
Full text loading...
The development of secondary brain injury following intracerebral hemorrhage (ICH) involves multiple pathophysiological processes. Da-cheng-qi decoction (DCQD) has a long history of effectiveness in treating ICH and exhibits a variety of pharmacological effects. However, the phytochemicals and targets of DCQD targeting the pathophysiological processes of ICH still require further elucidation. This study aims to investigate the mechanism and key phytochemicals of DCQD in treating ICH based on the pathophysiological processes.
We used the UHPLC-MS/MS method to identify the main phytochemicals of DCQD and evaluate their pharmacological and toxicological parameters. We obtained and systematically analyzed the action targets of the main phytochemicals of DCQD and screened the targets related to ICH key pathophysiological processes and the corresponding phytochemicals. The results of molecular docking, molecular dynamic simulations, the GEO database and in vitro validation experiments confirmed the results of network pharmacology.
The 20 main phytochemicals of DCQD interact with a total of 186 targets, with 75 targets specifically associated with the treatment of ICH identified through pathophysiological processes. Among them, chrysophanol 1-glucoside, aloe emodin, emodin, hesperidin, tangeritin, rhein and physcion were recognized as the potential phytochemicals of DCQD for the treatment of ICH. Neuroinflammation is a crucial factor in the development of secondary brain injury following ICH. Further analysis results suggest that targeting ferroptosis is one of the mechanisms by which DCQD regulates the pathophysiology processes of ICH to improve ICH. In vitro cell experiment results have demonstrated the regulatory effect of naringin on TNF-α and Cox2. In addition, the phytochemicals in DCQD also contribute to enhancement of cognitive function impaired by ICH.
This study contributes to a better understanding of the underlying mechanisms behind DCQD's medicinal effects in treating ICH, offering insights into potential lead compounds for the development of anti-ICH drugs.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements