Skip to content
2000
image of Clinical Evidence of Traditional Medicines in Modulating the Immune Response and Diabetic Wound Healing

Abstract

Background

Diabetes affects over 537 million people, with 20% developing chronic wounds. These wounds are made worse by inflammation, stress, immune problems, and poor blood vessel growth. Plants like , , and contain compounds that help heal wounds by reducing inflammation, stress, and boosting tissue growth.

Objective

This review explains why diabetic wounds heal slowly, focusing on factors like ROS, NO, and immune problems. It also looks at natural compounds that help healing and how traditional medicines can work with modern treatments for better wound care.

Methodology

A systematic literature review was conducted using Scopus, Elsevier, PubMed, ScienceDirect, and Web of Science for studies published between 2000 and 2024. Inclusion criteria comprised clinical trials, preclinical studies, and ethnopharmacological research related to diabetic wound healing, pathophysiology, herbal medicine, active constituents, and mechanisms of action. Studies lacking diabetic wound specificity or methodological clarity were excluded. PRISMA guidelines were followed for study selection and synthesis.

Results

Numerous studies demonstrated that traditional medicines enhance diabetic wound healing by regulating cytokine levels, promoting macrophage polarization, reducing oxidative damage, and remodelling the extracellular matrix. Flavonoids and polyphenols notably improved angiogenesis and tissue repair, while alkaloids and saponins exhibited antimicrobial and anti-inflammatory effects.

Conclusion

Traditional medicinal plants, through their diverse bioactive constituents, offer significant therapeutic potential for diabetic wound care. By targeting key molecular pathways involved in immune regulation and tissue repair, they present a viable adjunct to conventional therapies, potentially improving clinical outcomes in diabetic wound management.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266359349250707102203
2025-07-16
2025-10-14
Loading full text...

Full text loading...

References

  1. Yan L. Wang Y. Feng J. Ni Y. Zhang T. Cao Y. Zhou M. Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: A literature review. Front. Endocrinol. 2024 15 1430543 10.3389/fendo.2024.1430543 39129915
    [Google Scholar]
  2. Rochette L. Zeller M. Cottin Y. Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 9 2709 2729 10.1016/j.bbagen.2014.05.017 24905298
    [Google Scholar]
  3. Nunan R. Harding K.G. Martin P. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech. 2014 7 11 1205 1213 10.1242/dmm.016782 25359790
    [Google Scholar]
  4. Elahi-Moghaddam Z. Behnam-Rassouli M. Mahdavi-Shahri N. Hajinejad-Boshroue R. Khajouee E. Comparative study on the effects of type 1 and type 2 diabetes on structural changes and hormonal output of the adrenal cortex in male Wistar rats. J. Diabetes Metab. Disord. 2013 12 1 9 10.1186/2251‑6581‑12‑9 23497689
    [Google Scholar]
  5. Whiting D.R. Guariguata L. Weil C. Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011 94 3 311 321 10.1016/j.diabres.2011.10.029 22079683
    [Google Scholar]
  6. Reyzelman A. Crews R.T. Moore J.C. Moore L. Mukker J.S. Offutt S. Tallis A. Turner W.B. Vayser D. Winters C. Armstrong D.G. Clinical effectiveness of an acellular dermal regenerative tissue matrix compared to standard wound management in healing diabetic foot ulcers: A prospective, randomised, multicentre study. Int. Wound J. 2009 6 3 196 208 10.1111/j.1742‑481X.2009.00585.x 19368581
    [Google Scholar]
  7. Siddiqui A.A. Siddiqui S.A. Ahmad S. Siddiqui S. Ahsan I. Sahu K. Diabetes: Mechanism, pathophysiology and management-A review. Int. J. Drug Dev. Res. 2013 5 2 1 23
    [Google Scholar]
  8. Lan C.C.E. Wu C.S. Huang S.M. Wu I.H. Chen G.S. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: New insights into impaired diabetic wound healing. Diabetes 2013 62 7 2530 2538 10.2337/db12‑1714 23423570
    [Google Scholar]
  9. Xu K. Yu F.S.X. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest. Ophthalmol. Vis. Sci. 2011 52 6 3301 3308 10.1167/iovs.10‑5670 21330660
    [Google Scholar]
  10. Lin Z.H. Tschang C.Y.T. Liao K.C. Su C.F. Wu J.S. Ho M.T. Ar/O 2 argon-based round atmospheric-pressure plasma jet on sterilizing bacteria and endospores. IEEE Trans. Plasma Sci. 2016 44 12 3140 3147 10.1109/TPS.2016.2601940
    [Google Scholar]
  11. Proksch E. Brandner J.M. Jensen J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008 17 12 1063 1072 10.1111/j.1600‑0625.2008.00786.x 19043850
    [Google Scholar]
  12. Gurtner G.C. Werner S. Barrandon Y. Longaker M.T. Wound repair and regeneration. Nature 2008 453 7193 314 321 10.1038/nature07039 18480812
    [Google Scholar]
  13. Menke N.B. Ward K.R. Witten T.M. Bonchev D.G. Diegelmann R.F. Impaired wound healing. Clin. Dermatol. 2007 25 1 19 25 10.1016/j.clindermatol.2006.12.005 17276197
    [Google Scholar]
  14. Juniantito V. Izawa T. Yuasa T. Ichikawa C. Yano R. Kuwamura M. Yamate J. Immunophenotypical characterization of macrophages in rat bleomycin-induced scleroderma. Vet. Pathol. 2013 50 1 76 85 10.1177/0300985812450718 22700848
    [Google Scholar]
  15. Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012 45 26 263001 10.1088/0022‑3727/45/26/263001
    [Google Scholar]
  16. Williams A. Fisher K. Kenney W.L. Alexander L. Repeatability of platelet aggregation characteristics using impedance aggregometry with and without aspirin intervention. Physiology (Bethesda) 2024 39 S1 1028 10.1152/physiol.2024.39.S1.1028
    [Google Scholar]
  17. Pastar I. Balukoff N.C. Sawaya A.P. Vecin N.M. Tomic-Canic M. Physiology and pathophysiology of wound healing in diabetes. The Diabetic Foot. Veves A. Giurini J.M. Schermerhorn M.L. Cham Humana 2024 109 134 10.1007/978‑3‑031‑55715‑6_7
    [Google Scholar]
  18. Mohsin F. Javaid S. Tariq M. Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int. Immunopharmacol. 2024 139 112713 10.1016/j.intimp.2024.112713 39047451
    [Google Scholar]
  19. Uberoi A. McCready-Vangi A. Grice E.A. The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024 22 8 507 521 10.1038/s41579‑024‑01035‑z 38575708
    [Google Scholar]
  20. Bielefeld K.A. Amini-Nik S. Alman B.A. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell. Mol. Life Sci. 2013 70 12 2059 2081 10.1007/s00018‑012‑1152‑9 23052205
    [Google Scholar]
  21. Herrick S.E. Sloan P. McGurk M. Freak L. McCollum C.N. Ferguson M.W. Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am. J. Pathol. 1992 141 5 1085 1095 [PMID: 1279979
    [Google Scholar]
  22. Qiao Y. Chen Y. Pan Y. Tian F. Xu Y. Zhang X. Zhao H. The change of serum tumor necrosis factor alpha in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. PLoS One 2017 12 4 e0176157 10.1371/journal.pone.0176157 28426801
    [Google Scholar]
  23. Brem H. Stojadinovic O. Diegelmann R.F. Entero H. Lee B. Pastar I. Golinko M. Rosenberg H. Tomic-Canic M. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol. Med. 2007 13 1-2 30 39 10.2119/2006‑00054.Brem 17515955
    [Google Scholar]
  24. Trengove N.J. Stacey M.C. Macauley S. Bennett N. Gibson J. Burslem F. Murphy G. Schultz G. Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair Regen. 1999 7 6 442 452 10.1046/j.1524‑475X.1999.00442.x 10633003
    [Google Scholar]
  25. He C. Bi S. Zhang R. Chen C. Liu R. Zhao X. Gu J. Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J. Control. Release 2024 370 543 555 10.1016/j.jconrel.2024.05.011 38729434
    [Google Scholar]
  26. Jiang X. Zeng Y.E. Li C. Wang K. Yu D.G. Enhancing diabetic wound healing: Aadvances in electrospun scaffolds from pathogenesis to therapeutic applications. Front. Bioeng. Biotechnol. 2024 12 1354286 10.3389/fbioe.2024.1354286 38375451
    [Google Scholar]
  27. Naghibi M. Smith R.P. Baltch A.L. Gates S.A. Wu D.H. Hammer M.C. Michelsen P.B. The effect of diabetes mellitus on chemotactic and bactericidal activity of human polymorphonuclear leukocytes. Diabetes Res. Clin. Pract. 1987 4 1 27 35 10.1016/S0168‑8227(87)80030‑X 3121272
    [Google Scholar]
  28. Babaei S. Bayat M. Nouruzian M. Bayat M. Pentoxifylline improves cutaneous wound healing in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2013 700 1-3 165 172 10.1016/j.ejphar.2012.11.024 23220163
    [Google Scholar]
  29. Basu Mallik S. Jayashree B.S. Shenoy R.R. Epigenetic modulation of macrophage polarization- perspectives in diabetic wounds. J. Diabetes Complications 2018 32 5 524 530 10.1016/j.jdiacomp.2018.01.015 29530315
    [Google Scholar]
  30. Maruyama K. Asai J. Ii M. Thorne T. Losordo D.W. D’Amore P.A. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am. J. Pathol. 2007 170 4 1178 1191 10.2353/ajpath.2007.060018 17392158
    [Google Scholar]
  31. Schürmann C. Goren I. Linke A. Pfeilschifter J. Frank S. Deregulated unfolded protein response in chronic wounds of diabetic ob/ob mice: A potential connection to inflammatory and angiogenic disorders in diabetes-impaired wound healing. Biochem. Biophys. Res. Commun. 2014 446 1 195 200 10.1016/j.bbrc.2014.02.085 24583133
    [Google Scholar]
  32. Nass N. Vogel K. Hofmann B. Presek P. Silber R.E. Simm A. Glycation of PDGF results in decreased biological activity. Int. J. Biochem. Cell Biol. 2010 42 5 749 754 10.1016/j.biocel.2010.01.012 20083221
    [Google Scholar]
  33. Bennett J.M. Reeves G. Billman G.E. Sturmberg J.P. Inflammation–nature’s way to efficiently respond to all types of challenges: Implications for understanding and managing “the epidemic” of chronic diseases. Front. Med. 2018 5 316 10.3389/fmed.2018.00316 30538987
    [Google Scholar]
  34. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
  35. Holl J. Kowalewski C. Zimek Z. Fiedor P. Kaminski A. Oldak T. Moniuszko M. Eljaszewicz A. Chronic diabetic wounds and their treatment with skin substitutes. Cells 2021 10 3 655 10.3390/cells10030655 33804192
    [Google Scholar]
  36. Gooyit M. Peng Z. Wolter W.R. Pi H. Ding D. Hesek D. Lee M. Boggess B. Champion M.M. Suckow M.A. Mobashery S. Chang M. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem. Biol. 2014 9 1 105 110 10.1021/cb4005468 24053680
    [Google Scholar]
  37. Cai F. Chen W. Zhao R. Liu Y. Mechanisms of Nrf2 and NF-κB pathways in diabetic wound and potential treatment strategies. Mol. Biol. Rep. 2023 50 6 5355 5367 10.1007/s11033‑023‑08392‑7 37029875
    [Google Scholar]
  38. Hilliard A. Mendonca P. Russell T.D. Soliman K.F.A. The protective effects of flavonoids in cataract formation through the activation of Nrf2 and the inhibition of MMP-9. Nutrients 2020 12 12 3651 10.3390/nu12123651 33261005
    [Google Scholar]
  39. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005 54 6 1615 1625 10.2337/diabetes.54.6.1615 15919781
    [Google Scholar]
  40. Badr G. Camel whey protein enhances diabetic wound healing in a streptozotocin-induced diabetic mouse model: The critical role of β-Defensin-1, -2 and -3. Lipids Health Dis. 2013 12 1 46 10.1186/1476‑511X‑12‑46 23547923
    [Google Scholar]
  41. Clayton W. Elasy T.A. A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients. Clin. Diabetes 2009 27 2 52 58 10.2337/diaclin.27.2.52
    [Google Scholar]
  42. Huang H. Cui W. Qiu W. Zhu M. Zhao R. Zeng D. Dong C. Wang X. Guo W. Xing W. Li X. Li L. Tan Y. Wu X. Chen L. Fu X. Luo D. Xu X. Impaired wound healing results from the dysfunction of the Akt/mTOR pathway in diabetic rats. J. Dermatol. Sci. 2015 79 3 241 251 10.1016/j.jdermsci.2015.06.002 26091964
    [Google Scholar]
  43. Wufuer R. Fan Z. Liu K. Zhang Y. Differential yet integral contributions of Nrf1 and Nrf2 in the human HepG2 cells on antioxidant cytoprotective response against tert-butylhydroquinone as a pro-oxidative stressor. Antioxidants 2021 10 10 1610 10.3390/antiox10101610 34679746
    [Google Scholar]
  44. Ngo V. Duennwald M.L. Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants 2022 11 12 2345 10.3390/antiox11122345 36552553
    [Google Scholar]
  45. Thompson M.R. Xu D. Williams B.R.G. ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med. (Berl.) 2009 87 11 1053 1060 10.1007/s00109‑009‑0520‑x 19705082
    [Google Scholar]
