Skip to content
2000
image of Marine Species, Metabolites and Macromolecules as Potential Therapeutics Against Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD): A Comprehensive Review

Abstract

Introduction

Many metabolic diseases, such as Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD), are largely caused by obesity, a complicated ailment characterized by excessive fat buildup. By 2030, obesity is expected to have increased in prevalence, affecting over 1 billion people worldwide. MASLD, formerly known as NAFLD, is a broad category of liver illnesses caused by metabolic dysfunction and frequently linked to obesity. Drugs are available for obesity, but long-term use causes serious adverse effects, as reported. Currently, there are no FDA-approved therapies for MASLD. Interest in marine animals and their metabolites for their potential as therapeutics is growing, given the shortcomings of traditional medicines. This review emphasizes different marine species and metabolites, and macromolecules and tabulates all the pre-clinical studies targeting obesity and MASLD.

Methodology

For this review, the authors have gone through a vast number of article sources from different scientific databases like PubMed, Google Scholar and ScienceDirect.

Results

Algae, fungi, and bacteria found in the ocean are abundant in bioactive chemicals that have anti-obesity and anti-MASLD properties. A variety of studies have reported the anti-obesity and anti-MASLD effects of marine species such as Spirulina platensis, Chlorella vulgaris, Caulerpa okamurae, and bioactive macromolecules like dieckol, fucosterol, fucoxanthin, sodium alginate and paramylon.

Conclusion

These marine-derived substances have a variety of pharmacological characteristics, including lipid-modulating, anti-adipogenic, antioxidant, and anti-inflammatory activities. These qualities are crucial for treating the underlying mechanisms that underlie obesity and MASLD. These marine species may be useful as natural supplements or therapeutic agents in the management and treatment of metabolic diseases associated with obesity. Some of these bioactive phytoconstituents have been identified for their potential against obesity and MASLD; however, more investigation is necessary to identify the precise bioactive substances causing these advantageous effects and assess their safety and effectiveness in clinical trials.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266370869250630062043
2025-07-16
2025-09-13
Loading full text...

Full text loading...

References

  1. Barbhuiya P.A. Sen S. Pathak M.P. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: A comprehensive review. Phytochem. Rev. 2023 23 969 996 10.1007/s11101‑023‑09912‑w
    [Google Scholar]
  2. Chen Y. Gao R. Fang J. Ding S. A review: Polysaccharides targeting mitochondria to improve obesity. Int. J. Biol. Macromol. 2024 277 Pt 3 134448 10.1016/j.ijbiomac.2024.134448 39102922
    [Google Scholar]
  3. Guo Y. Jiang S. Li H. Xie G. Pavel V. Zhang Q. Li Y. Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed. Pharmacother. 2024 177 117139 10.1016/j.biopha.2024.117139 39018871
    [Google Scholar]
  4. Dahdah N. Tercero-Alcázar C. Malagón M.M. Garcia-Roves P.M. Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem. Pharmacol. 2024 225 116324 10.1016/j.bcp.2024.116324 38815633
    [Google Scholar]
  5. Pathak M.P. Patowary P. Chattopadhyay P. Barbhuiyan P.A. Islam J. Gogoi J. Wankhar W. Obesity-associated airway hyperresponsiveness: Mechanisms underlying inflammatory markers and possible pharmacological interventions. Endocr. Metab. Immune Disord. Drug Targets 2024 24 9 1053 1068 10.2174/0118715303256440231028072049 37957906
    [Google Scholar]
  6. Karmakar M. Chakraborty B. Hussain A.S. Barbhuiya P.A. Chang N.Y. Warjri I. Wankhar W. Barman U. Basak M. Sen S. Pathak M.P. A systemic review of pre-clinical studies of herbal plants having anti-polycystic ovarian syndrome activity: A PAN-India study. Nat. Prod. J. 2024 15 3 14 10.2174/0122103155303329240509115336
    [Google Scholar]
  7. Barbhuiya P.A. Dey J. Saikia K. Ishtiyak S.T. Aqib A.B. Marshillong K.L. Gogoi J. Wankhar W. Sarma S. Sen S. Pathak M.P. Herbal tea used globally targeting metabolic syndrome: A systematic review. Int. J. Diabetes Dev. Ctries. 2024 10.1007/s13410‑024‑01361‑1
    [Google Scholar]
  8. Rinella M.E. Lazarus J.V. Ratziu V. Francque S.M. Sanyal A.J. Kanwal F. Romero D. Abdelmalek M.F. Anstee Q.M. Arab J.P. Arrese M. Bataller R. Beuers U. Boursier J. Bugianesi E. Byrne C.D. Narro G.E.C. Chowdhury A. Cortez-Pinto H. Cryer D.R. Cusi K. El-Kassas M. Klein S. Eskridge W. Fan J. Gawrieh S. Guy C.D. Harrison S.A. Kim S.U. Koot B.G. Korenjak M. Kowdley K.V. Lacaille F. Loomba R. Mitchell-Thain R. Morgan T.R. Powell E.E. Roden M. Romero-Gómez M. Silva M. Singh S.P. Sookoian S.C. Spearman C.W. Tiniakos D. Valenti L. Vos M.B. Wong V.W.S. Xanthakos S. Yilmaz Y. Younossi Z. Hobbs A. Villota-Rivas M. Newsome P.N. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 2024 29 1 101133 10.1016/j.aohep.2023.101133 37364816
    [Google Scholar]
  9. Barbhuiya P.A. Ahmed A. Dutta P.P. Sen S. Pathak M.P. Mitigating metabolic dysfunction-associated steatotic liver disease (MASLD): The role of bioactive phytoconstituents in indian culinary spices. Curr. Nutr. Rep. 2025 14 1 20 10.1007/s13668‑024‑00598‑w 39841356
    [Google Scholar]
  10. Song S.J. Lai J.C.T. Wong G.L.H. Wong V.W.S. Yip T.C.F. Can we use old NAFLD data under the new MASLD definition? J. Hepatol. 2024 80 2 e54 e56 10.1016/j.jhep.2023.07.021 37541393
    [Google Scholar]
  11. Song R. Li Z. Zhang Y. Tan J. Chen Z. Comparison of NAFLD, MAFLD and MASLD characteristics and mortality outcomes in United States adults. Liver Int. 2024 44 4 1051 1060 10.1111/liv.15856 38293788
    [Google Scholar]
  12. Kaya E. Yilmaz Y. Metabolic-associated fatty liver disease (MAFLD): A multi-systemic disease beyond the liver. J. Clin. Transl. Hepatol. 2022 10 2 329 338 10.14218/JCTH.2021.00178 35528971
    [Google Scholar]
  13. Zhou X.D. Targher G. Byrne C.D. Somers V. Kim S.U. Chahal C.A.A. Wong V.W.S. Cai J. Shapiro M.D. Eslam M. Steg P.G. Sung K.C. Misra A. Li J.J. Brotons C. Huang Y. Papatheodoridis G.V. Sun A. Yilmaz Y. Chan W.K. Huang H. Méndez-Sánchez N. Alqahtani S.A. Cortez-Pinto H. Lip G.Y.H. de Knegt R.J. Ocama P. Romero-Gomez M. Fudim M. Sebastiani G. Son J.W. Ryan J.D. Ikonomidis I. Treeprasertsuk S. Pastori D. Lupsor-Platon M. Tilg H. Ghazinyan H. Boursier J. Hamaguchi M. Nguyen M.H. Fan J.G. Goh G.B.B. Al Mahtab M. Hamid S. Perera N. George J. Zheng M.H. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol. Int. 2023 17 4 773 791 10.1007/s12072‑023‑10543‑8 37204656
    [Google Scholar]
  14. Guo X. Yin X. Liu Z. Wang J. Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural products for prevention and treatment. Int. J. Mol. Sci. 2022 23 24 15489 10.3390/ijms232415489 36555127
    [Google Scholar]
  15. Hagström H. Vessby J. Ekstedt M. Shang Y. 99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical. J. Hepatol. 2024 80 2 e76 e77 10.1016/j.jhep.2023.08.026 37678723
    [Google Scholar]
  16. Younossi Z.M. Paik J.M. Stepanova M. Ong J. Alqahtani S. Henry L. Clinical profiles and mortality rates are similar for metabolic dysfunction-associated steatotic liver disease and non-alcoholic fatty liver disease. J. Hepatol. 2024 80 5 694 701 10.1016/j.jhep.2024.01.014 38286339
    [Google Scholar]
  17. Godoy-Matos A.F. Silva Júnior W.S. Valerio C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020 12 1 60 10.1186/s13098‑020‑00570‑y 32684985
    [Google Scholar]
  18. Wang Y.D. Wu L.L. Qi X.Y. Wang Y.Y. Liao Z.Z. Liu J.H. Xiao X.H. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes Dis. 2023 10 3 799 812 10.1016/j.gendis.2021.12.013 37396503
    [Google Scholar]
  19. Polyzos S.A. Kountouras J. Mantzoros C.S. Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism 2019 92 82 97 10.1016/j.metabol.2018.11.014 30502373
    [Google Scholar]
  20. Chin Y.W. Balunas M.J. Chai H.B. Kinghorn A.D. Drug discovery from natural sources. AAPS J. 2006 8 2 E239 E253 10.1007/BF02854894 16796374
    [Google Scholar]
  21. Barbhuiya P.A. Laskar A.M. Mazumdar H. Dutta P.P. Pathak M.P. Dey B.K. Sen S. Ethnomedicinal practices and traditional medicinal plants of barak valley, assam: A systematic review. J. Pharmacopuncture 2022 25 3 149 185 10.3831/KPI.2022.25.3.149 36186100
    [Google Scholar]
  22. Wali A.F. Majid S. Rasool S. Shehada S.B. Abdulkareem S.K. Firdous A. Beigh S. Shakeel S. Mushtaq S. Akbar I. Madhkali H. Rehman M.U. Natural products against cancer: Review on phytochemicals from marine sources in preventing cancer. Saudi Pharm. J. 2019 27 6 767 777 10.1016/j.jsps.2019.04.013 31516319
    [Google Scholar]
  23. Pandey A. Pharmacological significance of marine microbial bioactive compounds. Environ. Chem. Lett. 2019 17 4 1741 1751 10.1007/s10311‑019‑00908‑7
    [Google Scholar]
  24. Bel Mabrouk S. Reis M. Sousa M.L. Ribeiro T. Almeida J.R. Pereira S. Antunes J. Rosa F. Vasconcelos V. Achour L. Kacem A. Urbatzka R. The marine seagrass halophila stipulacea as a source of bioactive metabolites against obesity and biofouling. Mar. Drugs 2020 18 2 88 10.3390/md18020088 32013082
    [Google Scholar]
  25. Veríssimo A.C.S. Pacheco M. Silva A.M.S. Pinto D.C.G.A. Secondary metabolites from marine sources with potential use as leads for anticancer applications. Molecules 2021 26 14 4292 10.3390/molecules26144292 34299567
    [Google Scholar]
  26. Sharma B.R. Kim H.J. Kim M.S. Park C.M. Rhyu D.Y. Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet-induced obesity in C57BL/6 mice. Nutr. Res. 2017 47 44 52 10.1016/j.nutres.2017.09.002 29241577
    [Google Scholar]
  27. Yadavalli R. Ratnapuram H. Motamarry S. Reddy C.N. Ashokkumar V. Kuppam C. Simultaneous production of flavonoids and lipids from chlorella vulgaris and chlorella pyrenoidosa. Biomass Convers. Biorefin. 2022 12 3 683 691 10.1007/s13399‑020‑01044‑x
    [Google Scholar]
  28. Regueiras A. Huguet Á. Conde T. Couto D. Domingues P. Domingues M.R. Costa A.M. Silva J.L. Vasconcelos V. Urbatzka R. Potential anti-obesity, anti-steatosis, and anti-inflammatory properties of extracts from the microalgae chlorella vulgaris and chlorococcum amblystomatis under different growth conditions. Mar. Drugs 2021 20 1 9 10.3390/md20010009 35049863
    [Google Scholar]
  29. Mayer C. Richard L. Côme M. Ulmann L. Nazih H. Chénais B. Ouguerram K. Mimouni V. The marine microalga, tisochrysis lutea, protects against metabolic disorders associated with metabolic syndrome and obesity. Nutrients 2021 13 2 430 10.3390/nu13020430 33525643
    [Google Scholar]
  30. Song W. Wang Z. Zhang X. Li Y. Ethanol extract from ulva prolifera prevents high-fat diet-induced insulin resistance, oxidative stress, and inflammation response in mice. BioMed Res. Int. 2018 2018 1 9 10.1155/2018/1374565 29511669
    [Google Scholar]
  31. Shukla P.S. Mantin E.G. Adil M. Bajpai S. Critchley A.T. Prithiviraj B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and Disease Management. Front Plant. Sci. 2019 10 655 10.3389/fpls.2019.00655 31191576
    [Google Scholar]
  32. Pham T.X. Lee Y. Bae M. Hu S. Kang H. Kim M.B. Park Y.K. Lee J.Y. Spirulina supplementation in a mouse model of diet-induced liver fibrosis reduced the pro-inflammatory response of splenocytes. Br. J. Nutr. 2019 121 7 748 755 10.1017/S0007114519000126 30806344
