Skip to content
2000
image of Network Pharmacology, Molecular Docking, and In Vitro Validation to Explore the Key Phytochemicals of Da-cheng-qi Decoction Treating Intracerebral Hemorrhage

Abstract

Background

The development of secondary brain injury following intracerebral hemorrhage (ICH) involves multiple pathophysiological processes. decoction (DCQD) has a long history of effectiveness in treating ICH and exhibits a variety of pharmacological effects. However, the phytochemicals and targets of DCQD targeting the pathophysiological processes of ICH still require further elucidation. This study aims to investigate the mechanism and key phytochemicals of DCQD in treating ICH based on the pathophysiological processes.

Methods

We used the UHPLC-MS/MS method to identify the main phytochemicals of DCQD and evaluate their pharmacological and toxicological parameters. We obtained and systematically analyzed the action targets of the main phytochemicals of DCQD and screened the targets related to ICH key pathophysiological processes and the corresponding phytochemicals. The results of molecular docking, molecular dynamic simulations, the GEO database and validation experiments confirmed the results of network pharmacology.

Results

The 20 main phytochemicals of DCQD interact with a total of 186 targets, with 75 targets specifically associated with the treatment of ICH identified through pathophysiological processes. Among them, chrysophanol 1-glucoside, aloe emodin, emodin, hesperidin, tangeritin, rhein and physcion were recognized as the potential phytochemicals of DCQD for the treatment of ICH. Neuroinflammation is a crucial factor in the development of secondary brain injury following ICH. Further analysis results suggest that targeting ferroptosis is one of the mechanisms by which DCQD regulates the pathophysiology processes of ICH to improve ICH. cell experiment results have demonstrated the regulatory effect of naringin on TNF-α and Cox2. In addition, the phytochemicals in DCQD also contribute to enhancement of cognitive function impaired by ICH.

Conclusion

This study contributes to a better understanding of the underlying mechanisms behind DCQD's medicinal effects in treating ICH, offering insights into potential lead compounds for the development of anti-ICH drugs.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266384135250714115903
2025-07-23
2025-09-13
Loading full text...

Full text loading...

References

  1. Keep R.F. Hua Y. Xi G. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 2012 11 8 720 731 10.1016/S1474‑4422(12)70104‑7 22698888
    [Google Scholar]
  2. Wu S. Wu B. Liu M. Chen Z. Wang W. Anderson C.S. Sandercock P. Wang Y. Huang Y. Cui L. Pu C. Jia J. Zhang T. Liu X. Zhang S. Xie P. Fan D. Ji X. Wong K.S.L. Wang L. Wu S. Wu B. Liu M. Chen Z. Wang W. Anderson C.S. Sandercock P. Wang Y. Huang Y. Cui L. Pu C. Jia J. Zhang T. Liu X. Zhang S. Xie P. Fan D. Ji X. Wong K-S.L. Wang L. Wei C. Wang Y. Cheng Y. Liu Y. Li X. Dong Q. Zeng J. Peng B. Xu Y. Yang Y. Wang Y. Zhao G. Wang W. Xu Y. Yang Q. He Z. Wang S. You C. Gao Y. Zhou D. He L. Li Z. Yang J. Lei C. Zhao Y. Liu J. Zhang S. Tao W. Hao Z. Wang D. Zhang S. Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019 18 4 394 405 10.1016/S1474‑4422(18)30500‑3 30878104
