Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
21 - 40 of 190 results
-
-
Cancer Stem Cell-targeted Antibody-drug Conjugates for Cancer Immunotherapy
Available online: 11 September 2025More LessCancer stem cells (CSCs) participate in cancer initiation, metastasis, and therapy tolerance, presenting a formidable challenge in cancer treatment. Antibody-drug conjugates (ADCs) have been established as a potential strategy for selectively targeting and eradicating CSCs, thereby overcoming resistance mechanisms and preventing tumor recurrence. ADCs integrate a monoclonal antibody specific to CSC surface markers, such as CD44, CD133, EpCAM, and ALDH1, with a potent cytotoxic payload linked by a stable chemical linker. Upon antigen binding, ADCs undergo receptor-mediated internalization, leading to intracellular payload release and CSC apoptosis. Recent advances in ADC technology have enhanced selectivity and efficacy while minimizing off-target toxicity. Preclinical studies demonstrate that CSC-targeted ADCs, including CD133- and CD44-directed therapies, effectively deplete CSC populations in glioblastoma, breast, colorectal, and lung cancers. EpCAM-targeted ADCs have also shown efficacy in epithelial tumors with potential synergy in combination immunotherapies. Moreover, emerging approaches, such as bispecific antibodies and optimized linker chemistry, further refine CSC-targeted ADCs for clinical applications. Despite these advancements, challenges remain, including CSC heterogeneity, immune evasion, and limitations in biomarker specificity. Addressing these hurdles requires continued innovation in ADC engineering, novel payloads, and combinatory strategies with immune checkpoint inhibitors or CAR-T cell therapies. While clinical evaluations are still in the early phases, preliminary trials underscore the potential of CSC-targeted ADCs in revolutionizing precision oncology. This review explores the mechanisms, recent developments, and prospects of CSC-targeted ADCs, highlighting their transformative potential in cancer immunotherapy.
-
-
-
The Impact of IGFBP6 Knockdown on Cholesterol Metabolism in Breast Cancer Cells
Available online: 11 September 2025More LessIntroductionCholesterol plays a key role in maintaining tumor cell homeostasis. Reduced IGFBP6 expression is associated with an increased risk of breast cancer recurrence. Previous studies showed that IGFBP6 knockdown decreases cholesterol levels in the MDA-MB-231 cell line. This study aimed to investigate how IGFBP6 influences genes involved in cholesterol metabolism.
MethodsWe used MDA-MB-231 breast cancer cells with IGFBP6 knockdown. Transcriptomic and proteomic analyses were performed, with selected gene expression validated by RT-PCR. Correlations between IGFBP6 and cholesterol-related genes were evaluated using public RNA-seq datasets.
ResultsIGFBP6 knockdown in MDA-MB-231 cells resulted in a threefold decrease in low-density lipoprotein receptor (LDLR) expression and a twofold reduction in LDLR adaptor protein (LDLRAP1) mRNA levels, both responsible for exogenous cholesterol uptake. Meanwhile, PCSK9 expression increased 11-fold (p-adj = 1.4E-93), further limiting uptake. Despite the upregulation of genes involved in endogenous cholesterol synthesis (HMGCS1, HMGCR, FDFT1, SQLE, DHCR24), total cholesterol content in knockdown cells decreased, leading to activation of the sterol-dependent transcription factor SREBF1 (OR = 6.44; p-adj = 0.036). Correlation analysis revealed a significant association between IGFBP6 expression and cholesterol synthesis genes in basal-like breast cancer.
DiscussionThe altered expression profile of multiple cholesterol metabolism-related genes with known prognostic value aligns with a transcriptional program typical of poor-outcome basal-like tumors. These findings support the role of IGFBP6 as a regulator of lipid metabolism and a potential biomarker for therapeutic stratification.
ConclusionThe results of this study indicate that the reduction in cholesterol levels observed in breast cancer cells following IGFBP6 knockdown is primarily due to decreased exogenous uptake. These findings highlight the role of IGFBP6 in regulating cholesterol metabolism and further explain its clinical significance in predicting breast cancer recurrence and progression.