  46. Bae Y.A. Cheon H.G. Activating transcription factor-3 induction is involved in the anti-inflammatory action of berberine in RAW264.7 murine macrophages. Korean J. Physiol. Pharmacol. 2016 20 4 415 424 10.4196/kjpp.2016.20.4.415 27382358
    [Google Scholar]
  47. Chong H.C. Chan J.S.K. Goh C.Q. Gounko N.V. Luo B. Wang X. Foo S. Wong M.T.C. Choong C. Kersten S. Tan N.S. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol. Ther. 2014 22 9 1593 1604 10.1038/mt.2014.102 24903577
    [Google Scholar]
  48. Peleg A.Y. Weerarathna T. McCarthy J.S. Davis T.M.E. Common infections in diabetes: Pathogenesis, management and relationship to glycaemic control. Diabetes Metab. Res. Rev. 2007 23 1 3 13 10.1002/dmrr.682 16960917
    [Google Scholar]
  49. Mansour S.C. de la Fuente-Núñez C. Hancock R.E.W. Peptide IDR‐1018: Modulating the immune system and targeting bacterial biofilms to treat antibiotic‐resistant bacterial infections. J. Pept. Sci. 2015 21 5 323 329 10.1002/psc.2708 25358509
    [Google Scholar]
  50. Frykberg R.G. Zgonis T. Armstrong D.G. Driver V.R. Giurini J.M. Kravitz S.R. Landsman A.S. Lavery L.A. Moore J.C. Schuberth J.M. Wukich D.K. Andersen C. Vanore J.V. Diabetic foot disorders. A clinical practice guideline (2006 revision). J. Foot Ankle Surg. 2006 45 Suppl. 5 S1 S66 10.1016/S1067‑2516(07)60001‑5 17280936
    [Google Scholar]
  51. Smith K. Collier A. Townsend E.M. O’Donnell L.E. Bal A.M. Butcher J. Mackay W.G. Ramage G. Williams C. One step closer to understanding the role of bacteria in diabetic foot ulcers: Characterising the microbiome of ulcers. BMC Microbiol. 2016 16 1 54 10.1186/s12866‑016‑0665‑z 27005417
    [Google Scholar]
  52. Abiko Y. Selimovic D. The mechanism of protracted wound healing on oral mucosa in diabetes. Bosn. J. Basic Med. Sci. 2010 10 3 186 191 [Review]. [http://dx.doi.org/10.17305/bjbms.2010.2683 20846123
    [Google Scholar]
  53. Rodrigues M. Kosaric N. Bonham C.A. Gurtner G.C. Wound healing: A cellular perspective. Physiol. Rev. 2018 99 1 665 706 10.1152/physrev.00067.2017 30475656
    [Google Scholar]
  54. Takeda K. Akira S. Roles of Toll‐like receptors in innate immune responses. Genes Cells 2001 6 9 733 742 10.1046/j.1365‑2443.2001.00458.x 11554921
    [Google Scholar]
  55. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 2001 1 2 135 145 10.1038/35100529 11905821
    [Google Scholar]
  56. Zhao G. Hochwalt P.C. Usui M.L. Underwood R.A. Singh P.K. James G.A. Stewart P.S. Fleckman P. Olerud J.E. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair Regen. 2010 18 5 467 477 10.1111/j.1524‑475X.2010.00608.x 20731798
    [Google Scholar]
  57. Omar A. Wright J. Schultz G. Burrell R. Nadworny P. Microbial biofilms and chronic wounds. Microorganisms 2017 5 1 9 10.3390/microorganisms5010009 28272369
    [Google Scholar]
  58. Dileepan K.N. Raveendran V.V. Sharma R. Abraham H. Barua R. Singh V. Sharma R. Sharma M. Mast cell-mediated immune regulation in health and disease. Front. Med. 2023 10 1213320 10.3389/fmed.2023.1213320 37663654
    [Google Scholar]
  59. Monument M.J. Hart D.A. Salo P.T. Befus A.D. Hildebrand K.A. Neuroinflammatory mechanisms of connective tissue fibrosis: targeting neurogenic and mast cell contributions. Adv. Wound Care (New Rochelle) 2015 4 3 137 151 10.1089/wound.2013.0509 25785237
    [Google Scholar]
  60. Nishikori Y. Shiota N. Okunishi H. The role of mast cells in cutaneous wound healing in streptozotocin-induced diabetic mice. Arch. Dermatol. Res. 2014 306 9 823 835 10.1007/s00403‑014‑1496‑0 25218083
    [Google Scholar]
  61. Grieb G. Simons D. Eckert L. Hemmrich M. Steffens G. Bernhagen J. Pallua N. Levels of macrophage migration inhibitory factor and glucocorticoids in chronic wound patients and their potential interactions with impaired wound endothelial progenitor cell migration. Wound Repair Regen. 2012 20 5 707 714 10.1111/j.1524‑475X.2012.00817.x 22812717
    [Google Scholar]
  62. Park K.H. Han S.H. Hong J.P. Han S.K. Lee D.H. Kim B.S. Ahn J.H. Lee J.W. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res. Clin. Pract. 2018 142 335 344 10.1016/j.diabres.2018.06.002 29902542
    [Google Scholar]
  63. Hanefeld M. Duetting E. Bramlage P. Cardiac implications of hypoglycaemia in patients with diabetes – A systematic review. Cardiovasc. Diabetol. 2013 12 1 135 10.1186/1475‑2840‑12‑135 24053606
    [Google Scholar]
  64. Kim J.H. Yoon N.Y. Kim D.H. Jung M. Jun M. Park H.Y. Chung C.H. Lee K. Kim S. Park C.S. Liu K.H. Choi E.H. Impaired permeability and antimicrobial barriers in type 2 diabetes skin are linked to increased serum levels of advanced glycation end‐product. Exp. Dermatol. 2018 27 8 815 823 10.1111/exd.13466 29151267
    [Google Scholar]
  65. Dworzański J. Strycharz-Dudziak M. Kliszczewska E. Kiełczykowska M. Dworzańska A. Drop B. Polz-Dacewicz M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS One 2020 15 3 e0230374 10.1371/journal.pone.0230374 32210468
    [Google Scholar]
  66. Rodriguez P.G. Felix F.N. Woodley D.T. Shim E.K. The role of oxygen in wound healing: A review of the literature. Dermatol. Surg. 2008 34 9 1159 1169 10.1097/00042728‑200809000‑00001 18513296
    [Google Scholar]
  67. Deng L. Du C. Song P. Chen T. Rui S. Armstrong D.G. Deng W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid. Med. Cell. Longev. 2021 2021 1 8852759 10.1155/2021/8852759 33628388
    [Google Scholar]
  68. Dwivedi J. Sachan P. Wal P. Wal A. Rai A.K. Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials. Curr. Diabetes Rev. 2024 20 5 e280823220405 10.2174/1573399820666230828091708 37641999
    [Google Scholar]
  69. Generini S. Tuveri M. Matucci Cerinic M. Mastinu F. Manni L. Aloe L. Topical application of nerve growth factor in human diabetic foot ulcers. A study of three cases. Exp. Clin. Endocrinol. Diabetes 2004 112 9 542 544 10.1055/s‑2004‑821313 15505764
    [Google Scholar]
  70. Garg S.S. Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol. Res. 2022 182 106326 10.1016/j.phrs.2022.106326 35752357
    [Google Scholar]
