10. Randeni N. Bordiga M. Xu B. A comprehensive review of the triangular relationship among diet–gut microbiota–inflammation. Int. J. Mol. Sci. 2024 25 17 9366 10.3390/ijms25179366 39273314
    [Google Scholar]
  11. Gordon S. Plüddemann A. Martinez Estrada F. Macrophage heterogeneity in tissues: Phenotypic diversity and functions. Immunol. Rev. 2014 262 1 36 55 10.1111/imr.12223 25319326
    [Google Scholar]
  12. Denning T.L. Wang Y. Patel S.R. Williams I.R. Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses. Nat. Immunol. 2007 8 10 1086 1094 10.1038/ni1511 17873879
    [Google Scholar]
  13. Gasmi A. Shanaida M. Oleshchuk O. Semenova Y. Mujawdiya P.K. Ivankiv Y. Pokryshko O. Noor S. Piscopo S. Adamiv S. Bjørklund G. Natural Ingredients to Improve Immunity. Pharmaceuticals 2023 16 4 528 10.3390/ph16040528 37111285
    [Google Scholar]
  14. Wang Y. Smith W. Hao D. He B. Kong L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol. 2019 70 459 466 10.1016/j.intimp.2019.02.050 30861466
    [Google Scholar]
  15. Yin M. Zhang Y. Li H. Advances in research on immunoregulation of macrophages by plant polysaccharides. Front. Immunol. 2019 10 145 10.3389/fimmu.2019.00145 30804942
    [Google Scholar]
  16. Zhou X. Wang X. Sun Q. Zhang W. Liu C. Ma W. Sun C. Natural compounds: A new perspective on targeting polarization and infiltration of tumor-associated macrophages in lung cancer. Biomed. Pharmacother. 2022 151 113096 10.1016/j.biopha.2022.113096 35567987
    [Google Scholar]
  17. El Menyiy N. El Allam A. Aboulaghras S. Jaouadi I. Bakrim S. El Omari N. Shariati M.A. Miftakhutdinov A. Wilairatana P. Mubarak M.S. Bouyahya A. Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed. Pharmacother. 2022 151 113158 10.1016/j.biopha.2022.113158 35644116
    [Google Scholar]
  18. Moudgil K.D. Venkatesha S.H. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. Int. J. Mol. Sci. 2022 24 1 95 10.3390/ijms24010095 36613560
    [Google Scholar]
  19. Martinez J. Moreno J.J. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem. Pharmacol. 2000 59 7 865 870 10.1016/S0006‑2952(99)00380‑9 10718345
    [Google Scholar]
  20. Delmas D. Aires V. Colin D.J. Limagne E. Scagliarini A. Cotte A.K. Ghiringhelli F. Importance of lipid microdomains, rafts, in absorption, delivery, and biological effects of resveratrol. Ann. N. Y. Acad. Sci. 2013 1290 1 90 97 10.1111/nyas.12177 23855470
    [Google Scholar]
  21. Kwon H.S. Park J.H. Kim D.H. Kim Y.H. Park J.H.Y. Shin H.K. Kim J.K. Licochalcone A isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J. Mol. Med. 2008 86 11 1287 1295 10.1007/s00109‑008‑0395‑2 18825356
    [Google Scholar]
  22. Zhao H. Zhang X. Chen X. Li Y. Ke Z. Tang T. Chai H. Guo A.M. Chen H. Yang J. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6. Toxicol. Appl. Pharmacol. 2014 279 3 311 321 10.1016/j.taap.2014.07.001 25026504
    [Google Scholar]
  23. van Furth R. Diesselhoff-den Dulk M.M.C. The kinetics of promonocytes and monocytes in the bone marrow. J. Exp. Med. 1970 132 4 813 828 10.1084/jem.132.4.813 5508379
    [Google Scholar]
  24. Rivollier A. He J. Kole A. Valatas V. Kelsall B.L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 2012 209 1 139 155 10.1084/jem.20101387 22231304
    [Google Scholar]
  25. Bain C.C. Bravo-Blas A. Scott C.L. Gomez Perdiguero E. Geissmann F. Henri S. Malissen B. Osborne L.C. Artis D. Mowat A.M. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat. Immunol. 2014 15 10 929 937 10.1038/ni.2967 25151491
    [Google Scholar]
  26. Ginhoux F. Greter M. Leboeuf M. Nandi S. See P. Gokhan S. Mehler M.F. Conway S.J. Ng L.G. Stanley E.R. Samokhvalov I.M. Merad M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010 330 6005 841 845 10.1126/science.1194637 20966214
    [Google Scholar]
  27. Guilliams M. De Kleer I. Henri S. Post S. Vanhoutte L. De Prijck S. Deswarte K. Malissen B. Hammad H. Lambrecht B.N. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 2013 210 10 1977 1992 10.1084/jem.20131199 24043763
    [Google Scholar]
  28. Takahashi K. Yamamura F. Naito M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: A light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukoc. Biol. 1989 45 2 87 96 10.1002/jlb.45.2.87 2536795
    [Google Scholar]
  29. Schulz C. Perdiguero E.G. Chorro L. Szabo-Rogers H. Cagnard N. Kierdorf K. Prinz M. Wu B. Jacobsen S.E.W. Pollard J.W. Frampton J. Liu K.J. Geissmann F. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012 336 6077 86 90 10.1126/science.1219179 22442384
    [Google Scholar]
  30. Imperato M.R. Cauchy P. Obier N. Bonifer C. The RUNX1–PU.1 axis in the control of hematopoiesis. Int. J. Hematol. 2015 101 4 319 329 10.1007/s12185‑015‑1762‑8 25749719
    [Google Scholar]
  31. Zhang D.E. Hetherington C.J. Chen H.M. Tenen D.G. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol. Cell. Biol. 1994 14 1 373 381 10.1128/mcb.14.1.373‑381.1994 8264604
    [Google Scholar]