-
-
-
Harnessing Vitamin C: Unveiling Its Potential in Cancer Prevention and Treatment
Authors: Antara Roy, Dilip K. Maiti and Bimal Krishna BanikAvailable online: 11 September 2025More LessThe strong antioxidant vitamin C has been researched for its potential use in the prevention and treatment of cancer. Scavenging free radicals and lowering oxidative stress, which is essential in carcinogenesis, helps to protect cells. Excessive levels of vitamin C can produce hydrogen peroxide and selectively kill cancer cells in the tumor microenvironment by exerting pro-oxidant effects. Normal cells might be spared, indicating a possible window for treatment. Additionally, vitamin C affects important cellular functions that contribute to the development of tumors, including angiogenesis, inflammation, immune response modulation, and epigenetic regulation. Sensitizing tumor cells or shielding healthy tissue from harm caused by treatment may increase the effectiveness of traditional cancer treatments. Recent clinical investigations have revisited the use of high-dose intravenous vitamin C in both monotherapy and combination regimens. While some trials report improvements in quality of life, reduced chemotherapy side effects, and extended survival in specific cancer types, robust evidence of a consistent anticancer effect remains lacking due to variability in study design, cancer type, dosing protocols, and patient populations. Nonetheless, these studies have renewed interest in understanding the pharmacodynamics and clinical utility of vitamin C in oncology. Vitamin C should be considered an investigational approach rather than a standard component of cancer therapy. This review provides a comprehensive overview of the biochemical properties of Vitamin C, its anticancer mechanisms, experimental evidence, clinical data, controversies, and future directions.
-
-
-
[18F]FDG PET/CT versus Bone Scintigraphy for the Diagnosis of Bone Metastasis in Breast Cancer: A Systematic Review and Meta-Analysis
Authors: Xinmin Wang, Yufei Xu and Jing JingAvailable online: 09 September 2025More LessIntroductionBreast cancer has become the most commonly diagnosed cancer in women worldwide, with advanced cases often leading to bone metastases that significantly affect prognosis and quality of life. This meta-analysis and systematic review aims to evaluate and compare the diagnostic performance of [18F]FDG PET/CT and bone scintigraphy for detecting bone metastases in breast cancer patients.
MethodsA systematic search was conducted across PubMed, Embase, Web of Science, and Scopus for studies published up to February 2025. Relevant articles were identified using a combination of subject-specific and free-text keywords, including “breast cancer,” “positron emission tomography,” “bone scintigraphy,” and “bone metastasis.” Studies assessing the diagnostic utility of [18F]FDG PET/CT and bone scintigraphy in detecting bone metastases were included. A bivariate random-effects model was used to calculate pooled estimates of sensitivity, specificity, and diagnostic accuracy with 95% confidence intervals (CIs). Potential sources of heterogeneity were explored using meta-regression analysis. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was applied to evaluate the methodological quality of the included studies.
ResultsA total of 1407 publications were initially retrieved, and 13 studies involving 892 patients met the inclusion criteria. The pooled diagnostic performance for [18F]FDG PET/CT demonstrated a sensitivity of 0.91 (95% CI: 0.81-0.96) and a specificity of 0.98 (95% CI: 0.93-1.00), with an area under the curve (AUC) of 0.99 (95% CI: 0.97-0.99). In comparison, bone scintigraphy showed a sensitivity of 0.82 (95% CI: 0.72-0.89), specificity of 0.81 (95% CI: 0.73-0.87), and an AUC of 0.88 (95% CI: 0.85-0.91). Despite its higher diagnostic accuracy, PET/CT exhibited notable heterogeneity across studies, potentially influenced by differences in patient populations and imaging interpretation criteria.
DiscussionOur meta-analysis demonstrated the superior diagnostic performance of [18F]FDG PET/CT over bone scintigraphy, likely attributable to its enhanced sensitivity for osteolytic lesions and integrated anatomical-functional imaging. Nevertheless, considerable inter-study heterogeneity and incomplete clinical data reporting limit the generalizability and robustness, warranting further standardized prospective investigations.
ConclusionThe findings suggest that [18F]FDG PET/CT offers superior diagnostic accuracy compared to bone scintigraphy for detecting bone metastases in breast cancer patients. However, its clinical application requires further validation through large-scale, prospective studies. Additionally, considerations such as cost-effectiveness and accessibility must be addressed before widespread clinical adoption.
