Skip to content
2000
image of Exosome-Mediated Strategies for Melanoma Eradication: A Comprehensive Review

Abstract

Introduction

Exosomes, which are vesicles that are naturally derived and contain a biomolecular payload, are promising vehicles for melanoma therapy because of their biocompatibility, targeting capabilities, and stability. This review emphasizes their capacity to circumvent the constraints of conventional treatments.

Methods

We carried out a comprehensive search of PubMed, ScienceDirect, and Google Scholar for peer-reviewed articles published between 2015 and 2024 utilizing terms such as “exosomes,” “melanoma,” and “chemotherapy.” Studies on exosome characterization or non-melanoma malignancies were excluded from the inclusion criteria, which centered on exosome-based therapeutics.

Results

Drugs delivered exosomes, such as small interfering RNA (siRNA) and chemotherapeutics, demonstrated enhanced tumor accumulation, achieving 2.5 times greater bioavailability and resulting in a tumor reduction of 60 to 90% when compared to their free counterparts. Surface modifications, such as cRGD peptides, have been shown to enhance targeting capabilities, whereas exosome-mediated photodynamic therapy has been effective in augmenting reactive oxygen species generation and promoting apoptosis.

Discussion

Exosomes tackle significant challenges such as drug resistance and systemic toxicity; however, they encounter obstacles related to scalability and immunogenicity. Their dual function in tumor advancement and treatment highlights the necessity for standardized protocols.

Conclusion

Exosome-based therapies signify a groundbreaking advancement in the treatment of melanoma. Future endeavors should refine engineering methodologies, enhance production capabilities, and substantiate effectiveness through rigorous clinical trials.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266373170250624095758
2025-07-09
2025-09-14
Loading full text...

Full text loading...

References

  1. Geng T. Paek S.Y. Leung E. Chamley L.W. Wu Z. Comparing extracellular vesicles from four different cell origins for intracellular drug delivery to pancreatic cancer cells: Small or large vesicles? J. Drug Deliv. Sci. Technol. 2024 93 105416 10.1016/j.jddst.2024.105416
    [Google Scholar]
  2. Yang C. Xue Y. Duan Y. Mao C. Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J. Control. Release 2024 365 1089 1123 10.1016/j.jconrel.2023.11.057 38065416
    [Google Scholar]
  3. Rizzuto A.S. Faggiano A. Macchi C. Carugo S. Perrino C. Ruscica M. Extracellular vesicles in cardiomyopathies: A narrative review. Heliyon 2024 10 1 e23765 10.1016/j.heliyon.2023.e23765 38192847
    [Google Scholar]
  4. Li H. Zhang J. Tan M. Yin Y. Song Y. Zhao Y. Yan L. Li N. Zhang X. Bai J. Jiang T. Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024 308 122544 10.1016/j.biomaterials.2024.122544 38579591
    [Google Scholar]
  5. Dai J. Zhang M. He Q. Chen R. The emerging role of exosomes in Schizophrenia. Psychiatry Res. 2023 327 115394 10.1016/j.psychres.2023.115394 37536144
    [Google Scholar]
  6. Kučuk N. Primožič M. Knez Ž. Leitgeb M. Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int. J. Mol. Sci. 2021 22 17 9543 10.3390/ijms22179543 34502452
    [Google Scholar]
  7. Gutierrez-Millan C. Calvo Díaz C. Lanao J.M. Colino C.I. Advances in exosomes‐based drug delivery systems. Macromol. Biosci. 2021 21 1 2000269 10.1002/mabi.202000269 33094544
    [Google Scholar]
  8. Avgoulas D.I. Tasioulis K.S. Papi R.M. Pantazaki A.A. Therapeutic and diagnostic potential of exosomes as drug delivery systems in brain cancer. Pharmaceutics 2023 15 5 1439 10.3390/pharmaceutics15051439 37242681
    [Google Scholar]
  9. Li T. Li X. Han G. Liang M. Yang Z. Zhang C. Huang S. Tai S. Yu S. The therapeutic potential and clinical significance of exosomes as carriers of drug delivery system. Pharmaceutics 2022 15 1 21 10.3390/pharmaceutics15010021 36678650
    [Google Scholar]
  10. Koh H.B. Kim H.J. Kang S.W. Yoo T.H. Exosome-based drug delivery: Translation from bench to clinic. Pharmaceutics 2023 15 8 2042 10.3390/pharmaceutics15082042 37631256