  71. Toth E. Racz A. Toth J. Kaminski P.M. Wolin M.S. Bagi Z. Koller A. Contribution of polyol pathway to arteriolar dysfunction in hyperglycemia. Role of oxidative stress, reduced NO, and enhanced PGH2/TXA2 mediation. Am. J. Physiol. Heart Circ. Physiol. 2007 293 5 H3096 H3104 10.1152/ajpheart.01335.2006 17873009
    [Google Scholar]
  72. Lugrin J. Rosenblatt-Velin N. Parapanov R. Liaudet L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014 395 2 203 230 10.1515/hsz‑2013‑0241 24127541
    [Google Scholar]
  73. Hansen J.M. Oxidative stress as a mechanism of teratogenesis. Birth Defects Res. C Embryo Today 2006 78 4 293 307 10.1002/bdrc.20085 17315243
    [Google Scholar]
  74. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet 2005 366 9498 1736 1743 10.1016/S0140‑6736(05)67700‑8 16291068
    [Google Scholar]
  75. Blakytny R. Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med. 2006 23 6 594 608 10.1111/j.1464‑5491.2006.01773.x 16759300
    [Google Scholar]
  76. Tuveri M. Generini S. Matucci-Cerinic M. Aloe L. NGF, a useful tool in the treatment of chronic vasculitic ulcers in rheumatoid arthritis. Lancet 2000 356 9243 1739 1740 10.1016/S0140‑6736(00)03212‑8 11095266
    [Google Scholar]
  77. MacLeod A.S. Mansbridge J.N. The innate immune system in acute and chronic wounds. Adv. Wound Care (New Rochelle) 2016 5 2 65 78 10.1089/wound.2014.0608 26862464
    [Google Scholar]
  78. Pastar I. Nusbaum A.G. Gil J. Patel S.B. Chen J. Valdes J. Stojadinovic O. Plano L.R. Tomic-Canic M. Davis S.C. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 2013 8 2 e56846 10.1371/journal.pone.0056846 23451098
    [Google Scholar]
  79. Radek K.A. Kovacs E.J. DiPietro L.A. Matrix proteolytic activity during wound healing: Modulation by acute ethanol exposure. Alcohol. Clin. Exp. Res. 2007 31 6 1045 1052 10.1111/j.1530‑0277.2007.00386.x 17403061
    [Google Scholar]
  80. Liu X.Q. Duan L.S. Chen Y.Q. Jin X.J. Zhu N.N. Zhou X. Wei H.W. Yin L. Guo J.R. lncRNA MALAT1 accelerates wound healing of diabetic mice transfused with modified autologous blood via the HIF-1α signaling pathway. Mol. Ther. Nucleic Acids 2019 17 504 515 10.1016/j.omtn.2019.05.020 31344658
    [Google Scholar]
  81. Ferroni P. Basili S. Falco A. Davì G. Platelet activation in type 2 diabetes mellitus. J. Thromb. Haemost. 2004 2 8 1282 1291 10.1111/j.1538‑7836.2004.00836.x 15304032
    [Google Scholar]
  82. Khunkaew S. Fernandez R. Sim J. Health-related quality of life among adults living with diabetic foot ulcers: A meta-analysis. Qual. Life Res. 2019 28 6 1413 1427 10.1007/s11136‑018‑2082‑2 30565072
    [Google Scholar]
  83. Fejfarová V. Jirkovská A. Dragomirecká E. Game F. Bém R. Dubský M. Wosková V. Křížová M. Skibová J. Wu S. Does the diabetic foot have a significant impact on selected psychological or social characteristics of patients with diabetes mellitus? J. Diabetes Res. 2014 2014 1 7 10.1155/2014/371938 24791012
    [Google Scholar]
  84. Vileikyte L. Pouwer F. Gonzalez J.S. Psychosocial research in the diabetic foot: Are we making progress? Diabetes Metab. Res. Rev. 2020 36 S1 e3257 10.1002/dmrr.3257 31850665
    [Google Scholar]
  85. Chen H. Cai C. Xie J. The effect of an intensive patients’ education program on anxiety, depression and patient global assessment in diabetic foot ulcer patients with Wagner grade 1/2. Medicine (Baltimore) 2020 99 6 e18480 10.1097/MD.0000000000018480 32028385
    [Google Scholar]
  86. Sekhar M.S. Thomas R.R. Unnikrishnan M.K. Vijayanarayana K. Rodrigues G.S. Impact of diabetic foot ulcer on health-related quality of life: A cross-sectional study. Semin. Vasc. Surg. 2015 28 3-4 165 171 10.1053/j.semvascsurg.2015.12.001 27113283
    [Google Scholar]
  87. Crocker R.M. Palmer K.N.B. Marrero D.G. Tan T.W. Patient perspectives on the physical, psycho-social, and financial impacts of diabetic foot ulceration and amputation. J. Diabetes Complications 2021 35 8 107960 10.1016/j.jdiacomp.2021.107960 34059410
    [Google Scholar]
  88. Cowpertwait L. Clarke D. Effectiveness of web-based psychological interventions for depression: A meta-analysis. Int. J. Ment. Health Addict. 2013 11 2 247 268 10.1007/s11469‑012‑9416‑z
    [Google Scholar]
  89. Glombiewski J.A. Hartwich-Tersek J. Rief W. Two psychological interventions are effective in severely disabled, chronic back pain patients: A randomised controlled trial. Int. J. Behav. Med. 2010 17 2 97 107 10.1007/s12529‑009‑9070‑4 19967572
    [Google Scholar]
  90. Basiri R. Seidu B. Cheskin L.J. Key nutrients for optimal blood glucose control and mental health in individuals with diabetes: A review of the evidence. Nutrients 2023 15 18 3929 10.3390/nu15183929 37764713
    [Google Scholar]
  91. Hermanns N. Ehrmann D. Shapira A. Kulzer B. Schmitt A. Laffel L. Coordination of glucose monitoring, self-care behaviour and mental health: achieving precision monitoring in diabetes. Diabetologia 2022 65 11 1883 1894 10.1007/s00125‑022‑05685‑7 35380233
    [Google Scholar]
  92. Hussan F. Yahaya M.F. Teoh S.L. Das S. Herbs for effective treatment of diabetes mellitus wounds: Medicinal chemistry and future therapeutic options. Mini Rev. Med. Chem. 2018 18 8 697 710 10.2174/1389557517666170927155707 28971772
    [Google Scholar]
  93. Soliman A.M. Teoh S.L. Ghafar N.A. Das S. Molecular concept of diabetic wound healing: Effective role of herbal remedies. Mini Rev. Med. Chem. 2019 19 5 381 394 10.2174/1389557518666181025155204 30360709
    [Google Scholar]
  94. Budovsky A. Yarmolinsky L. Ben-Shabat S. Effect of medicinal plants on wound healing. Wound Repair Regen. 2015 23 2 171 183 10.1111/wrr.12274 25703533
    [Google Scholar]
  95. Xu Z. Dong M. Yin S. Dong J. Zhang M. Tian R. Min W. Zeng L. Qiao H. Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv. Drug Deliv. Rev. 2023 195 114764 10.1016/j.addr.2023.114764 36841332
    [Google Scholar]
  96. Simson U. Nawarotzky U. Friese G. Porck W. Schottenfeld-Naor Y. Hahn S. Scherbaum W.A. Kruse J. Psychotherapy intervention to reduce depressive symptoms in patients with diabetic foot syndrome. Diabet. Med. 2008 25 2 206 212 10.1111/j.1464‑5491.2007.02370.x 18290863
    [Google Scholar]