-
-
-
New Indazole Derivatives as Potential Scaffolds for the Development of Anticancer, Antiviral, and Anti-tuberculosis Chemotherapeutic Compounds
Available online: 05 September 2025More LessIntroductionChemotherapy remains essential despite advances in immunotherapy, radiotherapy, and biological therapy. However, the wide range of chemical drugs is limited by a narrow therapeutic index, low selectivity, and the development of resistance. In this regard, new high-efficiency drugs are in extremely high demand. The indazole moiety, a scaffold found in many biologically active compounds, was selected for use in new drug design.
MethodsSix new indazole derivatives were synthesized via Suzuki-Miyaura coupling starting from bromoindazole. Their antiviral (against influenza A and SARS-CoV-2), antibacterial (against M. tuberculosis), and antiproliferative activities (against neuroblastoma, glioma, leukemia cell lines) were evaluated in vitro. Acute toxicity was assessed in mice of both sexes via single intragastric administration, with toxicometric parameters and pathomorphological changes studied.
Results6-(1H-pyrazol-4-yl)-1H-indazole (8) suppressed the reproduction of the influenza virus at non-toxic doses to the MDCK cells and showed cytotoxicity against cancer cell lines, with an IC50 between 4 and 14 µM. However, it exhibited significant acute toxicity in mice (LD50 40 mg/kg), causing systemic organ damage.
DiscussionDerivative 8 demonstrated promising antiviral and antiproliferative activities but exhibited considerable acute toxicity in vivo. The antiviral efficacy, although lower than oseltamivir, is meaningful and justifies further optimization and investigation. Its antibacterial activity against M. tuberculosis adds to its potential as a multifunctional agent.
ConclusionWhile derivative 8 has shown potential as an antiviral and anticancer agent, its high toxicity highlights the need for further studies to define a safe and effective therapeutic window. Overall, the indazole scaffold remains a valuable platform for the development of new therapeutic compounds.
-
-
-
Circulating Proteins and Bone Mineral Density: A Proteome-Wide Mendelian Randomization Study
Authors: Tianyi Wang, Liu Liu, Ruiying Han, Yikai He, Yubin Cao, Ding Bai and Yongwen GuoAvailable online: 02 September 2025More LessIntroductionCurrent osteoporosis medications often prove ineffective for various reasons. Alongside optimizing available agents, new genetic targets should be proposed for drug development. Mendelian randomization (MR) may resolve throughput and confounding issues in traditional observational studies for druggable targets.
MethodsWe employed two-sample MR with protein quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) data as exposures and six bone mineral density (BMD) sites as outcomes. By meta-analyzing pQTL evidence, validating eQTL evidence, conducting MR sensitivity tests, and assessing druggability, key druggable targets for BMD were identified. Additionally, we performed functional analysis, drug repurposing annotation, transcriptome analysis, in-house PCR, ELISA, and micro-CT validation to further investigate the functionality and expression levels of these targets across different tissues and conditions.
ResultsOut of 5,928 pQTLs from deCODE and UKB-PPP datasets, 16 were identified as prioritized targets with significant meta pQTL evidence. Tyrosine-protein kinase Lyn (LYN, meta beta -0.09, 95% CI -0.13 to -0.05), Chondroadherin (CHAD, meta beta -0.39, 95% CI -0.18 to -0.20), Tumor necrosis factor receptor superfamily member 19 (TNFRSF19, meta beta -0.03, 95% CI -0.05 to -0.02), and Transforming growth factor beta induced (TGFBI, meta beta -0.04, 95% CI -0.06 to -0.03) were identified as key druggable targets for BMD. R-spondin-3 (RSPO3) and SPARC-related modular calcium-binding protein 2 (SMOC2) were also suggested with consistent MR associations with previous studies.
DiscussionWe identified four novel BMD-related targets (CHAD, LYN, TGFBI, TNFRSF19) through pQTL meta-analysis, and validated RSPO3/SMOC2's positive effects. By integrating multi-tissue transcriptomics and OVX experiments, we further revealed elevated expression of TNFRSF19/TGFBI negatively correlated with BMD, providing new therapeutic insights.
ConclusionThis large-scale Proteome-Wide MR study introduced novel targets for BMD and osteoporosis at transcriptional and translational levels, presenting new prospects for drug repurposing and development.