    [Google Scholar]
  11. Rao D. Huang D. Sang C. Zhong T. Zhang Z. Tang Z. Advances in mesenchymal stem cell-derived exosomes as drug delivery vehicles. Front. Bioeng. Biotechnol. 2022 9 797359 10.3389/fbioe.2021.797359 35186913
    [Google Scholar]
  12. Kar R. Dhar R. Mukherjee S. Nag S. Gorai S. Mukerjee N. Mukherjee D. Vatsa R. Chandrakanth Jadhav M. Ghosh A. Devi A. Krishnan A. Thorat N.D. Exosome-based smart drug delivery tool for cancer theranostics. ACS Biomater. Sci. Eng. 2023 9 2 577 594 10.1021/acsbiomaterials.2c01329 36621949
    [Google Scholar]
  13. Ferreira D. Moreira J.N. Rodrigues L.R. New advances in exosome-based targeted drug delivery systems. Crit. Rev. Oncol. Hematol. 2022 172 103628 10.1016/j.critrevonc.2022.103628 35189326
    [Google Scholar]
  14. Zeng W. Wen Z. Chen H. Duan Y. Exosomes as carriers for drug delivery in cancer therapy. Pharm. Res. 2023 40 4 873 887 10.1007/s11095‑022‑03224‑y 35352281
    [Google Scholar]
  15. Sun K. Zheng X. Jin H. Yu F. Zhao W. Exosomes as CNS drug delivery tools and their applications. Pharmaceutics 2022 14 10 2252 10.3390/pharmaceutics14102252 36297688
    [Google Scholar]
  16. Rajput A. Varshney A. Bajaj R. Pokharkar V. Exosomes as new generation vehicles for drug delivery: Biomedical applications and future perspectives. Molecules 2022 27 21 7289 10.3390/molecules27217289 36364116
    [Google Scholar]
  17. Sharma V. Mukhopadhyay C.D. Exosome as drug delivery system: Current advancements. Extracell Vesicle 2024 3 100032 10.1016/j.vesic.2023.100032
    [Google Scholar]
  18. Ruivo C.F. Adem B. Silva M. Melo S.A. The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 2017 77 23 6480 6488 10.1158/0008‑5472.CAN‑17‑0994 29162616
    [Google Scholar]
  19. Villarroya-Beltri C. Baixauli F. Mittelbrunn M. Fernández-Delgado I. Torralba D. Moreno-Gonzalo O. Baldanta S. Enrich C. Guerra S. Sánchez-Madrid F. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 2016 7 1 13588 10.1038/ncomms13588 27882925
    [Google Scholar]
  20. Zhang X. Artz N. Steindler D.A. Hingtgen S. Satterlee A.B. Exosomes: Traversing the blood-brain barrier and their therapeutic potential in brain cancer. Biochim. Biophys. Acta Rev. Cancer 2025 189300 10.1016/j.bbcan.2025.189300 40097050
    [Google Scholar]
  21. Xie F. Huang Y. Zhan Y. Bao L. Exosomes as drug delivery system in gastrointestinal cancer. Front. Oncol. 2023 12 1101823 10.3389/fonc.2022.1101823 36761427
    [Google Scholar]
  22. Zhang H. Wang S. Sun M. Cui Y. Xing J. Teng L. Xi Z. Yang Z. Exosomes as smart drug delivery vehicles for cancer immunotherapy. Front. Immunol. 2023 13 1093607 10.3389/fimmu.2022.1093607 36733388
    [Google Scholar]
  23. Pegtel D.M. Gould S.J. Exosomes. Annu. Rev. Biochem. 2019 88 487 514 10.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  24. Kalhori F. Yazdyani H. Khademorezaeian F. Hamzkanloo N. Mokaberi P. Hosseini S. Chamani J. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering. Luminescence 2022 37 11 1836 1845 10.1002/bio.4360 35946171
    [Google Scholar]
  25. Zheng P. Chen L. Yuan X. Luo Q. Liu Y. Xie G. Ma Y. Shen L. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J. Exp. Clin. Cancer Res. 2017 36 1 53 10.1186/s13046‑017‑0528‑y 28407783
    [Google Scholar]
  26. Li X. Liu Y. Zheng S. Zhang T. Wu J. Sun Y. Zhang J. Liu G. Role of exosomes in the immune microenvironment of ovarian cancer. Oncol. Lett. 2021 21 5 377 33777201
    [Google Scholar]
  27. Gharavi A.T. Hanjani N.A. Movahed E. Doroudian M. The role of macrophage subtypes and exosomes in immunomodulation. Cell. Mol. Biol. Lett. 2022 27 1 83 10.1186/s11658‑022‑00384‑y 36192691
    [Google Scholar]
  28. Kalluri R. The biology and function of exosomes in cancer. J. Clin. Invest. 2016 126 4 1208 1215 10.1172/JCI81135 27035812
    [Google Scholar]
  29. Zhao J. Yang J. Jiao J. Wang X. Zhao Y. Zhang L. Biomedical applications of artificial exosomes for intranasal drug delivery. Front. Bioeng. Biotechnol. 2023 11 1271489 10.3389/fbioe.2023.1271489 37744256
    [Google Scholar]
  30. De La Peña H. Madrigal J.A. Rusakiewicz S. Bencsik M. Cave G.W. Selman A. Rees R.C. Travers P.J. Dodi I.A. Artificial exosomes as tools for basic and clinical immunology. J. Immunol. Methods 2009 344 2 121 132 10.1016/j.jim.2009.03.011 19345222