  97. Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2008 51 2 216 226 10.1007/s00125‑007‑0886‑7 18087688
    [Google Scholar]
  98. Mathias Akinlade O. Victor Owoyele B. Olufemi Soladoye A. Streptozotocin-induced type 1 and 2 diabetes in rodents: A model for studying diabetic cardiac autonomic neuropathy. Afr. Health Sci. 2021 21 2 719 727 10.4314/ahs.v21i2.30 34795728
    [Google Scholar]
  99. Zhang E.Y. Gao B. Shi H.L. Huang L.F. Yang L. Wu X.J. Wang Z.T. 20(S)-Protopanaxadiol enhances angiogenesis via HIF-1α-mediated VEGF secretion by activating p70S6 kinase and benefits wound healing in genetically diabetic mice. Exp. Mol. Med. 2017 49 10 e387 10.1038/emm.2017.151 29075038
    [Google Scholar]
  100. Zeng Z. Zhu B.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J. Ethnopharmacol. 2014 154 3 653 662 10.1016/j.jep.2014.04.038 24794013
    [Google Scholar]
  101. Pop-Busui R. Boulton A.J.M. Feldman E.L. Bril V. Freeman R. Malik R.A. Sosenko J.M. Ziegler D. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care 2017 40 1 136 154 10.2337/dc16‑2042 27999003
    [Google Scholar]
  102. Abbas M. Uçkay I. Lipsky B.A. In diabetic foot infections antibiotics are to treat infection, not to heal wounds. Expert Opin. Pharmacother. 2015 16 6 821 832 10.1517/14656566.2015.1021780 25736920
    [Google Scholar]
  103. Kuo Y.S. Chien H.F. Lu W. Plectranthus amboinicus and Centella asiatica cream for the treatment of diabetic foot ulcers. Evid. Based Complement. Alternat. Med. 2012 2012 1 9 10.1155/2012/418679 22693530
    [Google Scholar]
  104. Daburkar M. Lohar V. Rathore A. Bhutada P. Tangadpaliwar S. An in vivo and in vitro investigation of the effect of Aloe vera gel ethanolic extract using animal model with diabetic foot ulcer. J. Pharm. Bioallied Sci. 2014 6 3 205 212 10.4103/0975‑7406.135248 25035641
    [Google Scholar]
  105. Dwivedi J. Gupta A. Verma S. Dwivedi M. Paliwal S. Rawat A.K.S. Validated high-performance thin-layer chromatographic analysis of ursolic acid and β-sitosterol in the methanolic fraction of Paederia foetida L. leaves. J. Planar Chromatogr. Mod. TLC 2018 31 5 377 381 10.1556/1006.2018.31.5.5
    [Google Scholar]
  106. Sari Y. Purnawan I. Kurniawan D.W. Sutrisna E. 2018
  107. Gharaboghaz M.N. Farahpour M.R. Saghaie S. Topical co-administration of Teucrium polium hydroethanolic extract and Aloe vera gel triggered wound healing by accelerating cell proliferation in diabetic mouse model. Biomed. Pharmacother. 2020 127 110189 10.1016/j.biopha.2020.110189 32388242
    [Google Scholar]
  108. Hou Q. He W.J. Chen L. Hao H.J. Liu J.J. Dong L. Tong C. Li M.R. Zhou Z.Z. Han W.D. Fu X.B. Effects of the four-herb compound ANBP on wound healing promotion in diabetic mice. Int. J. Low. Extrem. Wounds 2015 14 4 335 342 10.1177/1534734615575244 25795279
    [Google Scholar]
  109. Ponrasu T. Subamekala M.K. Ganeshkuma M. Suguna L. Role of Annona squamosa on antioxidants during wound healing in streptozotocin-nicotinamide induced diabetic rats. J. Pharmacogn. Phytochem. 2013 2 4 77 84
    [Google Scholar]
  110. Sharifi A. Shafiei E. Hoseinzadeh M. The study of the effectiveness of a mixture of Arnebia Euochroma and gum extract in animal oils and comparing it with honey in diabetic foot ulcer. J. Chem. Health Risks 2019 9 2 167 172 10.22034/jchr.2019.666336
    [Google Scholar]
  111. Nehete M.N. Nipanikar S. Kanjilal A.S. Kanjilal S. Tatke P.A. Comparative efficacy of two polyherbal creams with framycetin sulfate on diabetic wound model in rats. J. Ayurveda Integr. Med. 2016 7 2 83 87 10.1016/j.jaim.2015.09.004 27449205
    [Google Scholar]
  112. Jacob J. Aleykutty N.A. Harindran J. Evaluation of wound healing activity in streptozotocin induced diabetic rats by ethanolic extract of Blepharis maderaspatensis (L.) B. Heyne ex Roth. B Heyne Ex Roth. Int. J. Herb. Med. 2017 5 6 45 47
    [Google Scholar]
  113. Panwar S. Jain N.K. Gupta M.K. Wound healing potential of methanolic extract of flowers of Butea monosperma Linn. in diabetic animals. J. Drug Deliv. Ther. 2018 8 5-s 306 310 10.22270/jddt.v8i5‑s.1979
    [Google Scholar]
  114. Al-Rawaf H.A. Gabr S.A. Alghadir A.H. Circulating hypoxia responsive microRNAs (HRMs) and wound healing potentials of green tea in diabetic and nondiabetic rat models. Evid. Based Complement. Alternat. Med. 2019 2019 1 14 10.1155/2019/9019253 30713578
    [Google Scholar]
  115. Majumder P. Paridhavi M. P. A novel poly‐herbal formulation hastens diabetic wound healing with potent antioxidant potential: A comprehensive pharmacological investigation. Pharmacogn. J. 2019 11 2 324 331 10.5530/pj.2019.11.48
    [Google Scholar]
  116. Aksoy H. Sen A. Sancar M. Sekerler T. Akakin D. Bitis L. Uras F. Kultur S. Izzettin F.V. Ethanol extract of Cotinus coggygria leaves accelerates wound healing process in diabetic rats. Pharm. Biol. 2016 54 11 2732 2736 10.1080/13880209.2016.1181660 27180800
    [Google Scholar]
  117. Kandimalla R. Kalita S. Choudhury B. Dash S. Kalita K. Kotoky J. Chemical composition and anti-candidiasis mediated wound healing property of Cymbopogon nardus essential oil on chronic diabetic wounds. Front. Pharmacol. 2016 7 198 10.3389/fphar.2016.00198 27445828
    [Google Scholar]
  118. Tuhin R.H. Begum M.M. Rahman M.S. Karim R. Begum T. Ahmed S.U. Mostofa R. Hossain A. Abdel-Daim M. Begum R. Wound healing effect of Euphorbia hirta linn. (Euphorbiaceae) in alloxan induced diabetic rats. BMC Complement. Altern. Med. 2017 17 1 423 10.1186/s12906‑017‑1930‑x 28836990
    [Google Scholar]
  119. Altıparmak M. Eskitaşçıoğlu T. Comparison of systemic and topical Hypericum perforatum on diabetic surgical wounds. J. Invest. Surg. 2018 31 1 29 37 10.1080/08941939.2016.1272654 28107097
    [Google Scholar]
  120. Wal P. Dwivedi J. Wal A. Kushwaha S. Diabetic patients with COVID-19 complications: Insights into prevalence, prognosis, combination medications, and underlying mechanisms. Curr. Diabetes Rev. 2023 19 7 e250822208008 10.2174/1573399819666220825164056 36028964
    [Google Scholar]