    [Google Scholar]
  33. Gille A. Stojnic B. Derwenskus F. Trautmann A. Schmid-Staiger U. Posten C. Briviba K. Palou A. Bonet M.L. Ribot J. A lipophilic fucoxanthin-rich phaeodactylum tricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice. Nutrients 2019 11 4 796 10.3390/nu11040796 30959933
    [Google Scholar]
  34. Byun K.A. Oh S. Son M. Park C.H. Son K.H. Byun K. Dieckol decreases caloric intake and attenuates nonalcoholic fatty liver disease and hepatic lymphatic vessel dysfunction in high-fat-diet-fed mice. Mar. Drugs 2021 19 9 495 10.3390/md19090495 34564157
    [Google Scholar]
  35. Lee J.H. Jung H.A. Kang M.J. Choi J.S. Kim G.D. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes. J. Pharm. Pharmacol. 2017 69 3 325 333 10.1111/jphp.12684 28134973
    [Google Scholar]
  36. Nakashima A. Sugimoto R. Suzuki K. Shirakata Y. Hashiguchi T. Yoshida C. Nakano Y. Anti-fibrotic activity of Euglena gracilis and paramylon in a mouse model of non-alcoholic steatohepatitis. Food Sci. Nutr. 2019 7 1 139 147 10.1002/fsn3.828 30680167
    [Google Scholar]
  37. Heeba G.H. Morsy M.A. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environ. Toxicol. Pharmacol. 2015 40 3 907 914 10.1016/j.etap.2015.10.003 26498267
    [Google Scholar]
  38. Kawauchi S. Horibe S. Sasaki N. Tanahashi T. Mizuno S. Hamaguchi T. Rikitake Y. Inhibitory effects of sodium alginate on hepatic steatosis in mice induced by a methionine- and choline-deficient diet. Mar. Drugs 2019 17 2 104 10.3390/md17020104 30744124
    [Google Scholar]
  39. Kang M.C. Ding Y. Kim E.A. Choi Y.K. De Araujo T. Heo S.J. Lee S.H. Indole derivatives isolated from brown alga sargassum thunbergii inhibit adipogenesis through AMPK activation in 3T3-L1 preadipocytes. Mar. Drugs 2017 15 4 119 10.3390/md15040119 28417922
    [Google Scholar]
  40. Timothy Garvey W. Clinical definition of overweight and obesity. Bariatric Endocrinology. Gonzalez-Campoy J.M. Hurley D.L. Garvey W.T. Cham Springer International Publishing 2019 121 143 10.1007/978‑3‑319‑95655‑8_7
    [Google Scholar]
  41. Khanna D. Welch B.S. Rehman A. Pathophysiology of Obesity. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  42. Schutz Y. Energy: Balance. Encyclopedia of Human Nutrition. Elsevier 2013 154 163 10.1016/B978‑0‑12‑375083‑9.00089‑1
    [Google Scholar]
  43. Lin X. Li H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. 2021 12 706978 10.3389/fendo.2021.706978 34552557
    [Google Scholar]
  44. Heymsfield S.B. Wadden T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017 376 3 254 266 10.1056/NEJMra1514009 28099824
    [Google Scholar]
  45. Panuganti K.K. Nguyen M. Kshirsagar R.K. Obesity. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  46. Sesti G. Pathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006 20 4 665 679 10.1016/j.beem.2006.09.007 17161338
    [Google Scholar]
  47. Kahn B.B. Flier J.S. Obesity and insulin resistance. J. Clin. Invest. 2000 106 4 473 481 10.1172/JCI10842 10953022
    [Google Scholar]
  48. Wondmkun Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 2020 13 3611 3616 10.2147/DMSO.S275898 33116712
    [Google Scholar]
  49. Barazzoni R. Gortan Cappellari G. Ragni M. Nisoli E. Insulin resistance in obesity: An overview of fundamental alterations. Eat. Weight Disord. 2018 23 2 149 157 10.1007/s40519‑018‑0481‑6 29397563
    [Google Scholar]
  50. Zeyda M. Stulnig T.M. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology 2009 55 4 379 386 10.1159/000212758 19365105
    [Google Scholar]
  51. Pittas A.G. Joseph N.A. Greenberg A.S. Adipocytokines and insulin resistance. J. Clin. Endocrinol. Metab. 2004 89 2 447 452 10.1210/jc.2003‑031005 14764746
    [Google Scholar]
  52. Shoelson S.E. Herrero L. Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007 132 6 2169 2180 10.1053/j.gastro.2007.03.059 17498510
    [Google Scholar]
  53. Kirichenko T.V. Markina Y.V. Bogatyreva A.I. Tolstik T.V. Varaeva Y.R. Starodubova A.V. The role of adipokines in inflammatory mechanisms of obesity. Int. J. Mol. Sci. 2022 23 23 14982 10.3390/ijms232314982 36499312
    [Google Scholar]
  54. Li Y. Yang P. Ye J. Xu Q. Wu J. Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis. 2024 23 1 117 10.1186/s12944‑024‑02108‑x 38649999
    [Google Scholar]
  55. Jaiswal A. Jain K. Babu N. Metabolic profile of Lean/Non obese NAFLD (Non Alcoholic Fatty Liver Disease) subjects. J. Clin. Diagn. Res. 2021 10.7860/JCDR/2021/51585.15600
    [Google Scholar]
  56. Lackner C. Tiniakos D. Burt A. Diagnosis and assessment of NAFLD: Definitions and histopathological classification. Semin. Liver Dis. 2015 35 3 207 220 10.1055/s‑0035‑1562942 26378639
    [Google Scholar]
  57. Yu E.L. Schwimmer J.B. Lavine J.E. Non-alcoholic fatty liver disease: Epidemiology, pathophysiology, diagnosis and treatment. Paediatr. Child Health (Oxford) 2010 20 1 26 29 10.1016/j.paed.2009.09.005
    [Google Scholar]
  58. Pouwels S. Sakran N. Graham Y. Leal A. Pintar T. Yang W. Kassir R. Singhal R. Mahawar K. Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022 22 1 63 10.1186/s12902‑022‑00980‑1 35287643
    [Google Scholar]
  59. Carr R.M. Oranu A. Khungar V. Nonalcoholic fatty liver disease. Gastroenterol. Clin. North Am. 2016 45 4 639 652 10.1016/j.gtc.2016.07.003 27837778
    [Google Scholar]
  60. Antunes C. Azadfard M. Hoilat G.J. Gupta M. Fatty liver. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  61. Kořínková, L.; Pražienková, V.; Černá, L.; Karnošová, A.; Železná, B.; Kuneš, J.; Maletínská, L. Pathophysiology of NAFLD and nash in experimental models: The role of food intake regulating peptides. Front. Endocrinol. 2020 11 597583 10.3389/fendo.2020.597583 33324348
    [Google Scholar]