    [Google Scholar]
  31. Li Y.J. Wu J.Y. Liu J. Xu W. Qiu X. Huang S. Hu X.B. Xiang D.X. Artificial exosomes for translational nanomedicine. J. Nanobiotechnology 2021 19 1 242 34384440
    [Google Scholar]
  32. Liang L. Peng W. Qin A. Zhang J. Chen R. Zhou D. Zhang X. Zhou N. Yu X.Y. Zhang L. Intracellularly synthesized artificial exosome treats acute lung injury. ACS Nano 2024 18 32 21009 21023 10.1021/acsnano.4c01900 39087239
    [Google Scholar]
  33. Li Q. Song Q. Zhao Z. Lin Y. Cheng Y. Karin N. Luan Y. Genetically engineered artificial exosome-constructed hydrogel for ovarian cancer therapy. ACS Nano 2023 17 11 10376 10392 10.1021/acsnano.3c00804 37194951
    [Google Scholar]
  34. Malek-Esfandiari Z. Rezvani-Noghani A. Sohrabi T. Mokaberi P. Amiri-Tehranizadeh Z. Chamani J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc. 2023 33 4 1537 1557 10.1007/s10895‑023‑03169‑4 36787038
    [Google Scholar]
  35. Sattar Z. Saberi M.R. Chamani J. Determination of LMF binding site on a HSA-PPIX complex in the presence of human holo transferrin from the viewpoint of drug loading on proteins. PLoS One 2014 9 1 e84045 10.1371/journal.pone.0084045 24392106
    [Google Scholar]
  36. Tandon R. Srivastava N. Unravelling exosome paradigm: Therapeutic, diagnostic and theranostics application and regulatory consideration. Life Sci. 2025 366-367 123472 10.1016/j.lfs.2025.123472 39956185
    [Google Scholar]
  37. Yadav K. Sahu K.K. Sucheta; Minz, S.; Pradhan, M. Unlocking exosome therapeutics: The critical role of pharmacokinetics in clinical applications. Tissue Cell 2025 93 102749 10.1016/j.tice.2025.102749 39904192
    [Google Scholar]
  38. Xie S. Zhang Q. Jiang L. Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes 2022 12 5 498 10.3390/membranes12050498 35629824
    [Google Scholar]
  39. Han Q.F. Li W.J. Hu K.S. Gao J. Zhai W.L. Yang J.H. Zhang S.J. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 2022 21 1 207 10.1186/s12943‑022‑01671‑0 36320056
    [Google Scholar]
  40. Wei H. Chen Q. Lin L. Sha C. Li T. Liu Y. Yin X. Xu Y. Chen L. Gao W. Li Y. Zhu X. Regulation of exosome production and cargo sorting. Int. J. Biol. Sci. 2021 17 1 163 177 10.7150/ijbs.53671 33390841
    [Google Scholar]
  41. Gurung S. Perocheau D. Touramanidou L. Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021 19 1 47 10.1186/s12964‑021‑00730‑1 33892745
    [Google Scholar]
  42. Tschuschke M. Kocherova I. Bryja A. Mozdziak P. Angelova Volponi A. Janowicz K. Sibiak R. Piotrowska-Kempisty H. Iżycki D. Bukowska D. Antosik P. Shibli J. Dyszkiewicz-Konwińska M. Kempisty B. Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J. Clin. Med. 2020 9 2 436 10.3390/jcm9020436 32041096
    [Google Scholar]
  43. Krylova S.V. Feng D. The machinery of exosomes: Biogenesis, release, and uptake. Int. J. Mol. Sci. 2023 24 2 1337 10.3390/ijms24021337 36674857
    [Google Scholar]
  44. Ocansey D.K.W. Zhang L. Wang Y. Yan Y. Qian H. Zhang X. Xu W. Mao F. Exosome‐mediated effects and applications in inflammatory bowel disease. Biol. Rev. Camb. Philos. Soc. 2020 95 5 1287 1307 10.1111/brv.12608 32410383
    [Google Scholar]
  45. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  46. Jafari D. Malih S. Eini M. Jafari R. Gholipourmalekabadi M. Sadeghizadeh M. Samadikuchaksaraei A. Improvement, scaling-up, and downstream analysis of exosome production. Crit. Rev. Biotechnol. 2020 40 8 1098 1112 10.1080/07388551.2020.1805406 32772758
    [Google Scholar]
  47. Gao J. Li A. Hu J. Feng L. Liu L. Shen Z. Recent developments in isolating methods for exosomes. Front. Bioeng. Biotechnol. 2023 10 1100892 10.3389/fbioe.2022.1100892 36714629
    [Google Scholar]
  48. Xu W.M. Li A. Chen J.J. Sun E.J. Research development on exosome separation technology. J. Membr. Biol. 2023 256 1 25 34 10.1007/s00232‑022‑00260‑y 36040494
    [Google Scholar]
  49. Ansari F.J. Tafti H.A. Amanzadeh A. Rabbani S. Shokrgozar M.A. Heidari R. Behroozi J. Eyni H. Uversky V.N. Ghanbari H. Comparison of the efficiency of ultrafiltration, precipitation, and ultracentrifugation methods for exosome isolation. Biochem. Biophys. Rep. 2024 38 101668 10.1016/j.bbrep.2024.101668 38405663