  121. Sultana S.S. Swapna G. Lakshmi G.S. Swathi S. Jyothi G.N. Devi A.S. Formulation and evaluation of herbal emulgel of Lantana camara leaves extract for wound healing activity in diabetic rats. Indo Am J. Pharm. Res. 2016 6 8 6404 6417
    [Google Scholar]
  122. Naji S. Zarei L. Pourjabali M. Mohammadi R. The extract of lycium depressum stocks enhances wound healing in streptozotocin-induced diabetic rats. Int. J. Low. Extrem. Wounds 2017 16 2 85 93 10.1177/1534734617700538 28682729
    [Google Scholar]
  123. Hussan F. Teoh S.L. Muhamad N. Mazlan M. Latiff A.A. 2014
  124. Amali Muhammad A. Fakurazi S. Arulselvan P. See C.P. Abas F. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Des. Devel. Ther. 2016 10 1715 1730 10.2147/DDDT.S96968 27307703
    [Google Scholar]
  125. Mirazi N. Nourbar E. Yari S. Rafieian-Kopaei M. Nasri H. Effect of hydroethanolic extract of Nigella sativa L. on skin wound healing process in diabetic male rats. Int. J. Prev. Med. 2019 10 1 18 10.4103/ijpvm.IJPVM_276_18 30820305
    [Google Scholar]
  126. Mahboubi M. Taghizadeh M. Khamechian T. Tamtaji O.R. Mokhtari R. Talaei S.A. The wound healing effects of herbal cream containing Oliveria decumbens and Pelargonium graveolens essential oils in diabetic foot ulcer model. World J. Plast. Surg. 2018 7 1 45 50 [PMID: 29651391
    [Google Scholar]
  127. Ghazali N.A. Elmy A. Yuen L.C. Sani N.Z. Das S. Suhaimi F. Yusof R. Yusoff N.H. Thent Z.C. Piper betel leaves induces wound healing activity via proliferation of fibroblasts and reducing 11β hydroxysteriod dehydrogenase-1 expression in diabetic rat. J. Ayurveda Integr. Med. 2016 7 4 198 208 10.1016/j.jaim.2016.08.008 27889427
    [Google Scholar]
  128. Colobatiu L. Gavan A. Potarniche A.V. Rus V. Diaconeasa Z. Mocan A. Tomuta I. Mirel S. Mihaiu M. Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. React. Funct. Polym. 2019 145 104369 10.1016/j.reactfunctpolym.2019.104369
    [Google Scholar]
  129. Ranjbar-Heidari A. Khaiatzadeh J. Mahdavishahri N. Tehranipoor M. The effect of fruit pod powder and aquatic extract of Prosopis farcta on healing cutaneous wounds in diabetic rat. Zahedan J. Res. Med. Sci. 2012 14 5
    [Google Scholar]
  130. Jayakumari S. Formulation and evaluation of herbal gel from tannin-enriched fraction of Psidium guajava Linn. leaves for diabetic wound healing. Int. J. Green Pharm. 2018 12 03 10.22377/ijgp.v12i03.2009
    [Google Scholar]
  131. Güzel S. Özay Y. Kumaş M. Uzun C. Özkorkmaz E.G. Yıldırım Z. Ülger M. Güler G. Çelik A. Çamlıca Y. Kahraman A. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother. 2019 111 1260 1276 10.1016/j.biopha.2019.01.038 30841440
    [Google Scholar]
  132. Parmar K.M. Shende P.R. Katare N. Dhobi M. Prasad S.K. Wound healing potential of Solanum xanthocarpum in streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 2018 70 10 1389 1400 10.1111/jphp.12975 29984407
    [Google Scholar]
  133. Pinto S. Bueno F. Panizzon G. Morais G. dos Santos P. Baesso M. Leite-Mello E. de Mello J. Stryphnodendron adstringens: Clarifying wound healing in streptozotocin-induced diabetic rats. Planta Med. 2015 81 12/13 1090 1096 10.1055/s‑0035‑1546209 26218337
    [Google Scholar]
  134. Sharma A. Khanna S. Kaur G. Singh I. Medicinal plants and their components for wound healing applications. Fut J. Pharm. Sci. 2021 7 1 53 10.1186/s43094‑021‑00202‑w
    [Google Scholar]
  135. Chokpaisarn J. Chusri S. Amnuaikit T. Udomuksorn W. Voravuthikunchai S.P. Potential wound healing activity of Quercus infectoria formulation in diabetic rats. PeerJ 2017 5 e3608 10.7717/peerj.3608 28761790
    [Google Scholar]
  136. Lv F. Wang J. Xu P. Han Y. Ma H. Xu H. Chen S. Chang J. Ke Q. Liu M. Yi Z. Wu C. A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater. 2017 60 128 143 10.1016/j.actbio.2017.07.020 28713016
    [Google Scholar]
  137. Özay Y. Güzel S. Yumrutaş Ö. Pehlivanoğlu B. Erdoğdu İ.H. Yildirim Z. Türk B.A. Darcan S. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J. Surg. Res. 2019 233 284 296 10.1016/j.jss.2018.08.009 30502261
    [Google Scholar]
  138. Ren J. Yang M. Chen J. Ma S. Wang N. Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomed. Pharmacother. 2020 129 110475 10.1016/j.biopha.2020.110475 32768960
    [Google Scholar]
  139. Özay Y. Güzel S. Erdoğdu İ.H. Pehlivanoğlu B. Aydın Türk B. Darcan S. Evaluation of the wound healing properties of luteolin ointments on excision and incision wound models in diabetic and non-diabetic rats. Rec. Nat. Prod. 2018 12 4 350 366 10.25135/rnp.38.17.08.135
    [Google Scholar]
  140. Lodhi S. Singhai A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med. 2013 6 4 253 259 10.1016/S1995‑7645(13)60053‑X 23608325
    [Google Scholar]
  141. Li J. Chou H. Li L. Li H. Cui Z. Wound healing activity of neferine in experimental diabetic rats through the inhibition of inflammatory cytokines and nrf-2 pathway. Artif. Cells Nanomed. Biotechnol. 2020 48 1 96 106 10.1080/21691401.2019.1699814 31852261
    [Google Scholar]
  142. Lodhi S. Jain A.P. Sharma V.K. Singhai A.K. Wound-healing effect of flavonoid-rich fraction from Tephrosia purpurea Linn. on streptozotocin-induced diabetic rats. J. Herbs Spices Med. Plants 2013 19 2 191 205 10.1080/10496475.2013.779620
    [Google Scholar]
  143. Verma P.K. Ahmad M. Sultana M. Raina R. Pankaj N.K. Prawez S. Hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin-induced diabetic rats. Pharmacogn. Mag. 2017 13 Suppl. 3 S633 S639 10.4103/pm.pm_108_17 29142425
    [Google Scholar]
  144. Mohajeri G. Safaee M. Sanei M.H. Hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin-induced diabetic rats. Pharmacogn. Mag. 2014 13 Suppl. 3 S633 S639 10.4103/pm.pm_108_17 29142425
    [Google Scholar]
  145. Ghesmati F. Firoozi M. Varaeii S. Studying the effect of aloe veraointment on wound healing of CABG surgery in diabetic patients. J. Res. Med. Dent. Sci. 2018 6 1 256 260
    [Google Scholar]
  146. Callaghan M.J. Chang E.I. Seiser N. Aarabi S. Ghali S. Kinnucan E.R. Simon B.J. Gurtner G.C. Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release. Plast. Reconstr. Surg. 2008 121 1 130 141 10.1097/01.prs.0000293761.27219.84 18176216
    [Google Scholar]