    [Google Scholar]
  3. Wang W. Jiang B. Sun H. Ru X. Sun D. Wang L. Wang L. Jiang Y. Li Y. Wang Y. Chen Z. Wu S. Zhang Y. Wang D. Wang Y. Feigin V.L. Prevalence, incidence, and mortality of stroke in China. Circulation 2017 135 8 759 771 10.1161/CIRCULATIONAHA.116.025250 28052979
    [Google Scholar]
  4. Zhang Z. Lim M.J.R. Incident dementia after spontaneous intracerebral hemorrhage. J. Alzheimers Dis. 2024 99 1 41 51 10.3233/JAD‑240111 38640161
    [Google Scholar]
  5. Rost N.S. Brodtmann A. Pase M.P. van Veluw S.J. Biffi A. Duering M. Hinman J.D. Dichgans M. Post-stroke cognitive impairment and dementia. Circ. Res. 2022 130 8 1252 1271 10.1161/CIRCRESAHA.122.319951 35420911
    [Google Scholar]
  6. Lan X. Han X. Li Q. Yang Q.W. Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 2017 13 7 420 433 10.1038/nrneurol.2017.69 28524175
    [Google Scholar]
  7. Magid-Bernstein J. Girard R. Polster S. Srinath A. Romanos S. Awad I.A. Sansing L.H. Cerebral hemorrhage: Pathophysiology, treatment, and future directions. Circ. Res. 2022 130 8 1204 1229 10.1161/CIRCRESAHA.121.319949 35420918
    [Google Scholar]
  8. Greenberg S.M. Ziai W.C. Cordonnier C. Dowlatshahi D. Francis B. Goldstein J.N. Hemphill J.C. Johnson R. Keigher K.M. Mack W.J. Mocco J. Newton E.J. Ruff I.M. Sansing L.H. Schulman S. Selim M.H. Sheth K.N. Sprigg N. Sunnerhagen K.S. 2022 Guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke 2022 53 7 e282 e361 10.1161/STR.0000000000000407 35579034
    [Google Scholar]
  9. Duan T. Li L. Yu Y. Li T. Han R. Sun X. Cui Y. Liu T. Wang X. Wang Y. Fan X. Liu Y. Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol. Res. 2022 179 106200 10.1016/j.phrs.2022.106200 35367344
    [Google Scholar]
  10. Wang H.L. Zeng H. Xu M.B. Zhou X.L. Rong P.Q. Jin T.Y. Wang Q. Zheng G.Q. Efficacy and safety of chinese herbal medicine for primary intracerebral hemorrhage: A systematic review of randomized controlled trials. Front. Pharmacol. 2019 10 1139 10.3389/fphar.2019.01139 31649531
    [Google Scholar]
  11. Zhang H. Jin B. You X. Yi P. Guo H. Niu L. Yin Q. Shi J. Zhang Y. Zhuang P. Pharmacodynamic advantages and characteristics of traditional Chinese medicine in prevention and treatment of ischemic stroke. Chin. Herb. Med. 2023 15 4 496 508 10.1016/j.chmed.2023.09.003 38094018
    [Google Scholar]
  12. Liu A. Song L. Li Y. Zhang X. Chen Z. Huang L. Zhang H. Zheng G. Active compounds of rhubarb root and rhizome in animal model experiments of focal cerebral ischemia. Evid. Based Complement. Alternat. Med. 2015 2015 1 13 10.1155/2015/210546 26495006
    [Google Scholar]
  13. Wang Y. Peng F. Xie G. Chen Z.Q. Li H.G. Tang T. Luo J.K. Rhubarb attenuates blood-brain barrier disruption via increased zonula occludens-1 expression in a rat model of intracerebral hemorrhage. Exp. Ther. Med. 2016 12 1 250 256 10.3892/etm.2016.3330 27347045
    [Google Scholar]
  14. Yong-Jun F. Yi Z. Zun-Hua K. Zhen-Guo Z. Feng Z. Lu-Ning B. Effects of rhubarb powder on serum complement 3, complement 4, and hs-CRP in patients with intracerebral hemorrhage. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2013 33 2 168 171 23646468