-
-
-
Azole Antifungals Under Pressure: Therapeutic Challenges and Multifaceted Resistance Mechanisms
Available online: 02 September 2025More LessFungal infections have increased markedly in both incidence and severity over recent decades, driven in part by the emergence of novel pathogenic species harboring sophisticated resistance mechanisms against commonly used antifungal agents. This alarming trend is especially pronounced with azoles, which remain widely used in clinical settings due to their broad-spectrum activity and favorable oral bioavailability. Azoles exert their antifungal effect by inhibiting lanosterol 14α-demethylase, a key enzyme in the ergosterol biosynthesis pathway, thereby compromising the integrity, fluidity, and functionality of the fungal cell membrane. However, the escalating prevalence of multidrug-resistant fungal strains, particularly those resistant to azoles, has significantly complicated therapeutic strategies and represents a growing threat to global public health. This perspective explores the diverse and increasingly complex mechanisms of azole resistance in clinically relevant fungi, particularly species of Candida and Aspergillus, highlighting the urgent need for enhanced surveillance, novel therapeutic approaches, and responsible antifungal stewardship.
-
-
-
Mechanisms of Inflammation Chronification: Gene and Epigenetic Regulation of Intolerant Response (Trained Immunity)
Available online: 29 August 2025More LessAimsThis study aims to elucidate the mechanisms contributing to the transition from acute to chronic inflammation, particularly in the context of atherosclerosis, by investigating the pro-inflammatory responses of cybrid cell lines derived from patients with coronary heart disease.
BackgroundAcute inflammatory reactions are essential components of the innate immune response, typically resolving within hours or days. However, disruptions in this process can lead to chronic inflammation, which is linked to significant morbidity and mortality. Atherosclerosis, characterized by chronic vascular inflammation, poses a major health threat, underscoring the need for understanding its underlying mechanisms.
ObjectivesThe primary objective is to analyze the pro-inflammatory cytokine responses of 14 cellular lines, including 13 cybrids and one maternal line (THP-1), to identify intolerant and tolerant responses to key cytokines associated with inflammation.
MethodsWe utilized cybrid cell lines created by fusing THP-1 monocytic cells with platelets from patients diagnosed with atherosclerosis. Cytokine responses were assessed through quantitative analysis of IL-1β, IL-6, MPC-1, IL-8, and TNF-α secretion. Gene expression profiles were analyzed to correlate cytokine secretion with specific gene regulation patterns, focusing on epigenetic mechanisms influencing immune responses.
ResultsDistinct intolerant and tolerant responses were observed across the cellular lines for key cytokines. Specifically, TC-HSMAM1 and TCP-521 were intolerant to IL-1β, TC-HSMAM1, TC-LSM2, and TC-522 were intolerant to IL-6, six lines exhibited intolerance to MPC-1, and eight lines were intolerant to IL-8. No intolerant responses were noted for TNF-α. Gene expression analysis revealed that at least ten genes correlated with increased cytokine secretion in intolerant reactions, while 23 genes showed higher expression during these intolerant responses, indicating significant roles for DNA modification and chromatin remodeling. An important finding emerged from the study of agents affecting histone modification. Specifically, unlike other agents, sodium butyrate not only exhibited a stronger suppression of the inflammatory response in cells but also eliminated their intolerance to inflammatory stimulation. Therefore, in the near future, sodium butyrate could be regarded as a fundamentally new anti-inflammatory preventive and therapeutic agent, with its mechanism of action rooted in the prevention and suppression of chronic inflammation.
DiscussionIn chronic non-infectious diseases like atherosclerosis the intolerant response or trained immunity can worsen inflammation. This study shows that both genetic and epigenetic regulation contribute to this intolerant response. It was also found that sodium butyrate can prevent the intolerant response, suggesting it may become a new anti-inflammatory agent that suppresses chronic inflammation.
ConclusionOur findings have suggested that the interplay between pro-inflammatory cytokine responses and epigenetic regulation mechanisms is critical in determining whether a cell exhibits a normal or intolerant immune response. Understanding these dynamics may provide insights into the chronic inflammatory processes associated with atherosclerosis and other related conditions.