    [Google Scholar]
  50. Wang X. Xia J. Yang L. Dai J. He L. Recent progress in exosome research: Isolation, characterization and clinical applications. Cancer Gene Ther. 2023 30 8 1051 1065 10.1038/s41417‑023‑00617‑y 37106070
    [Google Scholar]
  51. Kumar K. Kim E. Alhammadi M. Reddicherla U. Aliya S. Tiwari J.N. Park H.S. Choi J.H. Son C.Y. Vilian A.T.E. Han Y-K. Bu J. Huh Y.S. Recent advances in microfluidic approaches for the isolation and detection of exosomes. Trends Analyt. Chem. 2023 159 116912 10.1016/j.trac.2022.116912
    [Google Scholar]
  52. Palanichamy K. Vadivalagan C. Fan Y.J. Isolation and purification of exosome and other extracellular vesicles.Extracellular Vesicles for Therapeutic and Diagnostic Applications. Elsevier 2025 1 23 10.1016/B978‑0‑443‑23891‑8.00004‑4
    [Google Scholar]
  53. Li J. Wang J. Chen Z. Emerging role of exosomes in cancer therapy: Progress and challenges. Mol. Cancer 2025 24 1 13 10.1186/s12943‑024‑02215‑4 39806451
    [Google Scholar]
  54. Mishra A. Bharti P.S. Rani N. Nikolajeff F. Kumar S. A tale of exosomes and their implication in cancer. Biochim. Biophys. Acta Rev. Cancer 2023 1878 4 188908 10.1016/j.bbcan.2023.188908 37172650
    [Google Scholar]
  55. Pallares-Rusiñol A. Bernuz M. Moura S.L. Fernández-Senac C. Rossi R. Martí M. Pividori M.I. Advances in exosome analysis. Adv. Clin. Chem. 2023 112 69 117 10.1016/bs.acc.2022.09.002 36642486
    [Google Scholar]
  56. Skrika-Alexopoulos E. Mark Smales C. Isolation and characterisation of exosomes from Chinese hamster ovary (CHO) cells. Biotechnol. Lett. 2023 45 4 425 437 10.1007/s10529‑023‑03353‑3 36708458
    [Google Scholar]
  57. Kostyusheva A. Romano E. Yan N. Lopus M. Zamyatnin A.A. Parodi A. Breaking barriers in targeted Therapy: Advancing exosome isolation, engineering, and imaging. Adv. Drug Deliv. Rev. 2025 218 115522 10.1016/j.addr.2025.115522 39855273
    [Google Scholar]
  58. Schur N. Samman L. Shah M. Dukharan V. Stegura C. Broughton L. Schlesinger T. Exosomes: Historical evolution and emerging roles in dermatology. J. Cosmet. Dermatol. 2025 24 1 e16769 10.1111/jocd.16769 39780461
    [Google Scholar]
  59. Khazaei F. Rezakhani L. Alizadeh M. Mahdavian E. Khazaei M. Exosomes and exosome-loaded scaffolds: Characterization and application in modern regenerative medicine. Tissue Cell 2023 80 102007 10.1016/j.tice.2022.102007 36577349
    [Google Scholar]
  60. Hazrati A. Mirsanei Z. Heidari N. Malekpour K. Rahmani-Kukia N. Abbasi A. Soudi S. The potential application of encapsulated exosomes: A new approach to increase exosomes therapeutic efficacy. Biomed. Pharmacother. 2023 162 114615 10.1016/j.biopha.2023.114615 37011484
    [Google Scholar]
  61. Wang Y. Jiang M. Zheng X. He Y. Ma X. Li J. Pu K. Application of exosome engineering modification in targeted delivery of therapeutic drugs. Biochem. Pharmacol. 2023 215 115691 10.1016/j.bcp.2023.115691 37481135
    [Google Scholar]
  62. Mondal J. Pillarisetti S. Junnuthula V. Saha M. Hwang S.R. Park I. Lee Y. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J. Control. Release 2023 353 1127 1149 10.1016/j.jconrel.2022.12.027 36528193
    [Google Scholar]
  63. Ranjan P. Colin K. Dutta R.K. Verma S.K. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J. Physiol. 2023 601 22 4873 4893 10.1113/JP282053 36398654
    [Google Scholar]
  64. Zeng H. Guo S. Ren X. Wu Z. Liu S. Yao X. Current strategies for exosome cargo loading and targeting delivery. Cells 2023 12 10 1416 10.3390/cells12101416 37408250
    [Google Scholar]
  65. Cano A. Muñoz-Morales Á. Sánchez-López E. Ettcheto M. Souto E.B. Camins A. Boada M. Ruíz A. Exosomes-based nanomedicine for neurodegenerative diseases: Current insights and future challenges. Pharmaceutics 2023 15 1 298 10.3390/pharmaceutics15010298 36678926
    [Google Scholar]
  66. Wang C. Xu M. Fan Q. Li C. Zhou X. Therapeutic potential of exosome‐based personalized delivery platform in chronic inflammatory diseases. Asian Journal of Pharmaceutical Sciences 2023 18 1 100772 10.1016/j.ajps.2022.100772 36896446