    [Google Scholar]
  15. Liu T. Zhou J. Cui H. Li P. Luo J. Li T. He F. Wang Y. Tang T. iTRAQ-based quantitative proteomics reveals the neuroprotection of rhubarb in experimental intracerebral hemorrhage. J. Ethnopharmacol. 2019 232 244 254 10.1016/j.jep.2018.11.032 30502478
    [Google Scholar]
  16. Zhou F. Jiang Z. Yang B. Hu Z. Magnolol exhibits anti-inflammatory and neuroprotective effects in a rat model of intracerebral haemorrhage. Brain Behav. Immun. 2019 77 161 167 10.1016/j.bbi.2018.12.018 30597199
    [Google Scholar]
  17. Zeng P. Wang X.M. Su H.F. Zhang T. Ning L.N. Shi Y. Yang S.S. Lin L. Tian Q. Protective effects of Da-cheng-qi decoction in rats with intracerebral hemorrhage. Phytomedicine 2021 90 153630 10.1016/j.phymed.2021.153630 34217968
    [Google Scholar]
  18. Zhao W. Wang B. Li S. Network pharmacology for traditional Chinese medicine in era of artificial intelligence. Chin. Herb. Med. 2024 16 4 558 560 10.1016/j.chmed.2024.08.004 39606265
    [Google Scholar]
  19. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  20. Zeng P. Liu Y.C. Wang X.M. Ye C.Y. Sun Y.W. Su H.F. Qiu S.W. Li Y.N. Wang Y. Wang Y.C. Ma J. Li M. Tian Q. Targets and mechanisms of Alpinia oxyphylla Miquel fruits in treating neurodegenerative dementia. Front. Aging Neurosci. 2022 14 1013891 10.3389/fnagi.2022.1013891 36533181
    [Google Scholar]
  21. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  22. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  23. Wei Z. Gao Y. Meng F. Chen X. Gong Y. Zhu C. Ju B. Zhang C. Liu Z. Liu Q. iDMer: An integrative and mechanism-driven response system for identifying compound interventions for sudden virus outbreak. Brief. Bioinform. 2021 22 2 976 987 10.1093/bib/bbaa341 33302292
    [Google Scholar]
  24. Deng M.F. Yan Y.Z. Zhu S.S. Zhou K. Tan S.J. Zeng P. A serum pharmacochemistry and network pharmacology-based approach to study the anti-depressant effect of Chaihu-Shugan San. Comb. Chem. High Throughput Screen. 2024 28 3 533 10.2174/0113862073285198240322072301 38551057
    [Google Scholar]
  25. Fang S. Dong L. Liu L. Guo J. Zhao L. Zhang J. Bu D. Liu X. Huo P. Cao W. Dong Q. Wu J. Zeng X. Wu Y. Zhao Y. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021 49 D1 D1197 D1206 10.1093/nar/gkaa1063 33264402
    [Google Scholar]
  26. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  27. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  28. Rosell A. Vilalta A. García-Berrocoso T. Fernández-Cadenas I. Domingues-Montanari S. Cuadrado E. Delgado P. Ribó M. Martínez-Sáez E. Ortega-Aznar A. Montaner J. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One 2011 6 2 e16750 10.1371/journal.pone.0016750 21311749
    [Google Scholar]
  29. Franzmeier N. Dehsarvi A. Steward A. Biel D. Dewenter A. Roemer S.N. Wagner F. Groß M. Brendel M. Moscoso A. Arunachalam P. Blennow K. Zetterberg H. Ewers M. Schöll M. Elevated CSF GAP-43 is associated with accelerated tau accumulation and spread in Alzheimer’s disease. Nat. Commun. 2024 15 1 202 10.1038/s41467‑023‑44374‑w 38172114
    [Google Scholar]
  30. Xu M. Zhang D.F. Luo R. Wu Y. Zhou H. Kong L.L. Bi R. Yao Y.G. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer’s disease. Alzheimers Dement. 2018 14 2 215 229 10.1016/j.jalz.2017.08.012 28923553