  62. Barzkar N. Jahromi S.T. Poorsaheli H.B. Vianello F. Metabolites from marine microorganisms, micro, and macroalgae: Immense scope for pharmacology. Mar. Drugs 2019 17 8 464 10.3390/md17080464 31398953
    [Google Scholar]
  63. Conte M. Fontana E. Nebbioso A. Altucci L. Marine-derived secondary metabolites as promising epigenetic bio-compounds for anticancer therapy. Mar. Drugs 2020 19 1 15 10.3390/md19010015 33396307
    [Google Scholar]
  64. Rinehart K.L. Secondary metabolites from marine organisms. Novartis Foundation Symposia. Chadwick D.J. Whelan J. Wiley 2007 236 254
    [Google Scholar]
  65. Mondal A. Bose S. Banerjee S. Patra J.K. Malik J. Mandal S.K. Kilpatrick K.L. Das G. Kerry R.G. Fimognari C. Bishayee A. Marine cyanobacteria and microalgae metabolites—a rich source of potential anticancer drugs. Mar. Drugs 2020 18 9 476 10.3390/md18090476 32961827
    [Google Scholar]
  66. Ebada S.S. Edrada R.A. Lin W. Proksch P. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat. Protoc. 2008 3 12 1820 1831 10.1038/nprot.2008.182 18989260
    [Google Scholar]
  67. Santos J.D. Vitorino I. Reyes F. Vicente F. Lage O.M. From ocean to medicine: Pharmaceutical applications of metabolites from marine bacteria. Antibiotics 2020 9 8 455 10.3390/antibiotics9080455 32731464
    [Google Scholar]
  68. Rodríguez V. Martín J. Sarmiento-Vizcaíno A. De la Cruz M. García L.A. Blanco G. Reyes F. Anthracimycin B, a potent antibiotic against gram-positive bacteria isolated from cultures of the deep-sea actinomycete streptomyces cyaneofuscatus M-169. Mar. Drugs 2018 16 11 406 10.3390/md16110406 30366404
    [Google Scholar]
  69. Ahmad A. Major bioactive metabolites from marine fungi: A review. Bioinformation 2015 11 4 176 181 10.6026/97320630011176 26124556
    [Google Scholar]
  70. McArthur K.A. Mitchell S.S. Tsueng G. Rheingold A. White D.J. Grodberg J. Lam K.S. Potts B.C.M. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod. 2008 71 10 1732 1737 10.1021/np800286d 18842058
    [Google Scholar]
  71. Zhao D.L. Wang D. Tian X.Y. Cao F. Li Y.Q. Zhang C.S. Anti-Phytopathogenic and cytotoxic activities of crude extracts and secondary metabolites of marine-derived fungi. Mar. Drugs 2018 16 1 36 10.3390/md16010036 29346329
    [Google Scholar]
  72. Wassie T. Niu K. Xie C. Wang H. Xin W. Extraction techniques, biological activities and health benefits of marine algae enteromorpha prolifera polysaccharide. Front. Nutr. 2021 8 747928 10.3389/fnut.2021.747928 34692752
    [Google Scholar]
  73. Mayakrishnan V. Kannappan P. Abdullah N. Ahmed A.B.A. Cardioprotective activity of polysaccharides derived from marine algae: An overview. Trends Food Sci. Technol. 2013 30 2 98 104 10.1016/j.tifs.2013.01.007
    [Google Scholar]
  74. Shah S.A.A. Hassan S.S. Bungau S. Si Y. Xu H. Rahman M.H. Behl T. Gitea D. Pavel F.M. Corb Aron R.A. Pasca B. Nemeth S. Chemically diverse and biologically active secondary metabolites from marine phylum chlorophyta. Mar. Drugs 2020 18 10 493 10.3390/md18100493 32993146
    [Google Scholar]
  75. Mayer A. Rodríguez A. Taglialatela-Scafati O. Fusetani N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013 11 7 2510 2573 10.3390/md11072510 23880931
    [Google Scholar]
  76. Kareh M. El Nahas R. Al-Aaraj L. Al-Ghadban S. Naser Al Deen N. Saliba N. El-Sabban M. Talhouk R. Anti-proliferative and anti-inflammatory activities of the sea cucumber Holothuria polii aqueous extract. SAGE Open Med. 2018 6 2050312118809541 10.1177/2050312118809541 30455947
    [Google Scholar]
  77. Hannan M.A. Dash R. Haque M.N. Mohibbullah M. Sohag A.A.M. Rahman M.A. Uddin M.J. Alam M. Moon I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs 2020 18 7 347 10.3390/md18070347 32630301
    [Google Scholar]
  78. Pruccoli L. Balducci M. Pagliarani B. Tarozzi A. Antioxidant and neuroprotective effects of fucoxanthin and its metabolite fucoxanthinol: A comparative in vitro study. Curr. Issues Mol. Biol. 2024 46 6 5984 5998 10.3390/cimb46060357 38921028
    [Google Scholar]
  79. Cai J. Gao L. Wang Y. Zheng Y. Lin X. Zhou P. Chen C. Liu K. Tang L. Liu Y. Tan Y. Jin M. Zhou X. Discovery of a novel anti-osteoporotic agent from marine fungus-derived structurally diverse sirenins. Eur. J. Med. Chem. 2024 265 116068 10.1016/j.ejmech.2023.116068 38141284
    [Google Scholar]
  80. Gallimore W. Marine metabolites. Pharmacognosy. Elsevier 2017 377 400 10.1016/B978‑0‑12‑802104‑0.00018‑4
    [Google Scholar]
  81. Song F.H. Fan X. Xu X.L. Zhao J.L. Han L.J. Shi J.G. Chemical constituents of the brown alga Dictyopteris divaricata. J. Asian Nat. Prod. Res. 2005 7 6 777 781 10.1080/1028602032000169532 16308191
    [Google Scholar]
  82. Barzkar N. Sukhikh S. Babich O. Study of marine microorganism metabolites: New resources for bioactive natural products. Front. Microbiol. 2024 14 1285902 10.3389/fmicb.2023.1285902 38260902
    [Google Scholar]
  83. Dayarathne L.A. Ko S.C. Yim M.J. Lee J.M. Kim J.Y. Oh G.W. Kim C.H. Kim K.W. Lee D.S. Je J.Y. Brown algae Dictyopteris divaricata attenuates adipogenesis by modulating adipocyte differentiation and promoting lipolysis through heme oxygenase-1 activation in 3T3-L1 cells. Mar. Drugs 2024 22 2 91 10.3390/md22020091 38393062
    [Google Scholar]
  84. Seo M.J. Choi H.S. Lee O.H. Lee B.Y. Grateloupia lanceolata(Okamura) Kawaguchi, the edible red seaweed, inhibits lipid accumulation and reactive oxygen species production during differentiation in 3T3-L1 cells. Phytother. Res. 2013 27 5 655 663 10.1002/ptr.4765 22744935
    [Google Scholar]
  85. Höper A.C. Salma W. Khalid A.M. Hafstad A.D. Sollie S.J. Raa J. Larsen T.S. Aasum E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013 110 12 2186 2193 10.1017/S0007114513001839 23768435