-
-
-
Diagnosis and Potential Therapy of Brain Diseases Using 64Cu: A Scoping Review
Authors: Yumei An, Xinqi Huang, Mingyuan Xu, Xianzhe Li, Haiyan Shan and Mingyang ZhangAvailable online: 28 August 2025More LessIntroductionThis paper provides a comprehensive review examining the application of copper radionuclides, particularly 64Cu, in the diagnosis and potential therapy of various brain diseases.
MethodsTwo researchers conducted an independent search of the PubMed and Web of Science databases for original research articles published in English. Following a screening process based on titles and abstracts, 42 publications reporting the use of copper radionuclides for diagnosing or treating brain diseases were selected for this review.
ResultsThe analysis revealed that several copper isotopes, namely 60 Cu, 61 Cu, 62 Cu, 64Cu, and 67Cu, have been explored for diagnostic or therapeutic purposes in conditions including Alzheimer’s disease, Wilson’s disease, brain tumors, and traumatic brain injury. The isotopes 60 Cu, 61 Cu, and 62 Cu were primarily associated with diagnostic uses. In contrast, 64Cu and 67Cu were identified as having potential for both diagnosis and therapy (theranostic). Furthermore, the availability of 64Cu was noted to be better compared to 67Cu.
Discussion64Cu radionuclides are frequently employed in imaging techniques for brain pathologies. While their role in radiographic applications is prominent, the therapeutic potential of 64Cu is currently underdeveloped, and current evidence is primarily derived from preclinical studies, highlighting the critical need for clinical trials to validate 64Cu’s efficacy and safety as a theranostic agent in neurological conditions.
Conclusion64Cu holds significant potential for both diagnosis and therapy of various brain diseases. Continued research and development in this area are crucial to unlock its full therapeutic potential and improve patient outcomes.
-
-
-
PROTACs Targeting Molecular Targets in Triple-Negative Breast Cancer
Authors: Gyas Khan, Sarfaraz Ahmad and Md Sadique HussainAvailable online: 28 August 2025More LessTriple-Negative Breast Cancer (TNBC) is defined as a type of breast cancer having the absence of estrogen, progesterone, and human epidermal growth factor receptors. To date, chemotherapeutic drugs and immunotherapy have faced major challenges, including treatment resistance, toxicity, and limited efficacy. Lately, PROTACs have been discovered to assist in the breakdown of difficult-to-target oncoproteins employing the ubiquitin-proteasome system. This review focuses on PROTACs used in TNBC, identifying BET proteins, SRC-1, PARP1, FAK, c-Myc, and CDKs as the primary molecular targets of PROTACs in this type of cancer. PROTACs can help overcome drug resistance, enable prolonged protein degradation, and enhance therapeutic performance of these new therapies in clinical research. BETd-246, ND1-YL2, and pal-pom PROTACs have shown promise in reducing cancer progression and spread in TNBC. Additionally, the use of PROTACs to target EZH2, AR, and TRIM24 demonstrates that this approach offers great flexibility. While these findings are promising, it remains challenging to achieve better pharmacokinetics, maintain product stability, increase bioavailability, enhance selectivity, and prevent potential toxicity. New developments in PROTAC design and clinical results suggest that the strategy could lead to improved treatments for TNBC patients, helping them live longer and better.
-
-
-
Cutting-Edge Innovations: Recent Patents in Medicinal Chemistry
Authors: Arshleen Kaur, Rajesh K. Singh and Rohit BhatiaAvailable online: 27 August 2025More Less
-
-
-
Boswellic Acid Derived Molecules as SARS-Cov-2 Spike Protein Inhibitors: A Comprehensive Virtual Screening, Triplicate Molecular Dynamic Simulation and Biochemical Validation
Available online: 26 August 2025More LessBackgroundCoronavirus disease (COVID-19) is a highly infective disease caused by SARS-CoV-2. The SARS-CoV-2 spike protein binds with the human ACE2 receptor to facilitate viral entry into the host cell; therefore, spike protein serves as a potential target for drug development.
ObjectiveKeeping in view the significance of SARS-CoV-2 spike protein for viral replications, in the current study, we identified the potent inhibitors against SARS-CoV-2 spike protein in order to combat the viral infection.
MethodsIn the current study, we screened an in-house library of ~900 natural and synthesized compounds against the spike protein receptor binding domain (RBD) using a structure-based virtual approach, followed by an in-vitro inhibition bioassay.