  147. Nasiri M. Fayazi S. Jahani S. Yazdanpanah L. Haghighizadeh M.H. The effect of topical olive oil on the healing of foot ulcer in patients with type 2 diabetes: A double-blind randomized clinical trial study in Iran. J. Diabetes Metab. Disord. 2015 14 1 38 10.1186/s40200‑015‑0167‑9 25969821
    [Google Scholar]
  148. Dudhamal T.S. Gupta S.K. Mahanta V. Ajmeer A.S. Katupila Securinega leucopyrus as a potential option for diabetic wound management. J. Ayurveda Integr. Med. 2014 5 1 60 63 10.4103/0975‑9476.128872 24812478
    [Google Scholar]
  149. Herman A. Herman A.P. Herbal products and their active constituents for diabetic wound healing—Preclinical and clinical studies: A systematic review. Pharmaceutics 2023 15 1 281 10.3390/pharmaceutics15010281 36678910
    [Google Scholar]
  150. Rezvani Ghomi E. Khalili S. Nouri Khorasani S. Esmaeely Neisiany R. Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019 136 27 47738 10.1002/app.47738
    [Google Scholar]
  151. Chin C.Y. Ng P.Y. Ng S.F. Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: In vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Deliv. Transl. Res. 2019 9 2 453 468 10.1007/s13346‑018‑0510‑z 29560587
    [Google Scholar]
  152. Merrell J.G. McLaughlin S.W. Tie L. Laurencin C.T. Chen A.F. Nair L.S. Curcumin‐loaded poly(ε‐caprolactone) nanofibres: Diabetic wound dressing with anti‐oxidant and anti‐inflammatory properties. Clin. Exp. Pharmacol. Physiol. 2009 36 12 1149 1156 10.1111/j.1440‑1681.2009.05216.x 19473187
    [Google Scholar]
  153. Yang Y. Wang F. Yin D. Fang Z. Huang L. Astragulus polysaccharide-loaded fibrous mats promote the restoration of microcirculation in/around skin wounds to accelerate wound healing in a diabetic rat model. Colloids Surf. B Biointerfaces 2015 136 111 118 10.1016/j.colsurfb.2015.09.006 26370325
    [Google Scholar]
  154. Sharma M. Dwivedi J. Kumar B. Singh B. Rawat A.K. Plant-based secondary metabolites for health benefits: Classification and processing. Phytochemicals from Medicinal Plants. Apple Academic Press 2019
    [Google Scholar]
  155. Shukla R. Kashaw S.K. Jain A.P. Lodhi S. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int. J. Biol. Macromol. 2016 91 1110 1119 10.1016/j.ijbiomac.2016.06.075 27344952
    [Google Scholar]
  156. Lai J.C.Y. Lai H.Y. Rao N.K. Ng S.F. Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J. Ethnopharmacol. 2016 189 277 289 10.1016/j.jep.2016.05.032 27208868
    [Google Scholar]
  157. Karri V.V.S.R. Kuppusamy G. Talluri S.V. Mannemala S.S. Kollipara R. Wadhwani A.D. Mulukutla S. Raju K.R.S. Malayandi R. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. 2016
    [Google Scholar]
  158. Ranjbar-Mohammadi M. Rabbani S. Bahrami S.H. Joghataei M.T. Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater. Sci. Eng. C 2016 69 1183 1191 10.1016/j.msec.2016.08.032 27612816
    [Google Scholar]
  159. Yang B.Y. Hu C.H. Huang W.C. Ho C.Y. Yao C.H. Huang C.H. Effects of bilayer nanofibrous scaffolds containing curcumin/lithospermi radix extract on wound healing in streptozotocin-induced diabetic rats. Polymers (Basel) 2019 11 11 1745 10.3390/polym11111745 31653001
    [Google Scholar]
  160. Gao S.Q. Chang C. Li J.J. Li Y. Niu X.Q. Zhang D.P. Li L.J. Gao J.Q. Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis. Drug Deliv. 2018 25 1 1779 1789 10.1080/10717544.2018.1513608 30338719
    [Google Scholar]
  161. Almasian A. Najafi F. Eftekhari M. Ardekani M.R.S. Sharifzadeh M. Khanavi M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C 2020 114 111039 10.1016/j.msec.2020.111039 32994005
    [Google Scholar]
  162. Sun G. Li C. Cui W. Guo Q. Dong C. Zou H. Liu S. Dong W. Miao L. Review of herbal traditional Chinese medicine for the treatment of diabetic nephropathy. J. Diabetes Res. 2016 2016 Oct 1 18 10.1155/2016/5749857 26649322
    [Google Scholar]
  163. El-Bahy A.A.Z. Aboulmagd Y.M. Zaki M. Diabetex: A novel approach for diabetic wound healing. Life Sci. 2018 207 332 339 10.1016/j.lfs.2018.06.020 29953880
    [Google Scholar]
  164. Xu N. Wang L. Guan J. Tang C. He N. Zhang W. Fu S. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int. J. Biol. Macromol. 2018 117 102 107 10.1016/j.ijbiomac.2018.05.066 29772339
    [Google Scholar]
  165. Wang T. Liao Q. Wu Y. Wang X. Fu C. Geng F. Qu Y. Zhang J. A composite hydrogel loading natural polysaccharides derived from Periplaneta americana herbal residue for diabetic wound healing. Int. J. Biol. Macromol. 2020 164 3846 3857 10.1016/j.ijbiomac.2020.08.156 32841667
    [Google Scholar]
  166. Gokce E.H. Tuncay Tanrıverdi S. Eroglu I. Tsapis N. Gokce G. Tekmen I. Fattal E. Ozer O. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur. J. Pharm. Biopharm. 2017 119 17 27 10.1016/j.ejpb.2017.04.027 28461085
    [Google Scholar]
  167. Yang Q. Liu F. Zhao C. Xu X. Wang Y. Zuo W. RETRACTED: Effect of Chinese herbal compound dressings in treating patients with diabetic foot ulcers: A meta‐analysis. Int. Wound J. 2024 21 3 e14767 10.1111/iwj.14767 38444012
    [Google Scholar]
  168. Tan W.S. Arulselvan P. Ng S.F. Mat Taib C.N. Sarian M.N. Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement. Altern. Med. 2019 19 1 20 10.1186/s12906‑018‑2427‑y 30654793
    [Google Scholar]
  169. Broughton G. Janis J.E. Attinger C.E. The basic science of wound healing. Plast. Reconstr. Surg. 2006 117 Suppl. 7 12S 34S 10.1097/01.prs.0000225430.42531.c2 16799372
    [Google Scholar]
  170. Davis F.M. Kimball A. Boniakowski A. Gallagher K. Dysfunctional wound healing in diabetic foot ulcers: New crossroads. Curr. Diab. Rep. 2018 18 1 2 10.1007/s11892‑018‑0970‑z 29362914
    [Google Scholar]
  171. Wallace L.A. Gwynne L. Jenkins T. Challenges and opportunities of pH in chronic wounds. Ther. Deliv. 2019 10 11 719 735 10.4155/tde‑2019‑0066 31789109
    [Google Scholar]
  172. Schreml S. Meier R.J. Wolfbeis O.S. Landthaler M. Szeimies R.M. Babilas P. 2D luminescence imaging of pH in vivo. Proc. Natl. Acad. Sci. USA 2011 108 6 2432 2437 10.1073/pnas.1006945108 21262842
    [Google Scholar]