  32. Lavin Y. Winter D. Blecher-Gonen R. David E. Keren-Shaul H. Merad M. Jung S. Amit I. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014 159 6 1312 1326 10.1016/j.cell.2014.11.018 25480296
    [Google Scholar]
  33. Italiani P. Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 2014 5 514 10.3389/fimmu.2014.00514 25368618
    [Google Scholar]
  34. Evans R.M. Mangelsdorf D.J. Nuclear receptors, RXR, and the big bang. Cell 2014 157 1 255 266 10.1016/j.cell.2014.03.012 24679540
    [Google Scholar]
  35. Yunna C. Mengru H. Lei W. Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020 877 173090 10.1016/j.ejphar.2020.173090 32234529
    [Google Scholar]
  36. Yan L. Wang J. Cai X. Liou Y.C. Shen H.M. Hao J. Huang C. Luo G. He W. Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm 2024 5 8 e658 10.1002/mco2.658 39092292
    [Google Scholar]
  37. Zhou D. Huang C. Lin Z. Zhan S. Kong L. Fang C. Li J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell. Signal. 2014 26 2 192 197 10.1016/j.cellsig.2013.11.004 24219909
    [Google Scholar]
  38. Zhang J. Liu X. Wan C. Liu Y. Wang Y. Meng C. Zhang Y. Jiang C. NLRP3 inflammasome mediates M1 macrophage polarization and IL‐1β production in inflammatory root resorption. J. Clin. Periodontol. 2020 47 4 451 460 10.1111/jcpe.13258 31976565
    [Google Scholar]
  39. Döppler H.R. Storz P. Macrophage-induced reactive oxygen species in the initiation of pancreatic cancer: A mini-review. Front. Immunol. 2024 15 1278807 10.3389/fimmu.2024.1278807 38576613
    [Google Scholar]
  40. Barrera L.F. Kramnik I. Skamene E. Radzioch D. Nitrite production by macrophages derived from BCG-resistant and -susceptible congenic mouse strains in response to IFN-gamma and infection with BCG. Immunology 1994 82 3 457 464 7959883
    [Google Scholar]
  41. Stuehr D.J. Marletta M.A. Mammalian nitrate biosynthesis: Mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1985 82 22 7738 7742 10.1073/pnas.82.22.7738 3906650
    [Google Scholar]
  42. Jin G. Yao X. Liu D. Zhang J. Zhang X. Yang Y. Bi Y. Zhang H. Dong G. Tang H. Cheng S. Hong F. Si M. Inducible nitric oxide synthase accelerates nonalcoholic fatty liver disease progression by regulating macrophage autophagy. Immun. Inflamm. Dis. 2023 11 12 e1114 10.1002/iid3.1114 38156397
    [Google Scholar]
  43. Bruckdorfer R. The basics about nitric oxide. Mol. Aspects Med. 2005 26 1-2 3 31 10.1016/j.mam.2004.09.002 15722113
    [Google Scholar]
  44. Pérez S. Rius-Pérez S. Macrophage polarization and reprogramming in acute inflammation: A redox perspective. Antioxidants 2022 11 7 1394 10.3390/antiox11071394 35883885
    [Google Scholar]
  45. Anavi S. Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic. Biol. Med. 2020 146 16 35 10.1016/j.freeradbiomed.2019.10.411 31672462
    [Google Scholar]
  46. Fujii J. Osaki T. Involvement of nitric oxide in protecting against radical species and autoregulation of m1-polarized macrophages through metabolic remodeling. Molecules 2023 28 2 814 10.3390/molecules28020814 36677873
    [Google Scholar]
  47. Jakubzick C. Gautier E.L. Gibbings S.L. Sojka D.K. Schlitzer A. Johnson T.E. Ivanov S. Duan Q. Bala S. Condon T. van Rooijen N. Grainger J.R. Belkaid Y. Ma’ayan A. Riches D.W.H. Yokoyama W.M. Ginhoux F. Henson P.M. Randolph G.J. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 2013 39 3 599 610 10.1016/j.immuni.2013.08.007 24012416
    [Google Scholar]
  48. Bogen B. Fauskanger M. Haabeth O.A. Tveita A. CD4 + T cells indirectly kill tumor cells via induction of cytotoxic macrophages in mouse models. Cancer Immunol. Immunother. 2019 68 11 1865 1873 10.1007/s00262‑019‑02374‑0 31448380
    [Google Scholar]
  49. Krasniewski L.K. Chakraborty P. Cui C.Y. Mazan-Mamczarz K. Dunn C. Piao Y. Fan J. Shi C. Wallace T. Nguyen C. Rathbun I.A. Munk R. Tsitsipatis D. De S. Sen P. Ferrucci L. Gorospe M. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. eLife 2022 11 e77974 10.7554/eLife.77974 36259488
    [Google Scholar]
  50. Jetten N. Verbruggen S. Gijbels M.J. Post M.J. De Winther M.P.J. Donners M.M.P.C. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014 17 1 109 118 10.1007/s10456‑013‑9381‑6 24013945
    [Google Scholar]
  51. Martinez F.O. Helming L. Gordon S. Alternative activation of macrophages: An immunologic functional perspective. Annu. Rev. Immunol. 2009 27 1 451 483 10.1146/annurev.immunol.021908.132532 19105661
    [Google Scholar]
  52. Wynn T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 2004 4 8 583 594 10.1038/nri1412 15286725
    [Google Scholar]
  53. Stein M. Keshav S. Harris N. Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 1992 176 1 287 292 10.1084/jem.176.1.287 1613462
    [Google Scholar]
  54. Gao Y. Shi Y. Wei M. Yang X. Hao Y. Liu H. Zhang Y. Zhou L. Hu G. Yang R. Muscularis macrophages controlled by NLRP3 maintain the homeostasis of excitatory neurons. Int. J. Biol. Sci. 2024 20 7 2476 2490 10.7150/ijbs.91389 38725863
    [Google Scholar]