    [Google Scholar]
  67. Timofeeva A.M. Paramonik A.P. Sedykh S.S. Nevinsky G.A. Milk exosomes: Next-generation agents for delivery of anticancer drugs and therapeutic nucleic acids. Int. J. Mol. Sci. 2023 24 12 10194 10.3390/ijms241210194 37373342
    [Google Scholar]
  68. Mu N. Li J. Zeng L. You J. Li R. Qin A. Liu X. Yan F. Zhou Z. Plant-derived exosome-like nanovesicles: Current progress and prospects. Int. J. Nanomedicine 2023 18 4987 5009 10.2147/IJN.S420748 37693885
    [Google Scholar]
  69. Chavda V.P. Pandya A. Kumar L. Raval N. Vora L.K. Pulakkat S. Patravale V. Salwa; Duo, Y.; Tang, B.Z. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today 2023 49 101771 10.1016/j.nantod.2023.101771
    [Google Scholar]
  70. Singh S. Dansby C. Agarwal D. Bhat P.D. Dubey P.K. Krishnamurthy P. Exosomes: Methods for isolation and characterization in biological samples. Adult Stem Cells Methods in Molecular Biology. New York Humana 2024 10.1007/978‑1‑0716‑3995‑5_17
    [Google Scholar]
  71. Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl. Oncol. 2024 50 102121 10.1016/j.tranon.2024.102121 39278189
    [Google Scholar]
  72. Tian T. Zhang H.X. He C.P. Fan S. Zhu Y.L. Qi C. Huang N.P. Xiao Z.D. Lu Z.H. Tannous B.A. Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2018 150 137 149 29040874
    [Google Scholar]
  73. Si Y. Kim S. Zhang E. Tang Y. Jaskula-Sztul R. Markert J.M. Chen H. Zhou L. Liu X.M. Targeted exosomes for drug delivery: Biomanufacturing, surface tagging, and validation. Biotechnol. J. 2020 15 1 e1900163 31595685
    [Google Scholar]
  74. Akbari A. Nazari-Khanamiri F. Ahmadi M. Shoaran M. Rezaie J. Engineered exosomes for tumor-targeted drug delivery: A focus on genetic and chemical functionalization. Pharmaceutics 2022 15 1 66 10.3390/pharmaceutics15010066 36678695
    [Google Scholar]
  75. Guo Z.Y. Tang Y. Cheng Y.C. Exosomes as targeted delivery drug system: Advances in exosome loading, surface functionalization and potential for clinical application. Curr. Drug Deliv. 2024 21 4 473 487 10.2174/1567201819666220613150814 35702803
    [Google Scholar]
  76. Salunkhe S. Dheeraj; Basak, M.; Chitkara, D.; Mittal, A. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking: Strategies and significance. J. Control. Release 2020 326 599 614 10.1016/j.jconrel.2020.07.042 32730952
    [Google Scholar]
  77. Huang L. Wu E. Liao J. Wei Z. Wang J. Chen Z. Research advances of engineered exosomes as drug delivery carrier. ACS Omega 2023 8 46 43374 43387 10.1021/acsomega.3c04479 38027310
    [Google Scholar]
  78. Xu M. Yang Q. Sun X. Wang Y. Recent advancements in the loading and modification of therapeutic exosomes. Front. Bioeng. Biotechnol. 2020 8 586130 10.3389/fbioe.2020.586130 33262977
    [Google Scholar]
  79. Mohammadi A.H. Bagheri F. Baghaei K. Chondroitin sulfate-tocopherol succinate modified exosomes for targeted drug delivery to CD44-positive cancer cells. Int. J. Biol. Macromol. 2024 275 Pt 2 133625 10.1016/j.ijbiomac.2024.133625 39084997
    [Google Scholar]
  80. Adnan M. Akhter M.H. Afzal O. Altamimi A.S.A. Ahmad I. Alossaimi M.A. Jaremko M. Emwas A.H. Haider T. Haider M.F. Exploring nanocarriers as treatment modalities for skin cancer. Molecules 2023 28 15 5905 10.3390/molecules28155905 37570875
    [Google Scholar]
  81. Prajapat V.M. Mahajan S. Paul P.G. Aalhate M. Mehandole A. Madan J. Dua K. Chellappan D.K. Singh S.K. Singh P.K. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J. Drug Deliv. Sci. Technol. 2023 83 104394 10.1016/j.jddst.2023.104394
    [Google Scholar]
  82. Zeng L. Gowda B.H.J. Ahmed M.G. Abourehab M.A.S. Chen Z.S. Zhang C. Li J. Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023 22 1 10 10.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  83. Adamus-Grabicka A.A. Hikisz P. Sikora J. Nanotechnology as a promising method in the treatment of skin cancer. Int. J. Mol. Sci. 2024 25 4 2165 10.3390/ijms25042165 38396841
    [Google Scholar]
  84. Mangione C.M. Barry M.J. Nicholson W.K. Chelmow D. Coker T.R. Davis E.M. Donahue K.E. Jaén C.R. Kubik M. Li L. Ogedegbe G. Rao G. Ruiz J.M. Stevermer J. Tsevat J. Underwood S.M. Wong J.B. Screening for skin cancer: US preventive services task force recommendation statement. JAMA 2023 329 15 1290 1295 10.1001/jama.2023.4342 37071089