ResultsSeven (C1-C7) potent compounds were identified with docking scores ≥ −6.66 Kcal/mol; their drug-likeness, pharmacokinetic, and pharmacodynamic characteristics were excellent with no toxic effect. Those molecules were subjected to a triplicate simulation for 200 ns, which further confirmed their stable binding with RBD. This tight packing of complexes was reflected by calculated binding free energy, which disclosed higher binding free energy of C4, C7 and C6 than C1-C3, while predicted entropic energy demonstrates higher values for C4, C7 and C1 than the rest of the compounds, indicating more thermodynamic stability in protein due to conformational changes in spike protein induced by binding of C4, C7 and C1. These computational analyses were later validated through in-vitro bioassay. Remarkably, C2-C7 displayed significant inhibitory potential with >76 to 89% inhibition and C3, C4, C6 and C7 demonstrated the highest inhibition of RBD.
ConclusionThe current findings suggest that compounds C3 and C6 effectively disrupt the function of RBD of SARS-CoV-2 spike protein and can serve as potential drug candidates for spike protein.
-
-
-
Transcriptome-wide Association Studies Integrating Four Levels Identify Novel Targets for Idiopathic Pulmonary Fibrosis
Authors: Jiaxin Shi and Linyou ZhangAvailable online: 26 August 2025More LessIntroductionIdiopathic pulmonary fibrosis (IPF) is a kind of interstitial lung disease with a poor prognosis. Even though genome-wide association studies (GWAS) have identified numerous loci linked to IPF risk, the underlying causal genes and biological processes are still mostly unknown.
MethodsThe IPF GWAS summary data included 4,125 cases, 20,464 controls from five cohorts. The weight file and related files for transcriptome association studies (TWAS) of plasma protein, multi-tissues, cross-tissue, and single-cell were obtained from Zhang’s study, Mancuso lab, GTExV8 database, and Thompson’s study, respectively. We conducted TWAS employing functional Summary-based Imputation (FUSION) from four levels, which were plasma protein, multiple tissues, cross-tissue, and single cell. Conditional and joint (COJO) analysis and multi-marker analysis of genomic annotation (MAGMA) analysis were used to validate the above results. Summary-data-based Mendelian randomization (SMR) and Bayesian co-localization analysis were utilized to explain the causal association between selected genes and the risk of IPF.
ResultsA total of 12, 361, 1187, and 72 genes were calculated from the four dimensions of TWAS. TOLLIP, GCHFR, ZNF318 TALDO1, CD151, and AP4M1 were selected by intersecting the results of the four sets of genes. GCHFR, TALDO1, CD151, and AP4M1 were verified by COJO analysis and MAGMA analysis. SMR and colocalization analyses identified GCHFR as the most significant gene for IPF.
DiscussionWe have applied the TWAS approach to identify novel therapeutic targets for IPF in multiple dimensions. Further biological testing will be required in future studies to validate our findings.
ConclusionIn summary, we carried out an extensive TWAS that integrated four dimensions: plasma protein, multiple tissues, cross-tissue, and single cell. GCHFR was identified as the most significant gene for IPF in this study.
-
-
-
Beneficial Role of Zinc in Metabolic Syndrome: Understanding the Underlying Pathophysiological Mechanisms
Available online: 26 August 2025More LessMetabolic syndrome (MetS) is a complex disorder that comprises metabolic abnormalities such as central obesity, insulin resistance, dyslipidemia, and hypertension. Eventually, MetS leads to type 2 diabetes (T2DM) and increases the risk of other cardiovascular diseases. Patients with MetS are approximately five times more prone to develop T2DM. The increase in global prevalence of MetS is a major cause of concern. The microelement zinc is an essential trace element that plays a pivotal role in numerous biological processes occurring in the body. We carried out a thorough search of published studies in Scopus, PubMed, and Google Scholar databases. Zinc plays an important role in the functioning of the immune system, wound healing, protein synthesis, metabolism, inflammation, and different oxidative stress pathways. It is also vital for insulin homeostasis and signaling. The potential role of zinc in managing insulin resistance may be a key component in the treatment of MetS. Zinc acts via various signaling pathways, such as AMPK and mTOR, and influences lipid and glucose metabolism. The regulation of zinc metabolism at the cellular level is important for various biological processes, and disruption in zinc homeostasis results in the development of many diseases. The present review aims to discuss the role of zinc in MetS. It is concluded that zinc level modulation may be a key point in the prevention and treatment of MetS.