    [Google Scholar]
  86. Heo M.G. Choung S.Y. Anti-obesity effects of Spirulina maxima in high fat diet induced obese rats via the activation of AMPK pathway and SIRT1. Food Funct. 2018 9 9 4906 4915 10.1039/C8FO00986D 30178808
    [Google Scholar]
  87. Seo Y.J. Kim K.J. Choi J. Koh E.J. Lee B.Y. Spirulina maximaextract reduces obesity through suppression of adipogenesis and activation of browning in 3T3-L1 cells and high-fat diet-induced obese mice. Nutrients 2018 10 6 712 10.3390/nu10060712 29865208
    [Google Scholar]
  88. Guo B. Liu B. Wei H. Cheng K.W. Chen F. Extract of the microalga Nitzschia laevis prevents high-fat-diet-induced obesity in mice by modulating the composition of gut microbiota. Mol. Nutr. Food Res. 2019 63 3 1800808 10.1002/mnfr.201800808 30475446
    [Google Scholar]
  89. Koo S.Y. Hwang J.H. Yang S.H. Um J.I. Hong K.W. Kang K. Pan C.H. Hwang K.T. Kim S.M. Anti-obesity effect of standardized extract of microalga phaeodactylum tricornutum containing fucoxanthin. Mar. Drugs 2019 17 5 311 10.3390/md17050311 31137922
    [Google Scholar]
  90. Gabbia D. Roverso M. Zanotto I. Colognesi M. Sayaf K. Sarcognato S. Arcidiacono D. Zaramella A. Realdon S. Ferri N. Guido M. Russo F.P. Bogialli S. Carrara M. De Martin S. A Nutraceutical formulation containing brown algae reduces hepatic lipid accumulation by modulating lipid metabolism and inflammation in experimental models of NAFLD and NASH. Mar. Drugs 2022 20 9 572 10.3390/md20090572 36135761
    [Google Scholar]
  91. Kumar S. Magnusson M. Ward L. Paul N. Brown L. A green algae mixture of scenedesmus and schroederiella attenuates obesity-linked metabolic syndrome in rats. Nutrients 2015 7 4 2771 2787 10.3390/nu7042771 25875119
    [Google Scholar]
  92. Beppu F. Li H. Yoshinaga K. Nagai T. Yoshinda A. Kubo A. Kanda J. Gotoh N. Dietary starfish oil prevents hepatic steatosis and hyperlipidemia in C57BL/6N mice fed high-fat diet. J. Oleo Sci. 2017 66 7 761 769 10.5650/jos.ess17038 28626141
    [Google Scholar]
  93. Kang J. Kwak Y.S. Kim E. Gwon Y. Choi H.G. Eyun S. Transcriptome and functional analyses of phenotypic plasticity in sea grape caulerpa okamurae. Physiol. Plant. 2024 176 3 e14339 10.1111/ppl.14339 38736185
    [Google Scholar]
  94. Sylwia,Ś.; Elżbieta, K. Algae chlorella vulgaris as a factor conditioning the survival of Lactobacillus spp. in adverse environmental conditions. Lebensm. Wiss. Technol. 2020 133 109936 10.1016/j.lwt.2020.109936
    [Google Scholar]
  95. Hyrslova I. Krausova G. Smolova J. Stankova B. Branyik T. Malinska H. Huttl M. Kana A. Curda L. Doskocil I. Functional properties of chlorella vulgaris, colostrum, and bifidobacteria, and their potential for application in functional foods. Appl. Sci. 2021 11 11 5264 10.3390/app11115264
    [Google Scholar]
  96. Pradhan B. Patra S. Dash S.R. Nayak R. Behera C. Jena M. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris Beyerinck [Beijerinck] with special reference to antioxidant modulation. Future J. Pharm. Sci. 2021 7 1 17 10.1186/s43094‑020‑00172‑5
    [Google Scholar]
  97. Hamouda R.A. Abd El Latif A. Elkaw E.M. Alotaibi A.S. Alenzi A.M. Hamza H.A. Assessment of antioxidant and anticancer activities of microgreen alga chlorella vulgaris and its blend with different vitamins. Molecules 2022 27 5 1602 10.3390/molecules27051602 35268702
    [Google Scholar]
  98. Anslan S. Sachs M. Rancilhac L. Brinkmann H. Petersen J. Künzel S. Schwarz A. Arndt H. Kerney R. Vences M. Diversity and substrate-specificity of green algae and other micro-eukaryotes colonizing amphibian clutches in Germany, revealed by DNA metabarcoding. Naturwissenschaften 2021 108 4 29 10.1007/s00114‑021‑01734‑0 34181110
    [Google Scholar]
  99. Correia N. Pereira H. Schulze P.S.C. Costa M.M. Santo G.E. Guerra I. Trovão M. Barros A. Cardoso H. Silva J.L. Gouveia L. Varela J. Heterotrophic and photoautotrophic media optimization using response surface methodology for the novel microalga chlorococcum amblystomatis. Appl. Sci. 2023 13 4 2089 10.3390/app13042089
    [Google Scholar]
  100. Conde T. Neves B. Couto D. Melo T. Lopes D. Pais R. Batista J. Cardoso H. Silva J.L. Domingues P. Domingues M.R. Polar lipids of marine microalgae nannochloropsis oceanica and chlorococcum amblystomatis mitigate the LPS-induced pro-inflammatory response in macrophages. Mar. Drugs 2023 21 12 629 10.3390/md21120629 38132950
    [Google Scholar]
  101. Stasiewicz A. Conde T. Domingues M.R. Domingues P. Biernacki M. Skrzydlewska E. Comparison of the regenerative metabolic efficiency of lipid extracts from microalgae nannochloropsis oceanica and chlorococcum amblystomatis on fibroblasts. Antioxidants 2024 13 3 276 10.3390/antiox13030276 38539810
    [Google Scholar]
  102. Gonçalves de Oliveira-Júnior R. Grougnet R. Bodet P.E. Bonnet A. Nicolau E. Jebali A. Rumin J. Picot L. Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. Algal Res. 2020 51 102035 10.1016/j.algal.2020.102035
    [Google Scholar]
  103. Mohamadnia S. Tavakoli O. Faramarzi M.A. Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefficient. J. Biotechnol. 2022 348 47 54 10.1016/j.jbiotec.2022.03.009 35331727
    [Google Scholar]
  104. Leong Y.K. Chen C.Y. Varjani S. Chang J.S. Producing fucoxanthin from algae - Recent advances in cultivation strategies and downstream processing. Bioresour Technol 2022 344 Pt A 126170 10.1016/j.biortech.2021.126170 34678455
    [Google Scholar]
  105. Hu C. Li D. Chen C. Ge J. Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M. On the recurrent ulva prolifera blooms in the yellow sea and east china sea. J. Geophys. Res. 2010 115 JC005561 10.1029/2009JC005561
    [Google Scholar]