    [Google Scholar]
  31. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  32. Wang Z. Sun H. Yao X. Li D. Xu L. Li Y. Tian S. Hou T. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016 18 18 12964 12975 10.1039/C6CP01555G 27108770
    [Google Scholar]
  33. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S.J. Goodsell D.S. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 2022 31 1 187 208 10.1002/pro.4213
    [Google Scholar]
  34. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  35. Tabasi M. Maghami P. Amiri-Tehranizadeh Z. Reza Saberi M. Chamani J. New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. J. Mol. Liq. 2023 392 Part1 123472 10.1016/j.molliq.2023.123472
    [Google Scholar]
  36. Guo J. Fang M. Xiong Z. Zhou K. Zeng P. Mechanistic insights into the anti-depressant effect of curcumin based on network pharmacology and experimental validation. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 1 583 598 10.1007/s00210‑023‑02628‑w 37490124
    [Google Scholar]
  37. Wang M. Ye X. Hu J. Zhao Q. Lv B. Ma W. Wang W. Yin H. Hao Q. Zhou C. Zhang T. Wu W. Wang Y. Zhou M. Zhang C. Cui G. NOD1/RIP2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J. Neuroinflammation 2020 17 1 364 10.1186/s12974‑020‑02015‑9 33261639
    [Google Scholar]
  38. Hung T.W. Wu K.J. Wang Y.S. Bae E.K. Song Y. Yoon J. Yu S.J. Human Milk Oligosaccharide 2′-Fucosyllactose induces neuroprotection from intracerebral hemorrhage stroke. Int. J. Mol. Sci. 2021 22 18 9881 10.3390/ijms22189881 34576050
    [Google Scholar]
  39. Shang L. Zhang M. Li J. Zhou F. Wang S. Chen L. Yang S. Dachengqi decoction alleviates acute lung injury by suppressing HIF-1α-mediated glycolysis. J. Ethnopharmacol. 2024 321 117410 10.1016/j.jep.2023.117410 37989425
    [Google Scholar]
  40. Alsbrook D.L. Di Napoli M. Bhatia K. Biller J. Andalib S. Hinduja A. Rodrigues R. Rodriguez M. Sabbagh S.Y. Selim M. Farahabadi M.H. Jafarli A. Divani A.A. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  41. Sun K.Y. Bai X.Y. Zhang L. Zhang X. Hu Q.Q. Song Y.X. Qiang R.R. Zhang N. Zou J.L. Yang Y.L. Xiang Y. A new strategy for the treatment of intracerebral hemorrhage. Ferroptosis. Exp. Neurol. 2024 382 114961 10.1016/j.expneurol.2024.114961 39288829
    [Google Scholar]
  42. Zhou N. Yuan X. Du Q. Zhang Z. Shi X. Bao J. Ning Y. Peng L. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Res. 2023 51 D1 D571 D582 10.1093/nar/gkac935 36305834
    [Google Scholar]
  43. Moulin S. Labreuche J. Bombois S. Rossi C. Boulouis G. Hénon H. Duhamel A. Leys D. Cordonnier C. Dementia risk after spontaneous intracerebral haemorrhage: A prospective cohort study. Lancet Neurol. 2016 15 8 820 829 10.1016/S1474‑4422(16)00130‑7 27133238
    [Google Scholar]
  44. Hopkins A.L. Network pharmacology. Nat. Biotechnol. 2007 25 10 1110 1111 10.1038/nbt1007‑1110 17921993
    [Google Scholar]
  45. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  46. Zeng P. Su H.F. Ye C.Y. Qiu S.W. Shi A. Wang J.Z. Zhou X.W. Tian Q. A tau pathogenesis-based network pharmacology approach for exploring the protections of Chuanxiong Rhizoma in Alzheimer’s disease. Front. Pharmacol. 2022 13 877806 10.3389/fphar.2022.877806 35529440
