Skip to content
2000
image of The Use of Virus-like Particles as Immunogens to Treat Infectious Diseases

Abstract

Virus-like particles (VLPs) represent a promising approach to developing vaccines for infectious diseases. These nanostructures mimic the organization and conformation of native viruses but lack viral genetic material, rendering them non-infectious. VLPs can induce potent immune responses, making them ideal immunogens. This review provides an overview of VLP technology, its application in combating infectious diseases, and its potential to shape future vaccine development. Specific emphasis is placed on current clinical applications, emerging infectious disease targets, and the challenges in optimizing VLP-based immunogens.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266364554250628134050
2025-07-17
2025-09-13
Loading full text...

Full text loading...

References

  1. Tariq H. Batool S. Asif S. Ali M. Abbasi B.H. Virus-like particles: Revolutionary platforms for developing vaccines against emerging infectious diseases. Front. Microbiol. 2022 12 790121 10.3389/fmicb.2021.790121 35046918
    [Google Scholar]
  2. Yan D. Wei Y.Q. Guo H.C. Sun S.Q. The application of virus-like particles as vaccines and biological vehicles. Appl. Microbiol. Biotechnol. 2015 99 24 10415 10432 10.1007/s00253‑015‑7000‑8 26454868
    [Google Scholar]
  3. Noad R. Roy P. Virus-like particles as immunogens. Trends Microbiol. 2003 11 9 438 444 10.1016/S0966‑842X(03)00208‑7 13678860
    [Google Scholar]
  4. Zeltins A. Construction and characterization of virus-like particles: A review. Rev. Mol. Biotechnol. 2013 53 1 92 107 10.1007/s12033‑012‑9598‑4 23001867
    [Google Scholar]
  5. Wang R. Pan W. Jin L. Huang W. Li Y. Wu D. Gao C. Ma D. Liao S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020 471 88 102 10.1016/j.canlet.2019.11.039 31812696
    [Google Scholar]
  6. Nooraei S. Bahrulolum H. Hoseini Z.S. Katalani C. Hajizade A. Easton A.J. Ahmadian G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J. Nanobiotechnology 2021 19 1 59 10.1186/s12951‑021‑00806‑7 33632278
    [Google Scholar]
  7. Gupta R. Arora K. Roy S.S. Joseph A. Rastogi R. Arora N.M. Kundu P.K. Platforms, advances, and technical challenges in virus-like particles-based vaccines. Front. Immunol. 2023 14 1123805 10.3389/fimmu.2023.1123805 36845125
    [Google Scholar]
  8. Frietze K.M. Peabody D.S. Chackerian B. Engineering virus-like particles as vaccine platforms. Curr. Opin. Virol. 2016 18 44 49 10.1016/j.coviro.2016.03.001 27039982
    [Google Scholar]
  9. Fuenmayor J. Gòdia F. Cervera L. Production of virus-like particles for vaccines. N Biotechnol. 2017 39 Pt B 174 180 10.1016/j.nbt.2017.07.010 28778817
    [Google Scholar]
  10. Hu V.T. Kamat N.P. Cell-free protein synthesis systems for vaccine design and production. Curr. Opin. Biotechnol. 2023 79 102888 10.1016/j.copbio.2022.102888 36641905
    [Google Scholar]
  11. Zemella A. Thoring E. Hoffmeister C. Ubick S. Cell-free protein synthesis: Pros and cons of prokaryotic and eukaryotic systems. ChemBioChem 2015 16 17 2420 2431 10.1002/cbic.201500340
    [Google Scholar]
  12. Yue K. Chen J. Li Y. Kai L. Advancing synthetic biology through cell-free protein synthesis. Comput. Struct. Biotechnol. J. 2023 21 2899 2908 10.1016/j.csbj.2023.05.003 37216017
    [Google Scholar]
  13. Maharjan A. Park J.H. Cell‐free protein synthesis system: A new frontier for sustainable biotechnology‐based products. Biotechnol. Appl. Biochem. 2023 70 6 2136 2149 10.1002/bab.2514 37735977
    [Google Scholar]
  14. Kushnir N. Streatfield S.J. Yusibov V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 2012 31 1 58 83 10.1016/j.vaccine.2012.10.083 23142589
    [Google Scholar]
  15. Sherry L. Bahar M.W. Porta C. Fox H. Grehan K. Nasta V. Duyvesteyn H.M.E. De Colibus L. Marsian J. Murdoch I. Ponndorf D. Kim S.R. Shah S. Carlyle S. Swanson J.J. Matthews S. Nicol C. Lomonossoff G.P. Macadam A.J. Fry E.E. Stuart D.I. Stonehouse N.J. Rowlands D.J. Recombinant expression systems for production of stabilised virus-like particles as next-generation polio vaccines. Nat. Commun. 2025 16 1 831 10.1038/s41467‑025‑56118‑z 39827284
    [Google Scholar]
  16. Syomin B.V. Ilyin Y.V. Virus-like particles as an instrument of vaccine production. Mol. Biol. 2019 53 3 323 334 10.1134/S0026893319030154 32214478
    [Google Scholar]
  17. Hillebrandt N. Hubbuch J. Size-selective downstream processing of virus particles and non-enveloped virus-like particles. Front. Bioeng. Biotechnol. 2023 11 1192050 10.3389/fbioe.2023.1192050 37304136
    [Google Scholar]
  18. Tripathi N.K. Shrivastava A. Recent developments in bioprocessing of recombinant proteins: Expression hosts and process development. Front. Bioeng. Biotechnol. 2019 7 420 10.3389/fbioe.2019.00420 31921823
    [Google Scholar]
  19. Park E.Y. Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr. Purif. 2025 228 106664 10.1016/j.pep.2025.106664 39828016
    [Google Scholar]
  20. Hong M. Li T. Xue W. Zhang S. Cui L. Wang H. Zhang Y. Zhou L. Gu Y. Xia N. Li S. Genetic engineering of baculovirus-insect cell system to improve protein production. Front. Bioeng. Biotechnol. 2022 10 994743 10.3389/fbioe.2022.994743 36204465
    [Google Scholar]
  21. Badruzzaman A.T.M. Cheng Y.C. Sung W.C. Lee M.S. Insect cell-based quadrivalent seasonal influenza virus-like particles vaccine elicits potent immune responses in mice. Vaccines 2024 12 6 667 10.3390/vaccines12060667 38932396
    [Google Scholar]
  22. Marsian J. Lomonossoff G.P. Molecular pharming — VLPs made in plants. Curr. Opin. Biotechnol. 2016 37 201 206 10.1016/j.copbio.2015.12.007 26773389
    [Google Scholar]
  23. Li S.W. Zhang J. Li Y.M. Ou S.H. Huang G.Y. He Z.Q. Ge S.X. Xian Y.L. Pang S.Q. Ng M.H. Xia N.S. A bacterially expressed particulate hepatitis E vaccine: Antigenicity, immunogenicity and protectivity on primates. Vaccine 2005 23 22 2893 2901 10.1016/j.vaccine.2004.11.064 15780738
    [Google Scholar]
  24. Zhou Z. Wang M. Deng F. Li T. Hu Z. Wang H. Production of CCHF virus-like particle by a baculovirus-insect cell expression system. Virol. Sin. 2011 26 5 338 346 10.1007/s12250‑011‑3209‑6 21979573
    [Google Scholar]
  25. Metz S.W. Pijlman G.P. Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. J. Invertebr. Pathol. 2011 107 S16 S30.(Suppl.) 10.1016/j.jip.2011.05.002 21784227
    [Google Scholar]
  26. Kost T.A. Condreay J.P. Jarvis D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 2005 23 5 567 575 10.1038/nbt1095 15877075
    [Google Scholar]
  27. Kirchmeier M. Fluckiger A.C. Soare C. Bozic J. Ontsouka B. Ahmed T. Diress A. Pereira L. Schödel F. Plotkin S. Dalba C. Klatzmann D. Anderson D.E. Enveloped virus-like particle expression of human cytomegalovirus glycoprotein B antigen induces antibodies with potent and broad neutralizing activity. Clin. Vaccine Immunol. 2014 21 2 174 180 10.1128/CVI.00662‑13 24334684
    [Google Scholar]
  28. Mohsen M.O. Bachmann M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 2022 19 9 993 1011 10.1038/s41423‑022‑00897‑8 35962190
    [Google Scholar]
  29. Pijlman G.P. Enveloped virus‐like particles as vaccines against pathogenic arboviruses. Biotechnol. J. 2015 10 5 659 670 10.1002/biot.201400427 25692281
    [Google Scholar]
  30. Cid R. Bolívar J. Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules 2021 11 8 1072 10.3390/biom11081072 34439738
    [Google Scholar]
  31. Mansour A.A. Sereda Y.V. Yang J. Ortoleva P.J. Prospective on multiscale simulation of virus-like particles: Application to computer-aided vaccine design. Vaccine 2015 33 44 5890 5896 10.1016/j.vaccine.2015.05.099 26073014
    [Google Scholar]
  32. Zhang L. Lua L.H.L. Middelberg A.P.J. Sun Y. Connors N.K. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem. Soc. Rev. 2015 44 23 8608 8618 10.1039/C5CS00526D 26383145
    [Google Scholar]
  33. Prosper P. Rodríguez Puertas R. Guérin D.M.A. Branda M.M. Computational method for designing vaccines applied to virus-like particles (VLPs) as epitope carriers. Vaccine 2024 42 18 3916 3929 10.1016/j.vaccine.2024.05.025 38782665
    [Google Scholar]
  34. Laxmi B. Devi P.U.M. Thanjavur N. Buddolla V. The applications of artificial intelligence (AI)-driven tools in virus-like particles (VLPs) research. Curr. Microbiol. 2024 81 8 234 10.1007/s00284‑024‑03750‑5 38904765
    [Google Scholar]
  35. Guo W. Alarcon E. Sanchez J.E. Xiao C. Li L. Modeling viral capsid assembly: A review of computational strategies and applications. Cells 2024 13 24 2088 10.3390/cells13242088 39768179
    [Google Scholar]
  36. Roshankhah R. Pelton R. Ghosh R. Optimization of fluid flow in membrane chromatography devices using computational fluid dynamic simulations. J. Chromatogr. A 2023 1699 464030 10.1016/j.chroma.2023.464030 37137192
    [Google Scholar]
  37. Sripada S.A. Hosseini M. Ramesh S. Wang J. Ritola K. Menegatti S. Daniele M.A. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol. Adv. 2024 74 108391 10.1016/j.biotechadv.2024.108391 38848795
    [Google Scholar]
  38. Mohsen M.O. Gomes A.C. Vogel M. Bachmann M.F. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines 2018 6 3 37 10.3390/vaccines6030037 30004398
    [Google Scholar]
  39. Dhawan M. Saied A.A. Sharma M. Virus-like particles (VLPs)-based vaccines against COVID-19: Where do we stand amid the ongoing evolution of SARS-CoV-2? Health Sci. Rep. 2023 9 100127 10.1016/j.hsr.2023.100127
    [Google Scholar]
  40. Zepeda-Cervantes J. Ramírez-Jarquín J.O. Vaca L. Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): Toward better engineering of VLPs. Front. Immunol. 2020 11 1100 10.3389/fimmu.2020.01100 32582186
    [Google Scholar]
  41. Travassos R. Martins S.A. Fernandes A. Correia J.D.G. Melo R. Tailored viral-like particles as drivers of medical breakthroughs. Int. J. Mol. Sci. 2024 25 12 6699 10.3390/ijms25126699 38928403
    [Google Scholar]
  42. Tumban E. Muttil P. Escobar C.A.A. Peabody J. Wafula D. Peabody D.S. Chackerian B. Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine 2015 33 29 3346 3353 10.1016/j.vaccine.2015.05.016 26003490
    [Google Scholar]
  43. Janitzek C.M. Peabody J. Thrane S. Carlsen H.R. P.; G Theander, T.; Salanti, A.; Chackerian, B.; A Nielsen, M.; Sander, A.F. A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Sci. Rep. 2019 9 1 5260 10.1038/s41598‑019‑41522‑5 30918267
    [Google Scholar]
  44. Wang J.W. Roden R.B.S. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev. Vaccines 2013 12 2 129 141 10.1586/erv.12.151 23414405
    [Google Scholar]
  45. McFall-Boegeman H. Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev. Vaccines 2022 21 4 453 469 10.1080/14760584.2022.2029415 35023430
    [Google Scholar]
  46. Doan L.X. Li M. Chen C. Yao Q. Virus-like particles as HIV-1 vaccines. Rev. Med. Virol. 2005 15 2 75 88 10.1002/rmv.449 15484204
    [Google Scholar]
  47. Aggarwal S. Agarwal P. Singh A.K. Human papilloma virus vaccines: A comprehensive narrative review. Cancer Treat Res. Commun, 2023 37 100780 10.1016/j.ctarc.2023.100780 38006748
    [Google Scholar]
  48. Kirnbauer R. Booyt F. Chengt N. Lowy D.R. Schiller J.T. Papillomavirus l1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 1992 89 24 12180 12184 10.1073/pnas.89.24.12180
    [Google Scholar]
  49. Zhao F.H. Wu T. Hu Y.M. Wei L.H. Li M.Q. Huang W.J. Chen W. Huang S.J. Pan Q.J. Zhang X. Hong Y. Zhao C. Li Q. Chu K. Jiang Y.F. Li M.Z. Tang J. Li C.H. Guo D.P. Ke L.D. Wu X. Yao X.M. Nie J.H. Lin B.Z. Zhao Y.Q. Guo M. Zhao J. Zheng F.Z. Xu X.Q. Su Y.Y. Zhang Q.F. Sun G. Zhu F.C. Li S.W. Li Y.M. Pan H.R. Zhang J. Qiao Y.L. Xia N.S. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: End-of-study analysis of a phase 3, double-blind, randomised, controlled trial. Lancet Infect. Dis. 2022 22 12 1756 1768 10.1016/S1473‑3099(22)00435‑2 36037823
    [Google Scholar]
  50. Liang J.T. Hepatitis B. Hepatitis B. The virus and disease #. Hepatology 2009 49 5 S13 S21 10.1002/hep.22881 19399811
    [Google Scholar]
  51. Boni C. Fisicaro P. Valdatta C. Amadei B. Di Vincenzo P. Giuberti T. Laccabue D. Zerbini A. Cavalli A. Missale G. Bertoletti A. Ferrari C. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J. Virol. 2007 81 8 4215 4225 10.1128/JVI.02844‑06 17287266
    [Google Scholar]
  52. Rybicka M. Bielawski K.P. Recent advances in understanding, diagnosing, and treating hepatitis B virus infection. Microorganisms 2020 8 9 1416 10.3390/microorganisms8091416 32942584
    [Google Scholar]
  53. Aliu T.B. Majiyebo A.J. Tsado A.N. Ibrahim H.A. Berinyuy E.B. Biology and molecular pathogenesis of hepatitis b virus infection. Biomed. Nat. Appl. Sci. 2022 2 2 28 36 10.53858/bnas02022836
    [Google Scholar]
  54. Mahmood F. Xu R. Awan M.U.N. Song Y. Han Q. Xia X. Wei J. Xu J. Peng J. Zhang J. HBV vaccines: Advances and development. Vaccines 2023 11 12 1862 10.3390/vaccines11121862 38140265
    [Google Scholar]
  55. Cox M.M.J. Hashimoto Y. A fast track influenza virus vaccine produced in insect cells. J. Invertebr. Pathol. 2011 107 Suppl. S31 S41 10.1016/j.jip.2011.05.003 21784229
    [Google Scholar]
  56. Kao C.M. Rostad C.A. Nolan L.E. Peters E. Kleinhenz J. Sherman J.D. Tippett A. Shih J.W.K. Yildirim I. Agbakoba V. Beresnev T. Ballou C. Kamidani S. Karmali V. Natrajan M. Scherer E.M. Rouphael N. Anderson E.J. A phase 1, double-blinded, placebo-controlled clinical trial to evaluate the safety and immunogenicity of HEV-239 (Hecolin) vaccine in healthy US adults. J. Infect. Dis. 2024 230 5 1093 1101 10.1093/infdis/jiae148 38536442
    [Google Scholar]
  57. Aslan A.T. Balaban H.Y. Hepatitis E. Hepatitis E virus: Epidemiology, diagnosis, clinical manifestations, and treatment. World J. Gastroenterol. 2020 26 37 5543 5560 10.3748/wjg.v26.i37.5543 33071523
    [Google Scholar]
  58. Qian C. Liu X. Xu Q. Wang Z. Chen J. Li T. Zheng Q. Yu H. Gu Y. Li S. Xia N. Recent progress on the versatility of virus-like particles. Vaccines 2020 8 1 139 10.3390/vaccines8010139 32244935
    [Google Scholar]
  59. Cai W. Tang Z.M. Wen G.P. Wang S.L. Ji W.F. Yang M. Ying D. Zheng Z.Z. Xia N.S. A high-throughput neutralizing assay for antibodies and sera against hepatitis E virus. Sci. Rep. 2016 6 1 25141 10.1038/srep25141 27122081
    [Google Scholar]
  60. Zhu F.C. Zhang J. Zhang X.F. Zhou C. Wang Z.Z. Huang S.J. Wang H. Yang C.L. Jiang H.M. Cai J.P. Wang Y.J. Ai X. Hu Y.M. Tang Q. Yao X. Yan Q. Xian Y.L. Wu T. Li Y.M. Miao J. Ng M.H. Shih J.W.K. Xia N.S. Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010 376 9744 895 902 10.1016/S0140‑6736(10)61030‑6 20728932
    [Google Scholar]
  61. Wu T. Li S.W. Zhang J. Ng M.H. Xia N.S. Zhao Q. Hepatitis E. Hepatitis E vaccine development. Hum. Vaccin. Immunother. 2012 8 6 823 827 10.4161/hv.20042 22699438
    [Google Scholar]
  62. Elliott R.M. Orthobunyaviruses: Recent genetic and structural insights. Nat. Rev. Microbiol. 2014 12 10 673 685 10.1038/nrmicro3332 25198140
    [Google Scholar]
  63. Felberbaum R.S. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol. J. 2015 10 5 702 714 10.1002/biot.201400438 25800821
    [Google Scholar]
  64. de Mello R.G. Bernardino T.C. Guardalini L.G.O. Astray R.M. Antoniazzi M.M. Jared S.G.S. Núñez E.G.F. Jorge S.A.C. Zika virus-like particles (VLPs) produced in insect cells. Front. Pharmacol. 2023 14 1181566 10.3389/fphar.2023.1181566 37377933
    [Google Scholar]
  65. Moon K.B. Jeon J.H. Choi H. Park J.S. Park S.J. Lee H.J. Park J.M. Cho H.S. Moon J.S. Oh H. Kang S. Mason H.S. Kwon S.Y. Kim H.S. Construction of SARS-CoV-2 virus-like particles in plant. Sci. Rep. 2022 12 1 1005 10.1038/s41598‑022‑04883‑y 35046461
    [Google Scholar]
  66. Huang Y. Guo X. Wu Y. Chen X. Feng L. Xie N. Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 34 10.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  67. Schwarz B. Douglas T. Development of virus‐like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015 7 5 722 735 10.1002/wnan.1336 25677105
    [Google Scholar]