  55. Zhong X. Lee H.N. Kim S.H. Park S.A. Kim W. Cha Y.N. Surh Y.J. Myc‐nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. FASEB J. 2018 32 10 5312 5325 10.1096/fj.201800223R 29718706
    [Google Scholar]
  56. Park D. Tosello-Trampont A.C. Elliott M.R. Lu M. Haney L.B. Ma Z. Klibanov A.L. Mandell J.W. Ravichandran K.S. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007 450 7168 430 434 10.1038/nature06329 17960134
    [Google Scholar]
  57. Yona S. Kim K.W. Wolf Y. Mildner A. Varol D. Breker M. Strauss-Ayali D. Viukov S. Guilliams M. Misharin A. Hume D.A. Perlman H. Malissen B. Zelzer E. Jung S. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013 38 1 79 91 10.1016/j.immuni.2012.12.001 23273845
    [Google Scholar]
  58. Chang L. Karin M. Mammalian MAP kinase signalling cascades. Nature 2001 410 6824 37 40 10.1038/35065000 11242034
    [Google Scholar]
  59. Zhong J. Wang H. Chen W. Sun Z. Chen J. Xu Y. Weng M. Shi Q. Ma D. Miao C. Ubiquitylation of MFHAS1 by the ubiquitin ligase praja2 promotes M1 macrophage polarization by activating JNK and p38 pathways. Cell Death Dis. 2017 8 5 e2763 10.1038/cddis.2017.102 28471450
    [Google Scholar]
  60. Zhang Y. Choksi S. Chen K. Pobezinskaya Y. Linnoila I. Liu Z.G. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 2013 23 7 898 914 10.1038/cr.2013.75 23752925
    [Google Scholar]
  61. Medzhitov R. Origin and physiological roles of inflammation. Nature 2008 454 7203 428 435 10.1038/nature07201 18650913
    [Google Scholar]
  62. Dorrington M.G. Fraser I.D.C. NF-κB signaling in macrophages: Dynamics, crosstalk, and signal integration. Front. Immunol. 2019 10 705 10.3389/fimmu.2019.00705 31024544
    [Google Scholar]
  63. Li J. Lei H. Cao L. Mi Y.N. Li S. Cao Y.X. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int. Immunopharmacol. 2018 55 120 127 10.1016/j.intimp.2017.11.037 29248792
    [Google Scholar]
  64. Appari M. Channon K.M. McNeill E. Metabolic regulation of adipose tissue macrophage function in obesity and diabetes. Antioxid. Redox Signal. 2018 29 3 297 312 10.1089/ars.2017.7060 28661198
    [Google Scholar]
  65. Hans C.P. Sharma N. Sen S. Zeng S. Dev R. Jiang Y. Mahajan A. Joshi T. Transcriptomics analysis reveals new insights into the roles of notch1 signaling on macrophage polarization. Sci. Rep. 2019 9 1 7999 10.1038/s41598‑019‑44266‑4 31142802
    [Google Scholar]
  66. Williams L. Bradley L. Smith A. Foxwell B. Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J. Immunol. 2004 172 1 567 576 10.4049/jimmunol.172.1.567 14688368
    [Google Scholar]
  67. He Y. Gao Y. Zhang Q. Zhou G. Cao F. Yao S. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience 2020 437 161 171 10.1016/j.neuroscience.2020.03.008 32224230
    [Google Scholar]
  68. Wang W. Liang M. Wang L. Bei W. Rong X. Xu J. Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem. Pharmacol. 2023 207 115357 10.1016/j.bcp.2022.115357 36455672
    [Google Scholar]
  69. Tsuge K. Inazumi T. Shimamoto A. Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int. Immunol. 2019 31 9 597 606 10.1093/intimm/dxz021 30926983
    [Google Scholar]
  70. Smythies L.E. Sellers M. Clements R.H. Mosteller-Barnum M. Meng G. Benjamin W.H. Orenstein J.M. Smith P.D. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 2005 115 1 66 75 10.1172/JCI200519229 15630445
    [Google Scholar]
  71. Davies L.C. Jenkins S.J. Allen J.E. Taylor P.R. Tissue-resident macrophages. Nat. Immunol. 2013 14 10 986 995 10.1038/ni.2705 24048120
    [Google Scholar]
  72. Chaput C. Sander L.E. Suttorp N. Opitz B. NOD-like receptors in lung diseases. Front. Immunol. 2013 4 393 10.3389/fimmu.2013.00393 24312100
    [Google Scholar]
  73. Oishi Y. Manabe I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018 30 11 511 528 10.1093/intimm/dxy054 30165385
    [Google Scholar]
  74. Puttur F. Gregory L.G. Lloyd C.M. Airway macrophages as the guardians of tissue repair in the lung. Immunol. Cell Biol. 2019 97 3 246 257 10.1111/imcb.12235 30768869
    [Google Scholar]
  75. Willenborg S. Lucas T. van Loo G. Knipper J.A. Krieg T. Haase I. Brachvogel B. Hammerschmidt M. Nagy A. Ferrara N. Pasparakis M. Eming S.A. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 2012 120 3 613 625 10.1182/blood‑2012‑01‑403386 22577176
    [Google Scholar]
  76. Villarreal-Ponce A. Tiruneh M.W. Lee J. Guerrero-Juarez C.F. Kuhn J. David J.A. Dammeyer K. Mc Kell R. Kwong J. Rabbani P.S. Nie Q. Ceradini D.J. Keratinocyte-macrophage crosstalk by the Nrf2/Ccl2/EGF signaling axis orchestrates tissue repair. Cell Rep. 2020 33 8 108417 10.1016/j.celrep.2020.108417 33238115
    [Google Scholar]
  77. Mowat A.M. Scott C.L. Bain C.C. Barrier-tissue macrophages: Functional adaptation to environmental challenges. Nat. Med. 2017 23 11 1258 1270 10.1038/nm.4430 29117177
    [Google Scholar]
  78. Fuchs E. Scratching the surface of skin development. Nature 2007 445 7130 834 842 10.1038/nature05659 17314969
    [Google Scholar]
  79. Nestle F.O. Di Meglio P. Qin J.Z. Nickoloff B.J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 2009 9 10 679 691 10.1038/nri2622 19763149
    [Google Scholar]
  80. Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur. J. Dermatol. 2002 12 4 390 399 12095893
    [Google Scholar]
  81. McKnight G. Shah J. Hargest R. Physiology of the skin. Surgery 2022 40 1 8 12 10.1016/j.mpsur.2021.11.005
    [Google Scholar]
  82. Lee S.H. Sacks D.L. Resilience of dermis resident macrophages to inflammatory challenges. Exp. Mol. Med. 2024 56 10 2105 2112 10.1038/s12276‑024‑01313‑z 39349826
    [Google Scholar]
  83. Sheng J. Ruedl C. Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 2015 43 2 382 393 10.1016/j.immuni.2015.07.016 26287683
    [Google Scholar]
  84. Ginhoux F. Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016 44 3 439 449 10.1016/j.immuni.2016.02.024 26982352
    [Google Scholar]
  85. Tamoutounour S. Guilliams M. Montanana Sanchis F. Liu H. Terhorst D. Malosse C. Pollet E. Ardouin L. Luche H. Sanchez C. Dalod M. Malissen B. Henri S. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013 39 5 925 938 10.1016/j.immuni.2013.10.004 24184057
    [Google Scholar]
  86. Kennedy-Crispin M. Billick E. Mitsui H. Gulati N. Fujita H. Gilleaudeau P. Sullivan-Whalen M. Johnson-Huang L.M. Suárez-Fariñas M. Krueger J.G. Human keratinocytes’ response to injury upregulates CCL20 and other genes linking innate and adaptive immunity. J. Invest. Dermatol. 2012 132 1 105 113 10.1038/jid.2011.262 21881590
    [Google Scholar]
  87. Hashimoto D. Chow A. Noizat C. Teo P. Beasley M.B. Leboeuf M. Becker C.D. See P. Price J. Lucas D. Greter M. Mortha A. Boyer S.W. Forsberg E.C. Tanaka M. van Rooijen N. García-Sastre A. Stanley E.R. Ginhoux F. Frenette P.S. Merad M. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013 38 4 792 804 10.1016/j.immuni.2013.04.004 23601688
    [Google Scholar]
  88. Muñoz-Garcia J. Cochonneau D. Télétchéa S. Moranton E. Lanoé D. Brion R. Lézot F. Heymann M.F. Heymann D. The twin cytokines interleukin-34 and CSF-1: Masterful conductors of macrophage homeostasis. Theranostics 2021 11 4 1568 1593 10.7150/thno.50683 33408768
    [Google Scholar]
  89. Hume D.A. Summers K.M. Rehli M. Transcriptional regulation and macrophage differentiation. Microbiol. Spectr 2016 4 3 4.3.31 10.1128/microbiolspec.MCHD‑0024‑2015 27337479
    [Google Scholar]
  90. Feng R. Desbordes S.C. Xie H. Tillo E.S. Pixley F. Stanley E.R. Graf T.P.U. 1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc. Natl. Acad. Sci. USA 2008 105 16 6057 6062 10.1073/pnas.0711961105 18424555
    [Google Scholar]
  91. Sugaya M. Macrophages and fibroblasts underpin skin immune responses. Explor. Immunol. 2021 1 226 242 10.37349/ei.2021.00015
    [Google Scholar]
  92. Kupper T.S. Fuhlbrigge R.C. Immune surveillance in the skin: Mechanisms and clinical consequences. Nat. Rev. Immunol. 2004 4 3 211 222 10.1038/nri1310 15039758
    [Google Scholar]
  93. Andrade-Oliveira V. Foresto-Neto O. Watanabe I.K.M. Zatz R. Câmara N.O.S. Inflammation in renal diseases: New and old players. Front. Pharmacol. 2019 10 1192 10.3389/fphar.2019.01192 31649546
    [Google Scholar]
  94. Castellana D. Paus R. Perez-Moreno M. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLoS Biol. 2014 12 12 e1002002 10.1371/journal.pbio.1002002 25536657
    [Google Scholar]
  95. Osaka N. Takahashi T. Murakami S. Matsuzawa A. Noguchi T. Fujiwara T. Aburatani H. Moriyama K. Takeda K. Ichijo H. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J. Cell Biol. 2007 176 7 903 909 10.1083/jcb.200611015 17389227
    [Google Scholar]
  96. Parakkal P.F. Role of macrophages in collagen resorption during hair growth cycle. J. Ultrastruct. Res. 1969 29 3-4 210 217 10.1016/S0022‑5320(69)90101‑4 5362393
    [Google Scholar]
  97. Machnik A. Neuhofer W. Jantsch J. Dahlmann A. Tammela T. Machura K. Park J.K. Beck F.X. Müller D.N. Derer W. Goss J. Ziomber A. Dietsch P. Wagner H. van Rooijen N. Kurtz A. Hilgers K.F. Alitalo K. Eckardt K.U. Luft F.C. Kerjaschki D. Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C–dependent buffering mechanism. Nat. Med. 2009 15 5 545 552 10.1038/nm.1960 19412173
    [Google Scholar]
  98. Hiraiwa K. van Eeden S.F. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm. 2013 2013 1 1 10 10.1155/2013/619523 24058272
    [Google Scholar]
  99. Herold S. Mayer K. Lohmeyer J. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair. Front. Immunol. 2011 2 65 10.3389/fimmu.2011.00065 22566854
    [Google Scholar]
  100. Kobzik L. Huang S. Paulauskis J.D. Godleski J.J. Particle opsonization and lung macrophage cytokine response. In vitro and in vivo analysis. J. Immunol. 1993 151 5 2753 2759 10.4049/jimmunol.151.5.2753 8360489
    [Google Scholar]
  101. Gao D.K. Salomonis N. Henderlight M. Woods C. Thakkar K. Grom A.A. Thornton S. Jordan M.B. Wikenheiser-Brokamp K.A. Schulert G.S. IFN-γ is essential for alveolar macrophage–driven pulmonary inflammation in macrophage activation syndrome. JCI Insight 2021 6 17 e147593 10.1172/jci.insight.147593 34314387
    [Google Scholar]
  102. Evren E. Ringqvist E. Willinger T. Origin and ontogeny of lung macrophages: From mice to humans. Immunology 2020 160 2 126 138 10.1111/imm.13154 31715003
    [Google Scholar]
  103. Hou F. Xiao K. Tang L. Xie L. Diversity of macrophages in lung homeostasis and diseases. Front. Immunol. 2021 12 753940 10.3389/fimmu.2021.753940 34630433
    [Google Scholar]
  104. Zhao Y. Zou W. Du J. Zhao Y. The origins and homeostasis of monocytes and tissue‐resident macrophages in physiological situation. J. Cell. Physiol. 2018 233 10 6425 6439 10.1002/jcp.26461 29323706
    [Google Scholar]
  105. Chaudhuri N. Sabroe I. Basic science of the innate immune system and the lung. Paediatr. Respir. Rev. 2008 9 4 236 242 10.1016/j.prrv.2008.03.002 19026364
    [Google Scholar]
  106. Melo E.M. Oliveira V.L.S. Boff D. Galvão I. Pulmonary macrophages and their different roles in health and disease. Int. J. Biochem. Cell Biol. 2021 141 106095 10.1016/j.biocel.2021.106095 34653619
    [Google Scholar]
  107. Shi T. Denney L. An H. Ho L.P. Zheng Y. Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J. Leukoc. Biol. 2021 110 1 107 114 10.1002/JLB.3RU0720‑418R 33155728
    [Google Scholar]
  108. Joshi N. Walter J.M. Misharin A.V. Alveolar macrophages. Cell. Immunol. 2018 330 86 90 10.1016/j.cellimm.2018.01.005 29370889
    [Google Scholar]
  109. Schneider C. Nobs S.P. Kurrer M. Rehrauer H. Thiele C. Kopf M. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 2014 15 11 1026 1037 10.1038/ni.3005 25263125
    [Google Scholar]
  110. Liegeois M. Legrand C. Desmet C.J. Marichal T. Bureau F. The interstitial macrophage: A long-neglected piece in the puzzle of lung immunity. Cell. Immunol. 2018 330 91 96 10.1016/j.cellimm.2018.02.001 29458975
    [Google Scholar]
  111. Matheis F. Muller P.A. Graves C.L. Gabanyi I. Kerner Z.J. Costa-Borges D. Ahrends T. Rosenstiel P. Mucida D. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 2020 180 1 64 78.e16 10.1016/j.cell.2019.12.002 31923400
    [Google Scholar]
  112. Kühl A.A. Erben U. Kredel L.I. Siegmund B. Diversity of intestinal macrophages in inflammatory bowel diseases. Front. Immunol. 2015 6 613 10.3389/fimmu.2015.00613 26697009
    [Google Scholar]
  113. Odenwald M.A. Turner J.R. The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017 14 1 9 21 10.1038/nrgastro.2016.169 27848962
    [Google Scholar]
  114. Niess J.H. Brand S. Gu X. Landsman L. Jung S. McCormick B.A. Vyas J.M. Boes M. Ploegh H.L. Fox J.G. Littman D.R. Reinecker H.C. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005 307 5707 254 258 10.1126/science.1102901 15653504
    [Google Scholar]
  115. Nagashima R. Maeda K. Imai Y. Takahashi T. Lamina propria macrophages in the human gastrointestinal mucosa: Their distribution, immunohistological phenotype, and function. J. Histochem. Cytochem. 1996 44 7 721 731 10.1177/44.7.8675993 8675993
    [Google Scholar]
  116. Cummings R.J. Barbet G. Bongers G. Hartmann B.M. Gettler K. Muniz L. Furtado G.C. Cho J. Lira S.A. Blander J.M. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature 2016 539 7630 565 569 10.1038/nature20138 27828940
    [Google Scholar]
  117. Li J. Zhou H. Fu X. Zhang M. Sun F. Fan H. Dynamic role of macrophage CX3CR1 expression in inflammatory bowel disease. Immunol. Lett. 2021 232 39 44 10.1016/j.imlet.2021.02.001 33582183
    [Google Scholar]
  118. Zigmond E. Bernshtein B. Friedlander G. Walker C.R. Yona S. Kim K.W. Brenner O. Krauthgamer R. Varol C. Müller W. Jung S. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 2014 40 5 720 733 10.1016/j.immuni.2014.03.012 24792913
    [Google Scholar]
  119. Bain C.C. Scott C.L. Uronen-Hansson H. Gudjonsson S. Jansson O. Grip O. Guilliams M. Malissen B. Agace W.W. Mowat A.M. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013 6 3 498 510 10.1038/mi.2012.89 22990622
    [Google Scholar]
  120. Ying S. O’Connor B. Ratoff J. Meng Q. Fang C. Cousins D. Zhang G. Gu S. Gao Z. Shamji B. Edwards M.J. Lee T.H. Corrigan C.J. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J. Immunol. 2008 181 4 2790 2798 10.4049/jimmunol.181.4.2790 18684970
    [Google Scholar]
  121. Newberry R.D. McDonough J.S. Stenson W.F. Lorenz R.G. Spontaneous and continuous cyclooxygenase-2-dependent prostaglandin E2 production by stromal cells in the murine small intestine lamina propria: Directing the tone of the intestinal immune response. J. Immunol. 2001 166 7 4465 4472 10.4049/jimmunol.166.7.4465 11254702
    [Google Scholar]
  122. Harris S.G. Padilla J. Koumas L. Ray D. Phipps R.P. Prostaglandins as modulators of immunity. Trends Immunol. 2002 23 3 144 150 10.1016/S1471‑4906(01)02154‑8 11864843
    [Google Scholar]
  123. Murphy J. Summer R. Wilson A.A. Kotton D.N. Fine A. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 2008 38 4 380 385 10.1165/rcmb.2007‑0224RC 18192503
    [Google Scholar]
  124. Tarling J.D. Coggle J.E. Evidence for the pulmonary origin of alveolar macrophages. Cell Prolif. 1982 15 6 577 584 10.1111/j.1365‑2184.1982.tb01064.x 7172195
    [Google Scholar]
  125. Réu P. Khosravi A. Bernard S. Mold J.E. Salehpour M. Alkass K. Perl S. Tisdale J. Possnert G. Druid H. Frisén J. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017 20 4 779 784 10.1016/j.celrep.2017.07.004 28746864
    [Google Scholar]
  126. Heidt T. Courties G. Dutta P. Sager H.B. Sebas M. Iwamoto Y. Sun Y. Da Silva N. Panizzi P. van der Laan A.M. Swirski F.K. Weissleder R. Nahrendorf M. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 2014 115 2 284 295 10.1161/CIRCRESAHA.115.303567 24786973
    [Google Scholar]
  127. Hilgendorf I. Gerhardt L.M.S. Tan T.C. Winter C. Holderried T.A.W. Chousterman B.G. Iwamoto Y. Liao R. Zirlik A. Scherer-Crosbie M. Hedrick C.C. Libby P. Nahrendorf M. Weissleder R. Swirski F.K. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ. Res. 2014 114 10 1611 1622 10.1161/CIRCRESAHA.114.303204 24625784
    [Google Scholar]
  128. Bujko A. Atlasy N. Landsverk O.J.B. Richter L. Yaqub S. Horneland R. Øyen O. Aandahl E.M. Aabakken L. Stunnenberg H.G. Bækkevold E.S. Jahnsen F.L. Transcriptional and functional profiling defines human small intestinal macrophage subsets. J. Exp. Med. 2018 215 2 441 458 10.1084/jem.20170057 29273642
    [Google Scholar]
  129. Mikkelsen H.B. Rumessen J.J. Characterization of macrophage-like cells in the external layers of human small and large intestine. Cell Tissue Res. 1992 270 2 273 279 10.1007/BF00328013 1451172
    [Google Scholar]
  130. Smith P.D. Smythies L.E. Mosteller-Barnum M. Sibley D.A. Russell M.W. Merger M. Sellers M.T. Orenstein J.M. Shimada T. Graham M.F. Kubagawa H. Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J. Immunol. 2001 167 5 2651 2656 10.4049/jimmunol.167.5.2651 11509607
    [Google Scholar]
  131. Hausmann M. Kiessling S. Mestermann S. Webb G. Spöttl T. Andus T. Schölmerich J. Herfarth H. Ray K. Falk W. Rogler G. Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 2002 122 7 1987 2000 10.1053/gast.2002.33662 12055604
    [Google Scholar]
  132. Feinberg H. Park-Snyder S. Kolatkar A.R. Heise C.T. Taylor M.E. Weis W.I. Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J. Biol. Chem. 2000 275 28 21539 21548 10.1074/jbc.M002366200 10779515
    [Google Scholar]
  133. Mullin N.P. Hitchen P.G. Taylor M.E. Mechanism of Ca2+ and monosaccharide binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J. Biol. Chem. 1997 272 9 5668 5681 10.1074/jbc.272.9.5668 9038177
    [Google Scholar]
  134. Schridde A. Bain C.C. Mayer J.U. Montgomery J. Pollet E. Denecke B. Milling S.W.F. Jenkins S.J. Dalod M. Henri S. Malissen B. Pabst O. Mcl Mowat A. Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling. Mucosal Immunol. 2017 10 6 1387 1399 10.1038/mi.2016.142 28145440
    [Google Scholar]
  135. Bain C.C. Schridde A. Origin, differentiation, and function of intestinal macrophages. Front. Immunol. 2018 9 2733 10.3389/fimmu.2018.02733 30538701
    [Google Scholar]
  136. Gabanyi I. Muller P.A. Feighery L. Oliveira T.Y. Costa-Pinto F.A. Mucida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 2016 164 3 378 391 10.1016/j.cell.2015.12.023 26777404
    [Google Scholar]
  137. Becker L. Nguyen L. Gill J. Kulkarni S. Pasricha P.J. Habtezion A. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 2018 67 5 827 836 10.1136/gutjnl‑2016‑312940 28228489
    [Google Scholar]
  138. Ashrafizadeh M. Aref A.R. Sethi G. Ertas Y.N. Wang L. Natural product/diet-based regulation of macrophage polarization: Implications in treatment of inflammatory-related diseases and cancer. J. Nutr. Biochem. 2024 130 109647 10.1016/j.jnutbio.2024.109647 38604457
    [Google Scholar]
  139. Tieu S. Charchoglyan A. Wagter-Lesperance L. Karimi K. Bridle B.W. Karrow N.A. Mallard B.A. Immunoceuticals: Harnessing their immunomodulatory potential to promote health and wellness. Nutrients 2022 14 19 4075 10.3390/nu14194075 36235727
    [Google Scholar]
  140. Sultan M.T. Buttxs M.S. Qayyum M.M.N. Suleria H.A.R. Immunity: Plants as effective mediators. Crit. Rev. Food Sci. Nutr. 2014 54 10 1298 1308 10.1080/10408398.2011.633249 24564587
    [Google Scholar]
  141. Knudsen C. Gallage N.J. Hansen C.C. Møller B.L. Laursen T. Dynamic metabolic solutions to the sessile life style of plants. Nat. Prod. Rep. 2018 35 11 1140 1155 10.1039/C8NP00037A 30324199
    [Google Scholar]
  142. Erb M. Kliebenstein D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiol. 2020 184 1 39 52 10.1104/pp.20.00433 32636341
    [Google Scholar]
  143. Al-Khayri J.M. Rashmi R. Toppo V. Chole P.B. Banadka A. Sudheer W.N. Nagella P. Shehata W.F. Al-Mssallem M.Q. Alessa F.M. Almaghasla M.I. Rezk A.A.S. Plant secondary metabolites: The weapons for biotic stress management. Metabolites 2023 13 6 716 10.3390/metabo13060716 37367873
    [Google Scholar]
  144. Gong W. Han R. Li H. Song J. Yan H. Li G. Liu A. Cao X. Guo J. Zhai S. Cheng D. Zhao Z. Liu C. Liu J. Agronomic traits and molecular marker identification of wheat–aegilops caudata addition lines. Front Plant. Sci. 2017 8 1743 10.3389/fpls.2017.01743 29075275
    [Google Scholar]
  145. Zhang H. Ren Q.C. Ren Y. Zhao L. Yang F. Zhang Y. Zhao W.J. Tan Y.Z. Shen X.F. Ajudecumin A from Ajuga ovalifolia var. calantha exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW264.7 murine macrophages and animal models of acute inflammation. Pharm. Biol. 2018 56 1 649 657 10.1080/13880209.2018.1543331 31070535
    [Google Scholar]
  146. Xiao Y. Han M. Chen Y. Li Y.Z. Zhang Y.Y. Chen L. Huang S. Zhou X.L. In vitro and in vivo biological evaluation of Lappaconitine derivatives as potential anti‐inflammatory agents. Chem. Biodivers. 2024 21 2 e202301761 10.1002/cbdv.202301761 38117633
    [Google Scholar]
  147. Castaneda O.A. Lee S.C. Ho C.T. Huang T.C. Macrophages in oxidative stress and models to evaluate the antioxidant function of dietary natural compounds. Yao Wu Shi Pin Fen Xi 2017 25 1 111 118 28911528
    [Google Scholar]
  148. Shin M.S. Park S.B. Shin K.S. Molecular mechanisms of immunomodulatory activity by polysaccharide isolated from the peels of Citrus unshiu. Int. J. Biol. Macromol. 2018 112 576 583 10.1016/j.ijbiomac.2018.02.006 29410270
    [Google Scholar]
  149. Gupta P.K. Rajan M.G.R. Kulkarni S. Activation of murine macrophages by G1-4A, a polysaccharide from Tinospora cordifolia, in TLR4/MyD88 dependent manner. Int. Immunopharmacol. 2017 50 168 177 10.1016/j.intimp.2017.06.025 28667885
    [Google Scholar]
  150. Ahmad W. Jantan I. Kumolosasi E. Haque M.A. Bukhari S.N.A. Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. Int. Immunopharmacol. 2018 60 141 151 10.1016/j.intimp.2018.04.046 29730557
    [Google Scholar]
  151. Luo B. Dong L.M. Xu Q.L. Zhang Q. Liu W.B. Wei X.Y. Zhang X. Tan J.W. Characterization and immunological activity of polysaccharides from Ixeris polycephala. Int. J. Biol. Macromol. 2018 113 804 812 10.1016/j.ijbiomac.2018.02.165 29501843
    [Google Scholar]
  152. Iwanowycz S. Wang J. Altomare D. Hui Y. Fan D. Emodin bidirectionally modulates macrophage polarization and epigenetically regulates macrophage memory. J. Biol. Chem. 2016 291 22 11491 11503 10.1074/jbc.M115.702092 27008857
    [Google Scholar]
  153. Zou J. Feng D. Ling W.H. Duan R.D. Lycopene suppresses proinflammatory response in lipopolysaccharide-stimulated macrophages by inhibiting ROS-induced trafficking of TLR4 to lipid raft-like domains. J. Nutr. Biochem. 2013 24 6 1117 1122 10.1016/j.jnutbio.2012.08.011 23246157
    [Google Scholar]
  154. Kouakou K. Schepetkin I.A. Yapi A. Kirpotina L.N. Jutila M.A. Quinn M.T. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J. Ethnopharmacol. 2013 146 1 232 242 10.1016/j.jep.2012.12.037 23291534
    [Google Scholar]
  155. Zhu Y. Li X. Chen J. Chen T. Shi Z. Lei M. Zhang Y. Bai P. Li Y. Fei X. The pentacyclic triterpene Lupeol switches M1 macrophages to M2 and ameliorates experimental inflammatory bowel disease. Int. Immunopharmacol. 2016 30 74 84 10.1016/j.intimp.2015.11.031 26655877
    [Google Scholar]
  156. Xu X. Guo Y. Zhao J. He S. Wang Y. Lin Y. Wang N. Liu Q. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages. Free Radic. Biol. Med. 2017 110 408 420 10.1016/j.freeradbiomed.2017.06.014 28690198
    [Google Scholar]
  157. Jiandong L. Yang Y. Peng J. Xiang M. Wang D. Xiong G. Li S. Trichosanthes kirilowii lectin ameliorates streptozocin-induced kidney injury via modulation of the balance between M1/M2 phenotype macrophage. Biomed. Pharmacother. 2019 109 93 102 10.1016/j.biopha.2018.10.060 30396096
    [Google Scholar]
  158. Rein M.J. Renouf M. Cruz-Hernandez C. Actis-Goretta L. Thakkar S.K. da Silva Pinto M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013 75 3 588 602 10.1111/j.1365‑2125.2012.04425.x 22897361
    [Google Scholar]
  159. Pai S. Hebbar A. Selvaraj S. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environ. Sci. Pollut. Res. Int. 2022 29 24 35518 35541 10.1007/s11356‑022‑19423‑4 35233673
    [Google Scholar]
  160. Kussmann M. Abe Cunha D.H. Berciano S. Bioactive compounds for human and planetary health. Front. Nutr. 2023 10 1193848 10.3389/fnut.2023.1193848 37545571
    [Google Scholar]
  161. Sharma R. Janmeda P. Chaudhary P. Rawat S. Antipyretic medicinal plants, phytocompounds, and green nanoparticles: An updated review. Curr. Pharm. Biotechnol. 2023 24 1 23 49 10.2174/1389201023666220330005020 35352658
    [Google Scholar]
  162. Giaconia M.A. Ramos S.P. Pereira C.F. Lemes A.C. De Rosso V.V. Braga A.R.C. Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocoll. 2020 107 105939 10.1016/j.foodhyd.2020.105939
    [Google Scholar]
  163. Tai L.R. Chiang Y.F. Huang K.C. Chen H.Y. Ali M. Hsia S.M. Hinokitiol as a modulator of TLR4 signaling and apoptotic pathways in atopic dermatitis. Biomed. Pharmacother. 2024 170 116026 10.1016/j.biopha.2023.116026 38128179