    [Google Scholar]
  47. Zeng P. Wang X.M. Ye C.Y. Su H.F. Tian Q. The main alkaloids in Uncaria rhynchophylla and their anti-alzheimer’s disease mechanism determined by a network pharmacology approach. Int. J. Mol. Sci. 2021 22 7 3612 10.3390/ijms22073612 33807157
    [Google Scholar]
  48. Sun W. Chen Y. Li H. Liu H. Li J. Chen J. Feng D. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed. Pharmacother. 2020 121 109656 10.1016/j.biopha.2019.109656 31810129
    [Google Scholar]
  49. Li Z.Q. Bu X.Q. Cheng J. Deng L. Lv X.N. Wang Z.J. Hu X. Yang T.N. Yin H. Liu X.Y. Zhao L.B. Xie P. Li Q. Impact of early cognitive impairment on outcome trajectory in patients with intracerebral hemorrhage. Ann. Clin. Transl. Neurol. 2024 11 2 368 376 10.1002/acn3.51957 38009388
    [Google Scholar]
  50. Kaffash M. Tolou-Shikhzadeh-Yazdi S. Soleimani S. Hoseinpoor S. Saberi M.R. Chamani J. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein–protein interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 309 123815 10.1016/j.saa.2023.123815 38154302
    [Google Scholar]
  51. Goh C.S. Milburn D. Gerstein M. Conformational changes associated with protein–protein interactions. Curr. Opin. Struct. Biol. 2004 14 1 104 109 10.1016/j.sbi.2004.01.005 15102456
    [Google Scholar]
  52. Halakou F. Kilic E.S. Cukuroglu E. Keskin O. Gursoy A. Enriching traditional protein-protein interaction networks with alternative conformations of proteins. Sci. Rep. 2017 7 1 7180 10.1038/s41598‑017‑07351‑0 28775330
    [Google Scholar]
  53. Tang W.F. Yu Q. Wan M.H. Qin F. Wang Y.G. Chen G.Y. Liang M.Z. Huang X. Simultaneous determination and pharmacokinetic studies of aloe emodin and chrysophanol in rats after oral administration of Da‐Cheng‐Qi decoction by high‐performance liquid chromatography. Biomed. Chromatogr. 2007 21 7 701 707 10.1002/bmc.808 17370297
    [Google Scholar]
  54. Xu F. Liu Y. Zhang Z. Song R. Dong H. Tian Y. Rapid simultaneous quantification of five active constituents in rat plasma by high-performance liquid chromatography/tandem mass spectrometry after oral administration of Da-Cheng-Qi decoction. J. Pharm. Biomed. Anal. 2008 47 3 586 595 10.1016/j.jpba.2008.02.005 18358661
    [Google Scholar]
  55. Yu Q. Xiang J. Tang W. Liang M. Qin Y. Nan F. Simultaneous determination of the 10 major components of Da-Cheng-Qi decoction in dog plasma by liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009 877 22 2025 2031 10.1016/j.jchromb.2009.05.030 19523886
    [Google Scholar]
  56. Wan J.B. Bai X. Cai X.J. Rao Y. Wang Y.S. Wang Y.T. Chemical differentiation of Da-Cheng-Qi-Tang, a Chinese medicine formula, prepared by traditional and modern decoction methods using UPLC/Q-TOFMS-based metabolomics approach. J. Pharm. Biomed. Anal. 2013 83 34 42 10.1016/j.jpba.2013.04.019 23685412
    [Google Scholar]
  57. Zhang Y.M. Ren H.Y. Zhao X.L. Li J. Li J.Y. Wu F.S. Su H. Tang W.F. Pharmacokinetics and pharmacodynamics of Da-Cheng-Qi decoction in the liver of rats with severe acute pancreatitis. World J. Gastroenterol. 2017 23 8 1367 1374 10.3748/wjg.v23.i8.1367 28293083
    [Google Scholar]