  173. Kopf S. Kumar V. Kender Z. Han Z. Fleming T. Herzig S. Nawroth P.P. Diabetic pneumopathy - A new diabetes-associated complication: mechanisms, consequences and treatment considerations. Front. Endocrinol. 2021 12 765201 10.3389/fendo.2021.765201 34899603
    [Google Scholar]
  174. Wu S. Zhou Z. Li Y. Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024 10 17 e37031 10.1016/j.heliyon.2024.e37031 39286219
    [Google Scholar]
  175. Jiang P. Li Q. Luo Y. Luo F. Che Q. Lu Z. Yang S. Yang Y. Chen X. Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front. Endocrinol. 2023 14 1221705 10.3389/fendo.2023.1221705 37664860
    [Google Scholar]
  176. Dwivedi J. Wal P. Dash B. Ovais M. Sachan P. Verma V. Diabetic pneumopathy-a novel diabetes-associated complication: Pathophysiology, the underlying mechanism and combination medication. Endocr. Metab. Immune Disord. Drug Targets 2024 24 9 1027 1052 10.2174/0118715303265960230926113201
    [Google Scholar]
  177. Birben E. Sahiner U.M. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012 5 1 9 19 10.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  178. Barret J.P. Podmelle F. Lipový B. Rennekampff H.O. Schumann H. Schwieger-Briel A. Zahn T.R. Metelmann H.R. Accelerated re-epithelialization of partial-thickness skin wounds by a topical betulin gel: Results of a randomized phase III clinical trials program. Burns 2017 43 6 1284 1294 10.1016/j.burns.2017.03.005 28400148
    [Google Scholar]
  179. Guo C.L. Fu X.Y. Research on effect evaluation of local treatment of patients with diabetic foot ulcers using honey dressing. 2013
    [Google Scholar]
  180. Siavash M. Shokri S. Haghighi S. Shahtalebi M.A. Farajzadehgan Z. The efficacy of topical royal jelly on healing of diabetic foot ulcers: A double‐blind placebo‐controlled clinical trial. Int. Wound J. 2015 12 2 137 142 10.1111/iwj.12063 23566071
    [Google Scholar]
  181. Kamaratos A.V. Tzirogiannis K.N. Iraklianou S.A. Panoutsopoulos G.I. Kanellos I.E. Melidonis A.I. Manuka honey‐impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int. Wound J. 2014 11 3 259 263 10.1111/j.1742‑481X.2012.01082.x 22985336
    [Google Scholar]
  182. Dwivedi J. Sachan P. Wal P. Kosey S. Khan M.M.U. Uzzaman M. Progressive journey of phytosomes: Preparation, characterization, patents, clinical trials & commercial products. J. Res. Pharm. 2023 27 5 1687 1733 10.29228/jrp.457
    [Google Scholar]
  183. Omar M.T.A. Alghadir A. Al-Wahhabi K.K. Al-Askar A.B. Efficacy of shock wave therapy on chronic diabetic foot ulcer: A single-blinded randomized controlled clinical trial. Diabetes Res. Clin. Pract. 2014 106 3 548 554 10.1016/j.diabres.2014.09.024 25451894
    [Google Scholar]
  184. Mohammadi M.H. Molavi B. Mohammadi S. Nikbakht M. Mohammadi A.M. Mostafaei S. Norooznezhad A.H. Ghorbani Abdegah A. Ghavamzadeh A. Evaluation of wound healing in diabetic foot ulcer using platelet-rich plasma gel: A single-arm clinical trial. Transfus. Apheresis Sci. 2017 56 2 160 164 10.1016/j.transci.2016.10.020 27839965
    [Google Scholar]
  185. Game F. Jeffcoate W. Tarnow L. Jacobsen J.L. Whitham D.J. Harrison E.F. Ellender S.J. Fitzsimmons D. Löndahl M. Dhatariya K. Chant H. Spyer G. Donohoe M. Uchegbu E. Whitelaw D. Nayar R. Rossing P. Gottlieb H. Michelsen M. Nielsen A.M. Houlind K. Sørensen J. Henneberg E. Jørgensen B. Narayanan K. Kong M-F. Tarik A. Gandhi R. Hariman C. Oguntolu V. Rayman G. Siddique H. D’Costa R. Maguire D. Aung T. Holmer H. Catrina S-B. Ogunko A. Rajbhandari S. Russell D. LeucoPatch system for the management of hard-to-heal diabetic foot ulcers in the UK, Denmark, and Sweden: An observer-masked, randomised controlled trial. Lancet Diabetes Endocrinol. 2018 6 11 870 878 10.1016/S2213‑8587(18)30240‑7 30243803
    [Google Scholar]
  186. Jarić S. Kostić O. Mataruga Z. Pavlović D. Pavlović M. Mitrović M. Pavlović P. Traditional wound-healing plants used in the Balkan region (Southeast Europe). J. Ethnopharmacol. 2018 211 311 328 10.1016/j.jep.2017.09.018 28942136
    [Google Scholar]
  187. Gulumian M. Yahaya E.S. Steenkamp V. African herbal remedies with antioxidant activity: A potential resource base for wound treatment. Evid. Based Complement. Alternat. Med. 2018 2018 1 4089541 10.1155/2018/4089541 30595712
    [Google Scholar]
  188. Kumar S. Bharali A. Sarma H. Kushari S. Gam S. Hazarika I. Prasad S.K. Laloo D. Traditional complementary and alternative medicine (TCAM) for diabetic foot ulcer management: A systematic review. J. Ayurveda Integr. Med. 2023 14 4 100745 10.1016/j.jaim.2023.100745 37441954
    [Google Scholar]
  189. Vitale S. Colanero S. Placidi M. Di Emidio G. Tatone C. Amicarelli F. D’Alessandro A.M. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research. Molecules 2022 27 11 3566 10.3390/molecules27113566 35684503
    [Google Scholar]
  190. Chakraborty R. Borah P. Dutta P.P. Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J. Diabetes 2022 13 9 696 716 10.4239/wjd.v13.i9.696 36188143
    [Google Scholar]
  191. Qin W. Wu Y. Liu J. Yuan X. Gao J. A comprehensive review of the application of nanoparticles in diabetic wound healing: therapeutic potential and future perspectives. Int. J. Nanomedicine 2022 17 6007 6029 10.2147/IJN.S386585 36506345
    [Google Scholar]
  192. Spampinato S.F. Caruso G.I. De Pasquale R. Sortino M.A. Merlo S. The treatment of impaired wound healing in diabetes: Looking among old drugs. Pharmaceuticals 2020 13 4 60 10.3390/ph13040060 32244718
    [Google Scholar]
  193. Sepúlveda G. Espíndola M. Maureira M. Sepúlveda E. Fernández J.I. Oliva C. Sanhueza A. Vial M. Manterola C. Negative-pressure wound therapy versus standard wound dressing in the treatment of diabetic foot amputation. A randomised controlled trial. Cir. Esp. 2009 86 3 171 177 10.1016/S2173‑5077(09)70086‑9 19616774
    [Google Scholar]
  194. Murphy P.S. Evans G.R.D. Advances in wound healing: A review of current wound healing products. Plast. Surg. Int. 2012 2012 1 8 10.1155/2012/190436 22567251
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266359349250707102203
Loading
/content/journals/ctmc/10.2174/0115680266359349250707102203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test