-
-
-
Expression of TCEAL2 is a Novel Prognostic Biomarker and Potential Therapeutic Target in Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
Authors: Jinyuan Li, Zhen Ye, Yuhong Gan, Dongbing Li and Yibiao ChenAvailable online: 26 August 2025More LessBackgroundCervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are major gynecological malignancies, causing significant cancer-related deaths in women. Current treatments yield poor outcomes, with a 5-year survival rate of only 17%. Identifying new biomarkers and therapeutic targets is crucial for improving prognosis and guiding personalized treatments.
MethodsWe analyzed TCEAL2 expression using data from The Cancer Genome Atlas (TCGA) across various cancers, including CESC. We explored its correlation with clinical features, prognosis, immune infiltration, MSI, mRNAsi, and drug sensitivity. TCEAL2 expression was validated in GSE9750 datasets and CESC cell lines using qRT-PCR.
ResultsTCEAL2 expression was significantly dysregulated in CESC. Elevated TCEAL2 levels correlated with poor clinical outcomes, including advanced pathological M stage (p = 0.009), initial treatment failure (p = 0.0098), and reduced overall survival (OS) (p = 0.013). TCEAL2 was an independent predictor of unfavorable OS (p = 0.032). It was associated with key pathways such as calcium signaling, oxidative phosphorylation, and Wnt signaling. TCEAL2 also correlated with immune cell infiltration, MSI, and mRNAsi. Notably, TCEAL2 levels inversely correlated with sensitivity to several drugs, including CAY10603 and SB-223133.
DiscussionThe results suggest that TCEAL2 plays a significant role in CESC progression and its tumor microenvironment. Its correlation with immune infiltration and drug sensitivity highlights its potential as a prognostic biomarker and therapeutic target. Future studies should focus on elucidating the molecular mechanisms and validating their clinical utility.
ConclusionTCEAL2 is a potential prognostic biomarker and therapeutic target in CESC. Further research is needed to explore its role and clinical applications.
-
-
-
Expression, Prognostic Value, and Biological Function of CENPM in Colon Adenocarcinoma
Authors: Zhiming Cai, Zhenrong Yang, Qian Yu, Tao Lin, Xincheng Su, Lv Lin and Yongjian ZhouAvailable online: 26 August 2025More LessIntroductionCentromere protein M (CENPM), a member of the CENP family, is correlated with several malignancies, but its role in colon adenocarcinoma (COAD) is unclear. This study aims to explore the expression, prognostic significance, and biological role of CENPM in COAD.
MethodsThe association of CENPM with the occurrence and progression of COAD was thoroughly analyzed via several bioinformatics databases. Furthermore, the correlation between CENPM expression and clinicopathological features and prognostic value was validated via immunohistochemistry (IHC) of tissue microarrays (TMAs) from 80 patients.
ResultsCENPM mRNA expression was significantly elevated in COAD samples compared with healthy tissues. As COAD progressed, CENPM expression decreased, and patients with lower CENPM transcript levels had a worse prognosis. IHC results further confirmed the overexpression of CENPM in COAD patients, identifying this gene as an independent prognostic factor. Additionally, high CENPM expression was linked to methylation in COAD patients, and the primary function of CENPM and its neighboring genes was determined to be cell cycle regulation. Immunological analysis demonstrated that CENPM expression was positively correlated with activated CD8+ T cells, CD4+ T cells, and dendritic cells (DCs) but negatively correlated with regulatory T cells (Tregs). CENPM expression was positively correlated with that of the immune checkpoint genes LAG3, CD244, LGALS9, PDCD1 (PD1), and PVRL2 but negatively correlated with the expression of BTLA, CSF1R, KDR, IL10RB, PDCD1LG2, and TGFBR1.
DiscussionThese findings collectively highlight a multifaceted role of CENPM in COAD, linking its overexpression to improved patient outcomes through mechanisms involving cell cycle control and immunomodulation. Its significant correlation with key immune infiltrates and checkpoint markers implies potential utility as a novel predictor for immunotherapy responsiveness.
ConclusionCENPM is an independent prognostic factor for COAD, with its overexpression associated with improved survival. It regulates the cell cycle and tumor microenvironment, making it a promising potential predictive biomarker for immune therapy response.
-
-
-
-
Decoding PRTFDC1's Role in Lung Adenocarcinoma: From Gene Expression to Clinical Implications
Authors: Jian Yao, Qiang Zhang, Chunhe Zhong, Haiyang Zhang, Xinchi Lei and Dongbing LiAvailable online: 22 August 2025More LessIntroductionThis study aims to elucidate the role of Phosphoribosyl Transferase Domain Containing 1 (PRTFDC1) in Lung Adenocarcinoma (LUAD) through bioinformatics analysis and experimental validation, exploring its potential as a biomarker for prognosis and treatment response.
MethodsWe analyzed PRTFDC1 gene expression patterns in 539 LUAD and 59 normal lung tissue samples from The Cancer Genome Atlas (TCGA). Using bioinformatics tools, we examined the correlation between PRTFDC1 expression and clinical characteristics, immune infiltration, Tumor Mutation Burden (TMB), and drug responsiveness. Experimental validation was conducted in LUAD cell lines (A549 and HCC-78) through the overexpression of PRTFDC1, followed by cell proliferation and cell cycle assays.
ResultsPRTFDC1 expression was significantly elevated in LUAD compared to normal tissues, correlating with poorer Progression-Free Survival (PFS) and Disease-Specific Survival (DSS). PRTFDC1 was associated with immune cell infiltration, TMB, and mRNA stemness index (mRNAsi). Overexpression of PRTFDC1 in LUAD cell lines promoted cell proliferation and cell cycle progression, mediated by Threonine Tyrosine Kinase (TTK).
DiscussionThe findings suggest that PRTFDC1 may serve as an independent prognostic marker for LUAD, influencing tumor progression and immune response. The correlation with TTK indicates a potential mechanism for PRTFDC1's impact on cell proliferation. However, further research is needed to validate these findings in larger cohorts and explore the underlying molecular mechanisms.
ConclusionPRTFDC1 is a promising biomarker for LUAD prognosis and treatment response, with potential implications for targeted therapies and personalized medicine.
-
-
-
Selenium Enhances Osteogenic Differentiation and Mineralization in Human Osteoblasts: Implications for Bone Health and Metabolism
Authors: Erhan Sahin, Mahmoud Arafat and Ayse Tansu KoparalAvailable online: 21 August 2025More LessIntroductionSodium Selenite (NaSe) is a molecule with various biological activities. Bone fractures and osteoporotic diseases are increasingly common health issues, prompting the search for alternative treatments. Therefore, the purpose of this study was to examine the antioxidant and osteogenic properties of NaSe.
MethodsThe experiments were conducted using the hFOB1.19 osteoblast cell line. The MTT assay was used to assess the effects of NaSe on cell viability, while cytotoxicity was evaluated with Lactate Dehydrogenase (LDH) assays. Osteogenic differentiation was assessed by alizarin red staining, and Alkaline Phosphatase (ALP) activity and intracellular Reactive Oxygen Species (ROS) levels were also analyzed.
ResultsThe results showed that NaSe significantly enhanced cell viability in a dose-dependent manner at low doses (0.01-1μM), with the most effective dose being 1μM (p<0.05). LDH activity remained similar to the control within the 0.01-1μM range but increased significantly at higher concentrations (5-50 μM) in both 24- and 48-hour experiments (p<0.05). NaSe reduced intracellular ROS levels significantly between 0.01-1 μM, with 1 μM being the most effective concentration (p<0.05). The highest ALP activity was observed at 0.1 μM NaSe (p < 0.05), and calcium deposition increased in a concentration-dependent manner (p<0.05). The most effective dose for enhancing mineralization was 0.1 μM (p<0.05).
ConclusionThis study demonstrates that NaSe has antioxidant and osteogenic effects at low doses in hFOB cells. These positive effects suggest that NaSe could be a promising candidate for in-vitro, in-vivo, and clinical trials, providing hope for new treatments for bone diseases.
-
-
-
Patents on Xylazine, a Drug Adulterant of Clinical Concern
Available online: 21 August 2025More Less
-