  68. Wang B. Hu S. Teng Y. Chen J. Wang H. Xu Y. Wang K. Xu J. Cheng Y. Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct. Target. Ther. 2024 9 1 200 10.1038/s41392‑024‑01889‑y 39128942
    [Google Scholar]
  69. Trashi I. Durbacz M.Z. Trashi O. Wijesundara Y.H. Ehrman R.N. Chiev A.C. Darwin C.B. Herbert F.C. Gadhvi J. De Nisco N.J. Nielsen S.O. Gassensmith J.J. Self-assembly of a fluorescent virus-like particle for imaging in tissues with high autofluorescence. J. Mater. Chem. B Mater. Biol. Med. 2023 11 20 4445 4452 10.1039/D3TB00469D 37144595
    [Google Scholar]
  70. Gourdelier M. Swain J. Arone C. Mouttou A. Bracquemond D. Merida P. Saffarian S. Lyonnais S. Favard C. Muriaux D. Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles. Sci. Rep. 2022 12 1 14651 10.1038/s41598‑022‑18681‑z 36030323
    [Google Scholar]
  71. Abu N. Mohd Bakhori N. Shueb R.H. Lateral flow assay for hepatitis B detection: A review of current and new assays. Micromachines 2023 14 6 1239 10.3390/mi14061239 37374824
    [Google Scholar]
  72. Cai X. Zheng W. Pan S. Zhang S. Xie Y. Guo H. Wang G. Li Z. Luo M. A virus-like particle of the hepatitis B virus preS antigen elicits robust neutralizing antibodies and T cell responses in mice. Antiviral Res. 2018 149 48 57 10.1016/j.antiviral.2017.11.007 29129705
    [Google Scholar]
  73. Mobini S. Chizari M. Mafakher L. Rismani E. Rismani E. Computational design of a novel VLP-based vaccine for hepatitis B virus. Front. Immunol. 2020 11 2074 10.3389/fimmu.2020.02074 33042118
    [Google Scholar]
  74. Irshad M. Gandhi B.M. Acharya S.K. Joshi Y.K. Tandon B.N. An enzyme-linked immunosorbent assay (ELISA) for the detection of igg and igm anti-idiotypes directed against anti-hbs molecules. J. Immunol. Methods 1987 96 2 211 217 10.1016/0022‑1759(87)90316‑4
    [Google Scholar]
  75. Xiao Y. Thompson A.J. Howell J. Point-of-care tests for hepatitis B: An overview. Cells 2020 9 10 2233 10.3390/cells9102233 33023265
    [Google Scholar]
  76. Jensen J.E. Becker G.L. Jackson J.B. Rysavy M.B. Human papillomavirus and associated cancers: A review. Viruses 2024 16 5 680 10.3390/v16050680 38793561
    [Google Scholar]
  77. Hernandez B.Y. Ton T. Shvetsov Y.B. Goodman M.T. Zhu X. Human papillomavirus (HPV) L1 and L1-L2 virus-like particle-based multiplex assays for measurement of HPV virion antibodies. Clin. Vaccine Immunol. 2012 19 9 1348 1352 10.1128/CVI.00191‑12 22761294
    [Google Scholar]
  78. Kroupis C. Vourlidis N. Human papilloma virus (HPV) molecular diagnostics. Clin. Chem. Lab. Med. 2011 49 11 1783 1799 10.1515/cclm.2011.685 21875401
    [Google Scholar]
  79. Sanchooli A. Aghayipour K. Naghlani S.K. Samiee Z. Kiasari B.A. Makvandi M. Production of human papillomavirus type-16 L1 VLP in pichia pastoris. Appl. Biochem. Microbiol. 2020 56 1 51 57 10.1134/S0003683820010147
    [Google Scholar]
  80. Abdoli A. Soleimanjahi H. Fotouhi F. Teimoori A. Pour Beiranvand S. Kianmehr Z. Human papillomavirus type16- l1 vlp production in insect cells. Iran. J. Basic Med. Sci. 2013 16 8 891 895
    [Google Scholar]