    [Google Scholar]
  85. Diaz M.J. Natarelli N. Aflatooni S. Aleman S.J. Neelam S. Tran J.T. Taneja K. Lucke-Wold B. Forouzandeh M. Nanoparticle-based treatment approaches for skin cancer: A systematic review. Curr. Oncol. 2023 30 8 7112 7131 10.3390/curroncol30080516 37622997
    [Google Scholar]
  86. Synoradzki K.J. Paduszyńska N. Solnik M. Toro M.D. Bilmin K. Bylina E. Rutkowski P. Yousef Y.A. Bucolo C. Zweifel S.A. Reibaldi M. Fiedorowicz M. Czarnecka A.M. From molecular biology to novel immunotherapies and nanomedicine in uveal melanoma. Curr. Oncol. 2024 31 2 778 800 10.3390/curroncol31020058 38392052
    [Google Scholar]
  87. Wang W. Lu C. Huang Z. Shu L. Cai J. Wu C. Pan X. A bibliometric study on nanomedicines as melanoma therapeutics: Clinical translation is urgent. Oncology Advances 2023 1 1 25 30 10.14218/OnA.2023.00008
    [Google Scholar]
  88. Natarelli N. Aleman S.J. Mark I.M. Tran J.T. Kwak S. Botto E. Aflatooni S. Diaz M.J. Lipner S.R. A review of current and pipeline drugs for treatment of melanoma. Pharmaceuticals 2024 17 2 214 10.3390/ph17020214 38399429
    [Google Scholar]
  89. De A. Chakraborty D. Agarwal I. Sarda A. Present and future use of exosomes in dermatology. Indian J. Dermatol. 2024 69 6 461 470 10.4103/ijd.ijd_491_23 39678744
    [Google Scholar]
  90. Gonzalez-Melero L. Hernandez R.M. Santos-Vizcaino E. Igartua M. Tumour-derived extracellular vesicle based vaccines for melanoma treatment. Drug Deliv. Transl. Res. 2023 13 5 1520 1542 10.1007/s13346‑023‑01328‑5 37022605
    [Google Scholar]
  91. Kumar D.N. Chaudhuri A. Dehari D. Gamper A.M. Kumar D. Agrawal A.K. Enhanced therapeutic efficacy against melanoma through exosomal delivery of hesperidin. Mol. Pharm. 2024 21 6 3061 3076 Advance online publication 10.1021/acs.molpharmaceut.4c00490 38757678
    [Google Scholar]
  92. Jiang L. Gu Y. Du Y. Tang X. Wu X. Liu J. Engineering exosomes endowed with targeted delivery of triptolide for malignant melanoma therapy. ACS Appl. Mater. Interfaces 2021 13 36 42411 42428 10.1021/acsami.1c10325 34464081
    [Google Scholar]
  93. Gu Y. Du Y. Jiang L. Tang X. Li A. Zhao Y. Lang Y. Liu X. Liu J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J. Nanobiotechnology 2022 20 1 384 10.1186/s12951‑022‑01597‑1 35999612
    [Google Scholar]
  94. Iessi E. Logozzi M. Lugini L. Azzarito T. Federici C. Spugnini E.P. Mizzoni D. Di Raimo R. Angelini D.F. Battistini L. Cecchetti S. Fais S. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors. J. Enzyme Inhib. Med. Chem. 2017 32 1 648 657 10.1080/14756366.2017.1292263 28262028
    [Google Scholar]
  95. Federici C. Petrucci F. Caimi S. Cesolini A. Logozzi M. Borghi M. D’Ilio S. Lugini L. Violante N. Azzarito T. Majorani C. Brambilla D. Fais S. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 2014 9 2 e88193 10.1371/journal.pone.0088193 24516610
    [Google Scholar]
  96. Gobbo J. Marcion G. Cordonnier M. Dias A.M.M. Pernet N. Hammann A. Richaud S. Mjahed H. Isambert N. Clausse V. Rébé C. Bertaut A. Goussot V. Lirussi F. Ghiringhelli F. de Thonel A. Fumoleau P. Seigneuric R. Garrido C. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J. Natl. Cancer Inst. 2016 108 3 djv330 10.1093/jnci/djv330 26598503
    [Google Scholar]
  97. Wang X. Li D. Li G. Chen J. Yang Y. Bian L. Zhou J. Wu Y. Chen Y. Enhanced therapeutic potential of hybrid exosomes loaded with paclitaxel for cancer therapy. Int. J. Mol. Sci. 2024 25 7 3645 10.3390/ijms25073645 38612457
    [Google Scholar]
  98. Babaei S. Fadaee M. Abbasi-kenarsari H. Shanehbandi D. Kazemi T. Exosome-based immunotherapy as an innovative therapeutic approach in melanoma. Cell Commun. Signal. 2024 22 1 527 10.1186/s12964‑024‑01906‑1 39482766
    [Google Scholar]
  99. Bagheri E. Ramezani M. Abnous K. Taghdisi S.M. Amel Farzad S. Nekooei S. Alibolandi M. Targeted theranostic oxygen-filled and doxorubicin-loaded mesenchymal stem cell-derived exosomes-based-nanobubble against melanoma. J. Drug Deliv. Sci. Technol. 2025 105 106636 10.1016/j.jddst.2025.106636
    [Google Scholar]
  100. Abd-Rabou A.A. Kishta M.S. Yakout S.M. Youssef A.M. Abdallah A.N. Ahmed H.H. Copper/tin nanocomposites-loaded exosomes induce apoptosis and cell cycle arrest at G0/G1 phase in skin cancer cell line. Chem. Biodivers. 2024 21 8 e202400486 10.1002/cbdv.202400486 38860853
    [Google Scholar]
  101. Udrea A.M. Smarandache A. Dinache A. Mares C. Nistorescu S. Avram S. Staicu A. Photosensitizers-loaded nanocarriers for enhancement of photodynamic therapy in melanoma treatment. Pharmaceutics 2023 15 8 2124 10.3390/pharmaceutics15082124 37631339
    [Google Scholar]
  102. Algorri J.F. López-Higuera J.M. Rodríguez-Cobo L. Cobo A. Advanced light source technologies for photodynamic therapy of skin cancer lesions. Pharmaceutics 2023 15 8 2075 37631289
    [Google Scholar]
  103. Ou-Yang Y. Zheng Y. Mills K.E. Photodynamic therapy for skin carcinomas: A systematic review and meta-analysis. Front. Med. 2023 10 1089361 36744141
    [Google Scholar]
  104. Malindi Z. Barth S. Abrahamse H. The potential of antibody technology and silver nanoparticles for enhancing photodynamic therapy for melanoma. Biomedicines 2022 10 9 2158 10.3390/biomedicines10092158 36140259
    [Google Scholar]
  105. Zhang P. Han T. Xia H. Dong L. Chen L. Lei L. Advances in photodynamic therapy based on nanotechnology and its application in skin cancer. Front. Oncol. 2022 12 836397 10.3389/fonc.2022.836397 35372087
    [Google Scholar]
  106. Mackay A.M. The evolution of clinical guidelines for antimicrobial photodynamic therapy of skin. Photochem. Photobiol. Sci. 2022 21 3 385 395 10.1007/s43630‑021‑00169‑w 35132604
    [Google Scholar]
  107. Nkune N.W. Abrahamse H. Nanoparticle-based drug delivery systems for photodynamic therapy of metastatic melanoma: A review. Int. J. Mol. Sci. 2021 22 22 12549 10.3390/ijms222212549 34830431
    [Google Scholar]
  108. Rajabi N. Gholizadeh M. Baghban Khoshechin S. Photodynamic therapy for melanoma: A multifaceted anti-cancer treatment against malignant melanoma. Int. J. Biophotonics Biomed. Eng. 2021 1 1 35 50 10.30495/ijbbo.2021.686476
    [Google Scholar]
  109. Feng T. Tang Z. Karges J. Shen J. Jin C. Chen Y. Pan Y. He Y. Ji L. Chao H. Exosome camouflaged coordination-assembled Iridium(III) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma. Biomaterials 2023 301 122212 10.1016/j.biomaterials.2023.122212 37385136
    [Google Scholar]
  110. Zhao Z. Zhang H. Zeng Q. Wang P. Zhang G. Ji J. Li M. Shen S. Wang X. Exosomes from 5-aminolevulinic acid photodynamic therapy-treated squamous carcinoma cells promote dendritic cell maturation. Photodiagn. Photodyn. Ther. 2020 30 101746 32268216
    [Google Scholar]
  111. Ma X. Chen N. Zeng P. He Y. Zhang T. Lu Y. Li Z. Xu J. You J. Zheng Y. Wang L. Luo M. Wu J. Hypericum perforatum-derived exosome-like nanovesicles: A novel natural photosensitizer for effective tumor photodynamic therapy. Int. J. Nanomedicine 2025 20 1529 1541 10.2147/IJN.S510339 39925681
    [Google Scholar]
  112. Gao Y. Liu J. Wu M. Zhang Y. Wang M. Lyu Q. Zhang W. Zhou Y. Cheuk Y.C. Wang X. Liu Y. Wang W. Tu W. Photosensitive hybrid γδ-T exosomes for targeted cancer photoimmunotherapy. ACS Nano 2025 19 4 4251 4268 10.1021/acsnano.4c11024 39862206
    [Google Scholar]
  113. Li X. Zhao Z. Zhang M. Ling G. Zhang P. Research progress of microneedles in the treatment of melanoma. J. Control. Release 2022 348 631 647 10.1016/j.jconrel.2022.06.021 35718209
    [Google Scholar]
  114. Jiang L. Qi Y. Yang L. Miao Y. Ren W. Liu H. Huang Y. Huang S. Chen S. Shi Y. Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J. Pharm. Sci. 2023 18 5 100852 10.1016/j.ajps.2023.100852 37920650
    [Google Scholar]
  115. El Moukhtari S.H. Garbayo E. Amundarain A. Pascual-Gil S. Carrasco-León A. Prosper F. Agirre X. Blanco-Prieto M.J. Lipid nanoparticles for siRNA delivery in cancer treatment. J. Control. Release 2023 361 130 146 10.1016/j.jconrel.2023.07.054 37532145
    [Google Scholar]
  116. Deng K. Yang D. Zhou Y. Nanotechnology-based siRNA delivery systems to overcome tumor immune evasion in cancer immunotherapy. Pharmaceutics 2022 14 7 1344 10.3390/pharmaceutics14071344 35890239
    [Google Scholar]
  117. Beiu C. Giurcaneanu C. Grumezescu A.M. Holban A.M. Popa L.G. Mihai M.M. Nanosystems for improved targeted therapies in melanoma. J. Clin. Med. 2020 9 2 318 10.3390/jcm9020318 31979325
    [Google Scholar]
  118. Lin J. Huang N. Li M. Zheng M. Wang Z. Zhang X. Gao H. Lao Y. Zhang J. Ding B. Dendritic cell-derived exosomes driven drug co-delivery biomimetic nanosystem for effective combination of malignant melanoma immunotherapy and gene therapy. Drug Des. Devel. Ther. 2023 17 2087 2106 10.2147/DDDT.S414758 37489176
    [Google Scholar]
  119. Hu T. Hu J. Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle 2019 18 22 3085 3094 10.1080/15384101.2019.1669380 31544590
    [Google Scholar]
  120. Li J. Chen J. Wang S. Li P. Zheng C. Zhou X. Tao Y. Chen X. Sun L. Wang A. Cao K. Tang S. Zhou J. Blockage of transferred exosome‐shuttled miR‐494 inhibits melanoma growth and metastasis. J. Cell. Physiol. 2019 234 9 15763 15774 10.1002/jcp.28234 30723916
    [Google Scholar]
  121. Luan W. Ding Y. Xi H. Ruan H. Lu F. Ma S. Wang J. Exosomal miR-106b-5p derived from melanoma cell promotes primary melanocytes epithelial-mesenchymal transition through targeting EphA4. J. Exp. Clin. Cancer Res. 2021 40 1 107 10.1186/s13046‑021‑01906‑w 33741023
    [Google Scholar]
  122. Atashzar M.R. Ataollahi M.R. Asad A.G. Doroudgar P. Amani D. The effects of tumor-derived exosomes enriched with miRNA-211a on B16F10 cells. Contemp. Oncol. 2024 28 2 121 129 10.5114/wo.2024.142364 39421705
    [Google Scholar]
  123. Montaudie H. Study of molecular mechanisms implicated in the pathogenesis of melanoma. Role of exosomes (EXOSOMES).Patent NCT02310451 2023
    [Google Scholar]
  124. Gowda R. Robertson B.M. Iyer S. Barry J. Dinavahi S.S. Robertson G.P. The role of exosomes in metastasis and progression of melanoma. Cancer Treat. Rev. 2020 85 101975 10.1016/j.ctrv.2020.101975 32050108
    [Google Scholar]
  125. Abedi A. Moosazadeh Moghaddam M. Kachuei R. Imani Fooladi A.A. Exosomes as a therapeutic strategy in cancer: potential roles as drug carriers and immune modulators. Biochim. Biophys. Acta Rev. Cancer 2025 1880 1 189238 10.1016/j.bbcan.2024.189238 39674417
    [Google Scholar]
  126. Huang C. Li J. Xie Z. Hu X. Huang Y. Relationship between exosomes and cancer: Formation, diagnosis, and treatment. Int. J. Biol. Sci. 2025 21 1 40 62 10.7150/ijbs.95763 39744442
    [Google Scholar]
  127. Lahouty M. Fadaee M. Shanehbandi D. Kazemi T. Exosome-driven nano-immunotherapy: Revolutionizing colorectal cancer treatment. Mol. Biol. Rep. 2025 52 1 83 10.1007/s11033‑024‑10157‑9 39724304
    [Google Scholar]
  128. Xu X. Long C. Li M. Shen C. Ye Q. Li Y. Li H. Cao X. Ma J. Systematic review and meta-analysis: Diagnostic accuracy of exosomes in pancreatic cancer. World J. Surg. Oncol. 2025 23 1 51 10.1186/s12957‑025‑03666‑9 39953585
    [Google Scholar]
  129. Nam G.H. Choi Y. Kim G.B. Kim S. Kim S.A. Kim I.S. Emerging prospects of exosomes for cancer treatment: From conventional therapy to immunotherapy. Adv. Mater. 2020 32 51 e2002440 33015883
    [Google Scholar]
  130. Boussadia Z. Gambardella A.R. Mattei F. Parolini I. Acidic and hypoxic microenvironment in melanoma: Impact of tumour exosomes on disease progression. Cells 2021 10 12 3311 34943819
    [Google Scholar]
  131. Jafari A. Babajani A. Abdollahpour-Alitappeh M. Ahmadi N. Rezaei-Tavirani M. Exosomes and cancer: From molecular mechanisms to clinical applications. Med. Oncol. 2021 38 4 45 10.1007/s12032‑021‑01491‑0 33743101
    [Google Scholar]
  132. Bollard S.M. Casalou C. Goh C.Y. Tobin D.J. Kelly P. McCann A. Potter S.M. Circulating melanoma-derived extracellular vesicles: Impact on melanoma diagnosis, progression monitoring, and treatment response. Pharmaceuticals 2020 13 12 475 10.3390/ph13120475 33353043
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266373170250624095758
Loading
/content/journals/ctmc/10.2174/0115680266373170250624095758
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Chemotherapy ; Small interfering RNA ; Photodynamic therapy ; Melanoma ; Exosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test