  58. Gong H.L. Tang W.F. Yu Q. Xiang J. Xia Q. Chen G.Y. Huang X. Liang M.Z. Effect of severe acute pancreatitis on pharmacokinetics ofDa-Cheng-Qi Decoction components. World J. Gastroenterol. 2009 15 47 5992 5999 10.3748/wjg.15.5992 20014465
    [Google Scholar]
  59. Gong H.L. Tang W.F. Wang H. Xia Q. Huang X. Effects of food and gender on the pharmacokinetics of rhein and emodin in rats after oral dosing with Da‐Cheng‐Qi decoction. Phytother. Res. 2011 25 1 74 80 10.1002/ptr.3223 20623608
    [Google Scholar]
  60. Zhao J. Tang W. Wang J. Xiang J. Gong H. Chen G. Pharmacokinetic and pharmacodynamic studies of four major phytochemical components of Da-Cheng-Qi decoction to treat acute pancreatitis. J. Pharmacol. Sci. 2013 122 2 118 127 10.1254/jphs.13037FP 23739595
    [Google Scholar]
  61. Tang W.F. Huang X. Yu Q. Qin F. Wan M.H. Wang Y. Liang M.Z. Determination and pharmacokinetic comparison of rhein in rats after oral dosed with Da‐Cheng‐Qi decoction and Xiao‐Cheng‐Qi decoction. Biomed. Chromatogr. 2007 21 11 1186 1190 10.1002/bmc.873 17582236
    [Google Scholar]
  62. Zhang X. Xiao K.Y. Hou C.X. Research progress in chemical compositions and pharmacological effects of Dachengqi Decoction and predictive analysis on its quality marker. Int. J. Tradit. Chin. Med. 2024 46 4 541 544 10.3760/cma.j.cn115398‑20230913‑00131
    [Google Scholar]
  63. Li Y. Kandhare A.D. Mukherjee A.A. Bodhankar S.L. Acute and sub-chronic oral toxicity studies of hesperidin isolated from orange peel extract in Sprague Dawley rats. Regul. Toxicol. Pharmacol. 2019 105 77 85 10.1016/j.yrtph.2019.04.001 30991075
    [Google Scholar]
  64. Qin Z. Chen L. Liu M. Tan H. Zheng L. Hesperidin reduces adverse symptomatic intracerebral hemorrhage by promoting TGF-β1 for treating ischemic stroke using tissue plasminogen activator. Neurol. Sci. 2020 41 1 139 147 10.1007/s10072‑019‑04054‑4 31478148
    [Google Scholar]
  65. Aydogmus E. Gul S. Bahadir B. Neuroprotective effects of hesperidin on cerebral vasospasm after experimental subarachnoid hemorrhage in rats: Biochemical, pathologic, and histomorphometric analysis. World Neurosurg. 2019 122 e1332 e1337 10.1016/j.wneu.2018.11.043 30448580
    [Google Scholar]
  66. Jadaun K.S. Mehan S. Sharma A. Siddiqui E.M. Kumar S. Alsuhaymi N. Neuroprotective effect of chrysophanol as a pi3k/akt/mtor signaling inhibitor in an experimental model of autologous blood-induced intracerebral hemorrhage. Curr. Med. Sci. 2022 Epub ahead of print10.1007/s11596‑022‑2522‑7 35099677
    [Google Scholar]
  67. Li M. Zhou H. Pan Z. Shi M. Yang J. Guo J. Wan H. Synergistic promotion of angiogenesis after intracerebral hemorrhage by ginsenoside Rh2 and chrysophanol in rats. Bioorg. Chem. 2024 147 107416 10.1016/j.bioorg.2024.107416 38705107
    [Google Scholar]
  68. Tang Y.P. Cai D.F. Liu J. Research on acting mechanism of rhubarb on aquaporin-4 in rats with blood-brain barrier injury after acute cerebral hemorrhage. Chinese J. Modern Devel Trad Med. 2006 26 2 152 156 16548359
    [Google Scholar]
  69. Tu J. Jiang Y. Tu L. Chen Y. Pan L. Fan X. Tian J. Li J. Wang X. Fu H. Xu B. Feng D. Da-Cheng-Qi decoction improves severe acute pancreatitis capillary leakage syndrome by regulating tight junction-associated proteins. Front. Pharmacol. 2024 15 1138251 10.3389/fphar.2024.1138251 38708079