  106. Wei J. Wang S. Liu G. Pei D. Liu Y. Liu Y. Di D. Polysaccharides from Enteromorpha prolifera enhance the immunity of normal mice. Int. J. Biol. Macromol. 2014 64 1 5 10.1016/j.ijbiomac.2013.11.013 24296406
    [Google Scholar]
  107. Ji N.Y. Wen W. Li X.M. Xue Q.Z. Xiao H.L. Wang B.G. Brominated selinane sesquiterpenes from the marine brown alga Dictyopteris divaricata. Mar. Drugs 2009 7 3 355 360 10.3390/md7030355 19841719
    [Google Scholar]
  108. Siddiqui N.Z. Rehman A.U. Yousuf W. khan, A.I.; Farooqui, N.A.; Zang, S.; Xin, Y.; Wang, L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog. 2022 14 1 39 10.1186/s13099‑022‑00512‑1 36115959
    [Google Scholar]
  109. Cui Y. Liu X. Li S. Hao L. Du J. Gao D. Kang Q. Lu J. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed dictyopteris divaricata. Int. J. Biol. Macromol. 2018 117 256 263 10.1016/j.ijbiomac.2018.05.134 29792963
    [Google Scholar]
  110. Miller K.A. Hughey J.R. Gabrielson P.W. Research note: First report of the Japanese species grateloupia lanceolata (halymeniaceae, rhodophyta) from California, USA. Phycol. Res. 2009 57 3 238 241 10.1111/j.1440‑1835.2009.00542.x
    [Google Scholar]
  111. Kim D.H. Kim M.E. Lee J.S. Inhibitory effects of extract from G. lanceolata on LPS-induced production of nitric oxide and IL-1β via down-regulation of MAPK in macrophages. Appl. Biochem. Biotechnol. 2015 175 2 657 665 10.1007/s12010‑014‑1301‑8 25342257
    [Google Scholar]
  112. Pedersen A.M. Vang B. Olsen R.L. Oil from calanus finmarchicus —composition and possible use: A review. J. Aquat. Food Prod. Technol. 2014 23 6 633 646 10.1080/10498850.2012.741662
    [Google Scholar]
  113. Soloperto S. Altin D. Hallmann A. Skottene E. Hansen B.H. Jenssen B.M. Ciesielski T.M. Oil-mediated oxidative-stress responses in a keystone zooplanktonic species, Calanus finmarchicus. Sci. Total Environ. 2022 806 Pt 4 151365 10.1016/j.scitotenv.2021.151365 34742810
    [Google Scholar]
  114. Gasmi A. Mujawdiya P.K. Shanaida M. Ongenae A. Lysiuk R. Doşa, M.D.; Tsal, O.; Piscopo, S.; Chirumbolo, S.; Bjørklund, G. Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl. Microbiol. Biotechnol. 2020 104 3 967 979 10.1007/s00253‑019‑10293‑4 31853565
    [Google Scholar]
  115. DiNicolantonio J.J. Bhat A.G. OKeefe, J. Effects of spirulina on weight loss and blood lipids: A review. Open Heart 2020 7 1 e001003 10.1136/openhrt‑2018‑001003 32201580
    [Google Scholar]
  116. Chamorro-Cevallos G. Aspectos nutricionales y toxicológicos de spirulina (Arthrospira). Nutr. Hosp. 2015 34 40
    [Google Scholar]
  117. A.A. Anvar Nowruzi B. Bioactive properties of spirulina: A review. Microb. Bioact. 2021 4 134 142
    [Google Scholar]
  118. Olvera-Roldán E.O. Cristóbal-Luna J.M. García-Martínez Y. Mojica-Villegas M.A. Pérez-Pastén-Borja R. Gutiérrez-Salmeán G. Pérez-Gutiérrez S. García-Rodríguez R.V. Madrigal-Santillán E. Morales-González J.A. Chamorro-Cevallos G. Effects of spirulina maxima on a model of sexual dysfunction in streptozotocin-induced diabetic male rats. Plants 2023 12 4 722 10.3390/plants12040722 36840070
    [Google Scholar]
  119. Candelaria G.C. Rosa Virginia G.R. María Angélica M.V. Yuliana G.M. José Melesio C.L. Germán C.C. Effect of arthrospira (spirulina) maxima on cadmium-chloride-induced alterations in sexual behavior and fertility in male wistar rats. Pharmaceuticals 2024 17 3 332 10.3390/ph17030332 38543118
    [Google Scholar]
  120. Ai X. Yu P. Li X. Lai X. Yang M. Liu F. Luan F. Meng X. Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. Int. J. Biol. Macromol. 2023 231 123211 10.1016/j.ijbiomac.2023.123211 36632963
    [Google Scholar]
  121. Maddiboyina B. Vanamamalai H.K. Roy H. Ramaiah; Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023 63 6 573 583 10.1002/jobm.202200704 36720046
    [Google Scholar]
  122. El-Shall N.A. Jiang S. Farag M.R. Azzam M. Al-Abdullatif A.A. Alhotan R. Dhama K. Hassan F. Alagawany M. Potential of spirulina platensis as a feed supplement for poultry to enhance growth performance and immune modulation. Front. Immunol. 2023 14 1072787 10.3389/fimmu.2023.1072787 36798131
    [Google Scholar]
  123. Wang Q. Ikegame K. Takahashi K. Xue C. Zhang W. Wang H. Hou W. Wang Y. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments. J. Ocean Univ. China 2013 12 3 413 417 10.1007/s11802‑013‑1956‑8
    [Google Scholar]
  124. Du L. Li Z.J. Xu J. Wang J.F. Xue Y. Xue C.H. Takahashi K. Wang Y.M. The anti-tumor activities of cerebrosides derived from sea cucumber acaudina molpadioides and starfish asterias amurensis/i> and in vivo. J. Oleo Sci. 2012 61 6 321 330 10.5650/jos.61.321 22687777
    [Google Scholar]
  125. Cho W-J. Lee H-H. Jung Y-J. Kim H. Jeong E-J. The antimicrobial, antioxidant, and tyrosinase inhibitory activities of solvent extracts of asterina pectinifera and asterias amurensis. Korean J. Fish. Aquat. Sci. 2015 48 432 438 10.5657/KFAS.2015.0432
    [Google Scholar]
  126. Farhana S. Shoichiro I. Yuji N. Molecular identification, micronutrient content, antifungal and hemolytic activity of starfish Asterias amurensis collected from Kobe coast, Japan. Afr. J. Biotechnol. 2017 16 4 163 170 10.5897/AJB2016.15776
    [Google Scholar]
  127. Singh D. Carlson R. Fell D. Poolman M. Modelling metabolism of the diatom phaeodactylum tricornutum. Biochem. Soc. Trans. 2015 43 6 1182 1186 10.1042/BST20150152 26614658
    [Google Scholar]
  128. Chen H.H. Jiang J.G. Lipid accumulation mechanisms in auto- and heterotrophic microalgae. J. Agric. Food Chem. 2017 65 37 8099 8110 10.1021/acs.jafc.7b03495 28838232
    [Google Scholar]
  129. Wen Z.Y. Jiang Y. Chen F. High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: Fed-batch development. Process Biochem. 2002 37 12 1447 1453 10.1016/S0032‑9592(02)00034‑1
    [Google Scholar]
  130. Lu X. Sun H. Zhao W. Cheng K.W. Chen F. Liu B. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom nitzschia laevis. Mar. Drugs 2018 16 7 219 10.3390/md16070219 29941802
    [Google Scholar]
  131. Mao X. Wang X. Ge M. Chen F. Liu B. New insights into xanthophylls and lipidomic profile changes induced by glucose supplementation in the marine diatom Nitzschia laevis. Mar. Drugs 2022 20 7 456 10.3390/md20070456 35877749
    [Google Scholar]
  132. Maury J. Delbrut A. Villard V. Pradelles R. A Standardized extract of microalgae phaeodactylum tricornutum (Mi136) inhibit d-gal induced cognitive dysfunction in mice. Mar. Drugs 2024 22 3 99 10.3390/md22030099 38535440
    [Google Scholar]
  133. Calleja-Gómez M. Abi-Khattar A.M. Debs E. Rajha H.N. Maroun R. Martínez-Culebras P.V. Louka N. Role of infrared-assisted extraction of antioxidant phytochemicals in enhancing antimicrobial activity of Phaeodactylum tricornutum. Lebensm. Wiss. Technol. 2024 198 116072 10.1016/j.lwt.2024.116072
    [Google Scholar]
  134. Gupta S.P. Khushboo; Gupta, V.K.; Minhas, U.; Kumar, R.; Sharma, B. Euglena species: Bioactive compounds and their varied applications. Curr. Top. Med. Chem. 2021 21 29 2620 2633 10.2174/1568026621666210813111424 34392825
    [Google Scholar]
  135. Brun P. Piovan A. Caniato R. Dalla Costa V. Pauletto A. Filippini R. Anti-inflammatory activities of euglena gracilis extracts. Microorganisms 2021 9 10 2058 10.3390/microorganisms9102058 34683379
    [Google Scholar]
  136. Gao L. Zhao X. Liu M. Zhao X. Characterization and antibacterial activities of carboxymethylated paramylon from euglena gracilis. Polymers 2022 14 15 3022 10.3390/polym14153022 35893986
    [Google Scholar]
  137. Casas-Arrojo V. Arrojo Agudo M.Á. Cárdenas García C. Carrillo P. Pérez Manríquez C. Martínez-Manzanares E. Abdala Díaz R.T. Antioxidant, immunomodulatory and potential anticancer capacity of polysaccharides (glucans) from euglena gracilis G.A. klebs. Pharmaceuticals 2022 15 11 1379 10.3390/ph15111379 36355551
    [Google Scholar]
  138. Furniturewalla A. Barve K. Marine antioxidants in the management of atherosclerosis. Marine Antioxidants. Elsevier 2023 273 284 10.1016/B978‑0‑323‑95086‑2.00033‑3
    [Google Scholar]
  139. Bruno A. Velders A.H. Biasone A. Li Vigni M. Mondelli D. Miano T. Chemical composition, biomolecular analysis, and nuclear magnetic resonance spectroscopic fingerprinting of posidonia oceanica and ascophyllum nodosum extracts. Metabolites 2023 13 2 170 10.3390/metabo13020170 36837789
    [Google Scholar]
  140. Rautela I. Thapliyal P. Sahni S. Rayal R. Sharma M.D. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem. 2022 123 91 106 10.1016/j.procbio.2022.10.034
    [Google Scholar]
  141. Ye J. Zheng J. Tian X. Xu B. Yuan F. Wang B. Yang Z. Huang F. Fucoxanthin attenuates free fatty acid-induced nonalcoholic fatty liver disease by regulating lipid metabolism/oxidative stress/inflammation via the AMPK/Nrf2/TLR4 signaling pathway. Mar. Drugs 2022 20 4 225 10.3390/md20040225 35447899
    [Google Scholar]
  142. Oh S. Son M. Byun K.A. Jang J.T. Choi C.H. Son K.H. Byun K. Attenuating effects of dieckol on high-fat diet-induced nonalcoholic fatty liver disease by decreasing the NLRP3 inflammasome and pyroptosis. Mar. Drugs 2021 19 6 318 10.3390/md19060318 34070893
    [Google Scholar]
  143. Ko S.C. Lee M. Lee J.H. Lee S.H. Lim Y. Jeon Y.J. Dieckol, a phlorotannin isolated from a brown seaweed, Ecklonia cava, inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Environ. Toxicol. Pharmacol. 2013 36 3 1253 1260 10.1016/j.etap.2013.10.011 24211593
    [Google Scholar]
  144. Zhou Y. Li S. Li D. Wang S. Zhao W. Lv Z. Li X. Li H. Han Y. Enzymatic preparation of chitooligosaccharides and their anti-obesity application. Biosci. Biotechnol. Biochem. 2020 84 7 1460 1466 10.1080/09168451.2020.1744110 32195627
    [Google Scholar]
  145. Feng J. Liu Y. Chen J. Bai Y. He J. Cao H. Che Q. Guo J. Su Z. Marine chitooligosaccharide alters intestinal flora structure and regulates hepatic inflammatory response to influence nonalcoholic fatty liver disease. Mar. Drugs 2022 20 6 383 10.3390/md20060383 35736186
    [Google Scholar]
  146. Zhang H. Tang Y. Zhang Y. Zhang S. Qu J. Wang X. Kong R. Han C. Liu Z. Fucoxanthin: A promising medicinal and nutritional ingredient. Evid. Based Complement. Alternat. Med. 2015 2015 1 10 10.1155/2015/723515 26106437
    [Google Scholar]
  147. Bae M. Kim M.B. Park Y.K. Lee J.Y. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020 1865 11 158618 10.1016/j.bbalip.2020.158618 31931174
    [Google Scholar]
  148. Mohibbullah M. Haque M.N. Sohag A.A.M. Hossain M.T. Zahan M.S. Uddin M.J. Hannan M.A. Moon I.S. Choi J.S. A systematic review on marine algae-derived fucoxanthin: An update of pharmacological insights. Mar. Drugs 2022 20 5 279 10.3390/md20050279 35621930
    [Google Scholar]
  149. Aatif M. Muteeb G. Alsultan A. Alshoaibi A. Khelif B.Y. Dieckol and its derivatives as potential inhibitors of SARS-CoV-2 spike protein (UK strain: VUI 202012/01): A computational study. Mar. Drugs 2021 19 5 242 10.3390/md19050242 33922914
    [Google Scholar]
  150. Rajan D.K. Mohan K. Zhang S. Ganesan A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Pharmacother. 2021 142 111988 10.1016/j.biopha.2021.111988 34371307
    [Google Scholar]
  151. Muthuraman A. Shaikh S.A. Ramesh M. Sikarwar M.S. The structure-activity relationship of marine products for neuroinflammatory disorders. Studies in Natural Products Chemistry. Elsevier 2021 Vol. 70 151 194
    [Google Scholar]
  152. Shin H. Lee J. Bae J. Lee K.H. Yoo H.Y. Park C. Enhancement of dieckol extraction yield from Ecklonia cava through optimization of major variables in generally recognized as safe solvent-based process. Front. Mar. Sci. 2023 10 1287047 10.3389/fmars.2023.1287047
    [Google Scholar]
  153. Devnath H.S. Medha M.M. Islam M.N. Biswas P. Oisay D.S. Hossain A. Ema R.S. Tareq M.M.I. Golder M. Hasan M.N. Biswas B. Sadhu S.K. Bioactive small compounds effectively inhibit ChREBP overexpression to treat NAFLD and T2DM: A computational drug development approach. Heliyon 2025 11 4 e42477 10.1016/j.heliyon.2025.e42477 40034298
    [Google Scholar]
  154. Hakim M.M. Patel I.C. A review on phytoconstituents of marine brown algae. Future J. Pharm. Sci. 2020 6 1 129 10.1186/s43094‑020‑00147‑6
    [Google Scholar]
  155. Meinita M.D.N. Harwanto D. Tirtawijaya G. Negara B.F.S.P. Sohn J.H. Kim J.S. Choi J.S. Fucosterol of marine macroalgae: Bioactivity, safety and toxicity on organism. Mar. Drugs 2021 19 10 545 10.3390/md19100545 34677444
    [Google Scholar]
  156. Barsanti L. Birindelli L. Gualtieri P. Paramylon and other bioactive molecules in micro and macroalgae. Int. J. Mol. Sci. 2022 23 15 8301 10.3390/ijms23158301 35955428
    [Google Scholar]
  157. Zhang K. Wan M. Bai W. He M. Wang W. Fan F. Guo J. Yu T. Li Y. A novel method for extraction of paramylon from Euglena gracilis for industrial production. Algal Res. 2023 71 103058 10.1016/j.algal.2023.103058
    [Google Scholar]
  158. Russo R. Barsanti L. Evangelista V. Frassanito A.M. Longo V. Pucci L. Penno G. Gualtieri P. Euglena gracilisparamylon activates human lymphocytes by upregulating pro-inflammatory factors. Food Sci. Nutr. 2017 5 2 205 214 10.1002/fsn3.383 28265355
    [Google Scholar]
  159. Etman S.M. Elnaggar Y.S.R. Abdallah O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020 147 799 808 10.1016/j.ijbiomac.2019.11.191 31770552
    [Google Scholar]
  160. Shih P.H. Shiue S.J. Chen C.N. Cheng S.W. Lin H.Y. Wu L.W. Wu M.S. Fucoidan and fucoxanthin attenuate hepatic steatosis and inflammation of NAFLD through modulation of leptin/adiponectin axis. Mar. Drugs 2021 19 3 148 10.3390/md19030148 33809062
    [Google Scholar]
  161. Chu X. Wang X. Feng K. Bi Y. Xin Y. Liu S. Fucoidan ameliorates lipid accumulation, oxidative stress, and NF-κB-mediated inflammation by regulating the PI3K/AKT/Nrf2 signaling pathway in a free fatty acid-induced NAFLD spheroid model. Lipids Health Dis. 2025 24 1 55 10.1186/s12944‑025‑02483‑z 39962463
    [Google Scholar]
  162. Patel G.C. Parmar V.K. Patel P.S. Stimuli-responsive polymers for ocular therapy. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Elsevier 2019 463 489 10.1016/B978‑0‑08‑101995‑5.00023‑4
    [Google Scholar]
  163. Bhansali M. Dabholkar N. Swetha P. Dubey S.K. Singhvi G. Solid oral controlled-release formulations. Modeling and Control. of Drug Delivery Systems. Elsevier 2021 313 331 10.1016/B978‑0‑12‑821185‑4.00007‑5
    [Google Scholar]
  164. Hecht H. Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016 17 6 2160 2167 10.1021/acs.biomac.6b00378 27177209
    [Google Scholar]
  165. Abka-khajouei R. Tounsi L. Shahabi N. Patel A.K. Abdelkafi S. Michaud P. Structures, properties and applications of alginates. Mar. Drugs 2022 20 6 364 10.3390/md20060364 35736167
    [Google Scholar]
  166. Lee Y.J. Ahn E.Y. Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res. Lett. 2019 14 1 129 10.1186/s11671‑019‑2967‑1 30976946
    [Google Scholar]
  167. Wibowo J.T. Ahmadi P. Rahmawati S.I. Bayu A. Putra M.Y. Kijjoa A. Marine-derived indole alkaloids and their biological and pharmacological activities. Mar. Drugs 2021 20 1 3 10.3390/md20010003 35049859
    [Google Scholar]
  168. Hu Y. Chen S. Yang F. Dong S. Marine indole alkaloids—isolation, structure and bioactivities. Mar. Drugs 2021 19 12 658 10.3390/md19120658 34940657
    [Google Scholar]
  169. Islam F. Dehbia Z. Zehravi M. Das R. Sivakumar M. Krishnan K. Billah A.A.M. Bose B. Ghosh A. Paul S. Nainu F. Ahmad I. Emran T.B. Indole alkaloids from marine resources: Understandings from therapeutic point of view to treat cancers. Chem. Biol. Interact. 2023 383 110682 10.1016/j.cbi.2023.110682 37648047
    [Google Scholar]
  170. Netz N. Opatz T. Marine indole alkaloids. Mar. Drugs 2015 13 8 4814 4914 10.3390/md13084814 26287214
    [Google Scholar]
  171. Cheng I.C. Weng S.Y. Wu M.S. Suk F.M. Lien G.S. Chen C.N. Low-molecular-weight fucoidan and high-stability fucoxanthin decrease serum alanine transaminase in patients with nonalcoholic fatty liver disease—A double-blind, randomized controlled trial. Adv. Dig. Med. 2019 6 3 116 122 10.1002/aid2.13125
    [Google Scholar]
  172. Abidov M. Ramazanov Z. Seifulla R. Grachev S. The effects of Xanthigen ™ in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes. Metab. 2010 12 1 72 81 10.1111/j.1463‑1326.2009.01132.x 19840063
    [Google Scholar]
  173. Lee S.H. Jeon Y.J. Efficacy and safety of a dieckol-rich extract (AG-dieckol) of brown algae, Ecklonia cava, in pre-diabetic individuals: A double-blind, randomized, placebo-controlled clinical trial. Food Funct. 2015 6 3 853 858 10.1039/C4FO00940A 25608849
    [Google Scholar]
  174. Bermont A. Cohen D.L. Richter V. Hadar R. Tam J. Wandel A. Brawer S. Grundman O. Shirin H. FucoVital® inhibits fatty acid accumulation in liver cells in vitro and reduces triglycerides levels in patients with NAFLD. PharmaNutrition 2025 31 100429 10.1016/j.phanu.2025.100429
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266370869250630062043
Loading
/content/journals/ctmc/10.2174/0115680266370869250630062043
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Species ; Obesity ; Marine ; Compounds ; Metabolites ; MASLD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test