  81. Du P. Brendle S. Milici J. Camacho F. Zurlo J. Christensen N. Meyers C. Comparisons of VLP-Based ELISA, neutralization assays with native HPV, and Neutralization Assays with PsV in detecting hpv antibody responses in HIV-infected women. J. AIDS Clin. Res. 2015 6 3 433 10.4172/2155‑6113.1000433 26085957
    [Google Scholar]
  82. Khan M.B. Yang Z.S. Lin C.Y. Hsu M.C. Urbina A.N. Assavalapsakul W. Wang W.H. Chen Y.H. Wang S.F. Dengue overview: An updated systemic review. J. Infect. Public Health 2023 16 10 1625 1642 10.1016/j.jiph.2023.08.001 37595484
    [Google Scholar]
  83. Chan K.R. Ismail A.A. Thergarajan G. Raju C.S. Yam H.C. Rishya M. Sekaran S.D. Serological cross-reactivity among common flaviviruses. Front. Cell. Infect. Microbiol. 2022 12 975398 10.3389/fcimb.2022.975398 36189346
    [Google Scholar]
  84. Frazer J.L. Norton R. Dengue: A review of laboratory diagnostics in the vaccine age. J. Med. Microbiol. 2024 73 5 10.1099/jmm.0.001833 38722305
    [Google Scholar]
  85. Urakami A. Ngwe Tun M.M. Moi M.L. Sakurai A. Ishikawa M. Kuno S. Ueno R. Morita K. Akahata W. An envelope-modified tetravalent dengue virus-like-particle vaccine has implications for flavivirus vaccine design. J. Virol. 2017 91 23 e01181 e17 10.1128/JVI.01181‑17 28956764
    [Google Scholar]
  86. Matsunaga K. Kimoto M. Lim V.W. Thein T.L. Vasoo S. Leo Y.S. Sun W. Hirao I. Competitive ELISA for a serologic test to detect dengue serotype-specific anti-NS1 IgGs using high-affinity UB-DNA aptamers. Sci. Rep. 2021 11 1 18000 10.1038/s41598‑021‑97339‑8 34504185
    [Google Scholar]
  87. Kabir M.A. Zilouchian H. Younas M.A. Asghar W. Dengue detection: Advances in diagnostic tools from conventional technology to point of care. Biosensors 2021 11 7 206 10.3390/bios11070206 34201849
    [Google Scholar]
  88. Peeling R.W. Artsob H. Pelegrino J.L. Buchy P. Cardosa M.J. Devi S. Enria D.A. Farrar J. Gubler D.J. Guzman M.G. Halstead S.B. Hunsperger E. Kliks S. Margolis H.S. Nathanson C.M. Nguyen V.C. Rizzo N. Vázquez S. Yoksan S. Evaluation of diagnostic tests: Dengue. Nat. Rev. Microbiol. 2010 8 S12 S30 S37 10.1038/nrmicro2459 21548185
    [Google Scholar]
  89. Tran T.N.T. de Vries P.J. Hoang L.P. Phan G.T. Le H.Q. Tran B.Q. Vo C.M.T. Nguyen N.V. Kager P.A. Nagelkerke N. Groen J. Enzyme-linked immunoassay for dengue virus IgM and IgG antibodies in serum and filter paper blood. BMC Infect. Dis. 2006 6 1 13 10.1186/1471‑2334‑6‑13 16436203
    [Google Scholar]
  90. Chao D.Y. Whitney M.T. Davis B.S. Medina F.A. Munoz J.L. Chang G.J.J. Comprehensive evaluation of differential serodiagnosis between zika and dengue viral infections. J. Clin. Microbiol. 2019 57 3 e01506 e01518 10.1128/JCM.01506‑18 30541932
    [Google Scholar]
  91. Metz S.W. Thomas A. White L. Stoops M. Corten M. Hannemann H. de Silva A.M. Dengue virus-like particles mimic the antigenic properties of the infectious dengue virus envelope. Virol. J. 2018 15 1 60 10.1186/s12985‑018‑0970‑2 29609659
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266364554250628134050
Loading
/content/journals/ctmc/10.2174/0115680266364554250628134050
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: diseases ; immunogens ; virus ; Virus-like particles ; infectious diseases ; vaccines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test