    [Google Scholar]
  70. Yang G. Fan X. Mazhar M. Guo W. Zou Y. Dechsupa N. Wang L. Neuroinflammation of microglia polarization in intracerebral hemorrhage and its potential targets for intervention. Front. Mol. Neurosci. 2022 15 1013706 10.3389/fnmol.2022.1013706 36304999
    [Google Scholar]
  71. Liu Y. Yang S. Cai E. Lin L. Zeng P. Nie B. Xu F. Tian Q. Wang J. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci. Ther. 2020 26 10 1031 1044 10.1111/cns.13399 32488963
    [Google Scholar]
  72. Liu H. Guo D. Wang J. Zhang W. Zhu Z. Zhu K. Bi S. Pan P. Liang G. Aloe-emodin from Sanhua Decoction inhibits neuroinflammation by regulating microglia polarization after subarachnoid hemorrhage. J. Ethnopharmacol. 2024 322 117583 10.1016/j.jep.2023.117583 38122912
    [Google Scholar]
  73. Zhou X. Wang L. Wang M. Xu L. Yu L. Fang T. Wu M. Emodin-induced microglial apoptosis is associated with TRB3 induction. Immunopharmacol. Immunotoxicol. 2011 33 4 594 602 10.3109/08923973.2010.549135 21275776
    [Google Scholar]
  74. Zheng Z.V. Chen J. Lyu H. Lam S.Y.E. Lu G. Chan W.Y. Wong G.K.C. Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc. Neurol. 2022 7 1 62 70 10.1136/svn‑2021‑001028 34645687
    [Google Scholar]
  75. Chen Z. Han Z.C. STAT3: A critical transcription activator in angiogenesis. Med. Res. Rev. 2008 28 2 185 200 10.1002/med.20101 17457812
    [Google Scholar]
  76. Subramaniam A. Shanmugam M.K. Ong T.H. Li F. Perumal E. Chen L. Vali S. Abbasi T. Kapoor S. Ahn K.S. Kumar A.P. Hui K.M. Sethi G. Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br. J. Pharmacol. 2013 170 4 807 821 10.1111/bph.12302 23848338
    [Google Scholar]
  77. Yang L. Lin S. Kang Y. Xiang Y. Xu L. Li J. Dai X. Liang G. Huang X. Zhao C. Rhein sensitizes human pancreatic cancer cells to EGFR inhibitors by inhibiting STAT3 pathway. J. Exp. Clin. Cancer Res. 2019 38 1 31 10.1186/s13046‑018‑1015‑9 30674340
    [Google Scholar]
  78. Singh N. Bansal Y. Bhandari R. Marwaha L. Singh R. Chopra K. Kuhad A. Naringin reverses neurobehavioral and biochemical alterations in intracerebroventricular collagenase-induced intracerebral hemorrhage in rats. Pharmacology 2017 100 3-4 172 187 10.1159/000453580 28668949
    [Google Scholar]
  79. Leasure A.C. Kuohn L.R. Vanent K.N. Bevers M.B. Kimberly W.T. Steiner T. Mayer S.A. Matouk C.C. Sansing L.H. Falcone G.J. Sheth K.N. Association of serum IL-6 (Interleukin 6) with functional outcome after intracerebral hemorrhage. Stroke 2021 52 5 1733 1740 10.1161/STROKEAHA.120.032888 33682454
    [Google Scholar]
  80. Griseta C. Battista P. Castellana F. Colonna I. Sciarra S. Zupo R. Bortone I. Lampignano L. Tirelli S. Berardino G. Mollica A. Lozupone M. Panza F. Fiore P. Minafra B. Sardone R. Serum levels of IL-6 are associated with cognitive impairment in the salus in apulia population-based study. Heliyon 2023 9 3 e13972 10.1016/j.heliyon.2023.e13972 36915478
    [Google Scholar]
  81. Gao Y. Chen X. Fang L. Liu F. Cai R. Peng C. Qi Y. Rhein exerts pro- and anti-inflammatory actions by targeting IKKβ inhibition in LPS-activated macrophages. Free Radic. Biol. Med. 2014 72 104 112 10.1016/j.freeradbiomed.2014.04.001 24721152