    [Google Scholar]
  164. Lin C.F. Lin M.H. Hung C.F. Alshetaili A. Tsai Y.F. Jhong C.L. Fang J.Y. The anti‐inflammatory activity of flavonoids and alkaloids from Sophora flavescens alleviates psoriasiform lesions: Prenylation and methoxylation beneficially enhance bioactivity and skin targeting. Phytother. Res. 2024 38 4 1951 1970 10.1002/ptr.8140 38358770
    [Google Scholar]
  165. Park C.H. Min S.Y. Yu H.W. Kim K. Kim S. Lee H.J. Kim J.H. Park Y.J. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: Anti-allergic, anti-inflammatory, and skin-protective activities. Int. J. Mol. Sci. 2020 21 13 4620 10.3390/ijms21134620 32610574
    [Google Scholar]
  166. Wu J.Y. Chen Y.J. Bai L. Liu Y.X. Fu X.Q. Zhu P.L. Li J.K. Chou J.Y. Yin C.L. Wang Y.P. Bai J.X. Wu Y. Wu Z.Z. Yu Z.L. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. Phytomedicine 2020 68 153173 10.1016/j.phymed.2020.153173 31999977
    [Google Scholar]
  167. Lei Z. Cao Z. Yang Z. Ao M. Jin W. Yu L. Rosehip oil promotes excisional wound healing by accelerating the phenotypic transition of macrophages. Planta Med. 2019 85 7 563 569 10.1055/a‑0725‑8456 30199901
    [Google Scholar]
  168. Eloutify Y.T. El-Shiekh R.A. Ibrahim K.M. Hamed A.R. Al-Karmalawy A.A. Shokry A.A. Ahmed Y.H. Avula B. Katragunta K. Khan I.A. Meselhy M.R. Bioactive fraction from Plumeria obtusa L. attenuates LPS-induced acute lung injury in mice and inflammation in RAW 264.7 macrophages: LC/QToF-MS and molecular docking. Inflammopharmacology 2023 31 2 859 875 10.1007/s10787‑023‑01144‑w 36773191
    [Google Scholar]
  169. Liang H. Liu G. Fan Q. Nie Z. Xie S. Zhang R. Limonin, a novel AMPK activator, protects against LPS-induced acute lung injury. Int. Immunopharmacol. 2023 122 110678 10.1016/j.intimp.2023.110678 37481848
    [Google Scholar]
  170. Zhang S. Yang L. Hu D. He S. Cui L. Zhao J. Zhuo Y. Zhang L. Wang X. Syringaresinol alleviates IgG immune complex induced acute lung injury via activating PPARγ and suppressing pyroptosis. Int. Immunopharmacol 2023 124 Pt B 111071 10.1016/j.intimp.2023.111071 37857123
    [Google Scholar]
  171. Zhu W. Wang M. Jin L. Yang B. Bai B. Mutsinze R.N. Zuo W. Chattipakorn N. Huh J.Y. Liang G. Wang Y. Licochalcone A protects against LPS‐induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2). Br. J. Pharmacol. 2023 180 8 1114 1131 10.1111/bph.15999 36480410
    [Google Scholar]
  172. Peng F. Yin H. Du B. Niu K. Yang Y. Wang S. Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice. J. Ethnopharmacol. 2022 290 115086 10.1016/j.jep.2022.115086 35157952
    [Google Scholar]
  173. Baumgart D.C. Sandborn W.J. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 2007 369 9573 1641 1657 10.1016/S0140‑6736(07)60751‑X 17499606
    [Google Scholar]
  174. de Souza H.S.P. Fiocchi C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016 13 1 13 27 10.1038/nrgastro.2015.186 26627550
    [Google Scholar]
  175. Ge S. Yang Y. Zuo L. Song X. Wen H. Geng Z. He Y. Xu Z. Wu H. Shen M. Ge Y. Sun X. Sotetsuflavone ameliorates Crohn’s disease-like colitis by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and MAPK signalling. Eur. J. Pharmacol. 2023 940 175464 10.1016/j.ejphar.2022.175464 36566007
    [Google Scholar]
  176. Ruan Y. Zhu X. Shen J. Chen H. Zhou G. Mechanism of nicotiflorin in San-Ye-Qing rhizome for anti-inflammatory effect in ulcerative colitis. Phytomedicine 2024 129 155564 10.1016/j.phymed.2024.155564 38554577
    [Google Scholar]
  177. Tong X. Chen L. He S. Liu S. Yao J. Shao Z. Ye Y. Yao S. Lin Z. Zuo J. Forsythia suspensa(Thunb.) Vahl extract ameliorates ulcerative colitis via inhibiting NLRP3 inflammasome activation through the TLR4/MyD88/NF‐κB pathway. Immun. Inflamm. Dis. 2023 11 11 e1069 10.1002/iid3.1069 38018571
    [Google Scholar]
  178. Tao Q. Liang Q. Fu Y. Qian J. Xu J. Zhu Y. Gu C. Xu W. Song S. Wu Y. Wang Y. Peng Y. Wang L. Gao Q. Puerarin ameliorates colitis by direct suppression of macrophage M1 polarization in DSS mice. Phytomedicine 2024 135 156048 10.1016/j.phymed.2024.156048 39326132
    [Google Scholar]
  179. Ren J. Yue B. Wang H. Zhang B. Luo X. Yu Z. Zhang J. Ren Y. Mani S. Wang Z. Dou W. Acacetin ameliorates experimental colitis in mice via inhibiting macrophage inflammatory response and regulating the composition of gut microbiota. Front. Physiol. 2021 11 577237 10.3389/fphys.2020.577237 33536931
    [Google Scholar]
  180. Li X.X. Chen S.G. Yue G.G.L. Kwok H.F. Lee J.K.M. Zheng T. Shaw P.C. Simmonds M.S.J. Lau C.B.S. Natural flavone tricin exerted anti-inflammatory activity in macrophage via NF-κB pathway and ameliorated acute colitis in mice. Phytomedicine 2021 90 153625 10.1016/j.phymed.2021.153625 34256329
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266369409250701072727
Loading
/content/journals/ctmc/10.2174/0115680266369409250701072727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test