    [Google Scholar]
  82. Tran K.A. Zhang X. Predescu D. Huang X. Machado R.F. Göthert J.R. Malik A.B. Valyi-Nagy T. Zhao Y.Y. Endothelial β-catenin signaling is required for maintaining adult blood–brain barrier integrity and central nervous system homeostasis. Circulation 2016 133 2 177 186 10.1161/CIRCULATIONAHA.115.015982 26538583
    [Google Scholar]
  83. Hou Y. Xie Y. Liu X. Chen Y. Zhou F. Yang B. Oxygen glucose deprivation-pretreated astrocyte-derived exosomes attenuates intracerebral hemorrhage (ICH)-induced BBB disruption through miR-27a-3p/ARHGAP25/Wnt/β-catenin axis. Fluids Barriers CNS 2024 21 1 8 10.1186/s12987‑024‑00510‑2 38243347
    [Google Scholar]
  84. He W. Lu Q. Sherchan P. Huang L. Hu X. Zhang J.H. Dai H. Tang J. Activation of Frizzled-7 attenuates blood–brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021 18 1 44 10.1186/s12987‑021‑00278‑9 34565396
    [Google Scholar]
  85. Chen X. Yao N. Mao Y. Xiao D. Huang Y. Zhang X. Wang Y. Activation of the Wnt/β-catenin/CYP1B1 pathway alleviates oxidative stress and protects the blood-brain barrier under cerebral ischemia/reperfusion conditions. Neural Regen. Res. 2024 19 7 1541 1547 10.4103/1673‑5374.386398 38051897
    [Google Scholar]
  86. Yin M. Chen W. Li M. Wang K. Hu N. Li Z. circAFF1 enhances intracerebral hemorrhage induced neuronal ferroptosis by targeting miR-140–5p to regulate GSK-3β mediated Wnt/β-catenin signal pathway. Brain Res. Bull. 2022 189 11 21 10.1016/j.brainresbull.2022.08.005 35952845
    [Google Scholar]
  87. Saiprasad G. Chitra P. Manikandan R. Sudhandiran G. Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. Eur. J. Cancer 2014 50 14 2489 2507 10.1016/j.ejca.2014.06.013 25047426
    [Google Scholar]
  88. Su Q. Su C. Zhang Y. Guo Y. Liu Y. Liu Y. Yong V.W. Xue M. Adjudin protects blood–brain barrier integrity and attenuates neuroinflammation following intracerebral hemorrhage in mice. Int. Immunopharmacol. 2024 132 111962 10.1016/j.intimp.2024.111962 38565042
    [Google Scholar]
  89. Rendevski V. Aleksovski B. Stojanov D. Aleksovski V. Rendevska A.M. Kolevska M. Stojanoski K. Gjorgoski I. Peripheral glutamate and TNF-α levels in patients with intracerebral hemorrhage: Their prognostic values and interactions toward the formation of the edemal volume. Neurol. Neurochir. Pol. 2018 52 2 207 214 10.1016/j.pjnns.2017.10.003 29096921
    [Google Scholar]
  90. Yang G. Shao G.F. Elevated serum IL-11, TNF α, and VEGF expressions contribute to the pathophysiology of hypertensive intracerebral hemorrhage (HICH). Neurol. Sci. 2016 37 8 1253 1259 10.1007/s10072‑016‑2576‑z 27115896
    [Google Scholar]
  91. Choi G.Y. Kim H.B. Hwang E.S. Park H.S. Cho J.M. Ham Y.K. Kim J.H. Mun M.K. Maeng S. Park J.H. Naringin enhances long-term potentiation and recovers learning and memory deficits of amyloid-beta induced Alzheimer’s disease-like behavioral rat model. Neurotoxicology 2023 95 35 45 10.1016/j.neuro.2022.12.007 36549596
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266384135250714115903
Loading
/content/journals/ctmc/10.2174/0115680266384135250714115903
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test