Skip to content
2000
image of Circulating Proteins and Bone Mineral Density: A Proteome-Wide Mendelian Randomization Study

Abstract

Introduction

Current osteoporosis medications often prove ineffective for various reasons. Alongside optimizing available agents, new genetic targets should be proposed for drug development. Mendelian randomization (MR) may resolve throughput and confounding issues in traditional observational studies for druggable targets.

Methods

We employed two-sample MR with protein quantitative trait loci (pQTLs) and expression quantitative trait loci (eQTLs) data as exposures and six bone mineral density (BMD) sites as outcomes. By meta-analyzing pQTL evidence, validating eQTL evidence, conducting MR sensitivity tests, and assessing druggability, key druggable targets for BMD were identified. Additionally, we performed functional analysis, drug repurposing annotation, transcriptome analysis, in-house PCR, ELISA, and micro-CT validation to further investigate the functionality and expression levels of these targets across different tissues and conditions.

Results

Out of 5,928 pQTLs from deCODE and UKB-PPP datasets, 16 were identified as prioritized targets with significant meta pQTL evidence. Tyrosine-protein kinase Lyn (LYN, meta beta -0.09, 95% CI -0.13 to -0.05), Chondroadherin (CHAD, meta beta -0.39, 95% CI -0.18 to -0.20), Tumor necrosis factor receptor superfamily member 19 (TNFRSF19, meta beta -0.03, 95% CI -0.05 to -0.02), and Transforming growth factor beta induced (TGFBI, meta beta -0.04, 95% CI -0.06 to -0.03) were identified as key druggable targets for BMD. R-spondin-3 (RSPO3) and SPARC-related modular calcium-binding protein 2 (SMOC2) were also suggested with consistent MR associations with previous studies.

Discussion

We identified four novel BMD-related targets (CHAD, LYN, TGFBI, TNFRSF19) through pQTL meta-analysis, and validated RSPO3/SMOC2's positive effects. By integrating multi-tissue transcriptomics and OVX experiments, we further revealed elevated expression of TNFRSF19/TGFBI negatively correlated with BMD, providing new therapeutic insights.

Conclusion

This large-scale Proteome-Wide MR study introduced novel targets for BMD and osteoporosis at transcriptional and translational levels, presenting new prospects for drug repurposing and development.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673385463250811030618
2025-09-02
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673385463250811030618/BMS-CMC-2025-HT145-6174-36.html?itemId=/content/journals/cmc/10.2174/0109298673385463250811030618&mimeType=html&fmt=ahah

References

  1. Salari N. Darvishi N. Bartina Y. Larti M. Kiaei A. Hemmati M. Shohaimi S. Mohammadi M. Global prevalence of osteoporosis among the world older adults: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2021 16 1 669 10.1186/s13018‑021‑02821‑8 34774085
    [Google Scholar]
  2. Lu T. Forgetta V. Zhou S. Richards J.B. Greenwood C.M.T. Identifying rare genetic determinants for improved polygenic risk prediction of bone mineral density and fracture risk. J. Bone Miner. Res. 2023 38 12 1771 1781 10.1002/jbmr.4920 37830501
    [Google Scholar]
  3. Clarke B.L. Economic costs of severe osteoporotic fractures continue to increase at expense of refracture. J. Bone Miner. Res. 2020 37 10 1809 1810 10.1002/jbmr.4713 36252570
    [Google Scholar]
  4. Chiloiro S. Giampietro A. Gagliardi I. Bondanelli M. Veleno M. Ambrosio M.R. Zatelli M.C. Pontecorvi A. Giustina A. De Marinis L. Bianchi A. Impact of the diagnostic delay of acromegaly on bone health: Data from a real life and long term follow-up experience. Pituitary 2022 25 6 831 841 10.1007/s11102‑022‑01266‑4 35922724
    [Google Scholar]
  5. Tan Y.Q. Ng D.X. Gunasekaran K. Lim W.L. Tan N.C. Clinical characteristics and risk factors of osteoporosis among older Asian men with type-2 diabetes mellitus, hypertension, or hyperlipidaemia. Arch. Osteoporos. 2024 19 1 83 10.1007/s11657‑024‑01442‑y 39235564
    [Google Scholar]
  6. Reid I.R. Billington E.O. Drug therapy for osteoporosis in older adults. Lancet 2022 399 10329 1080 1092 10.1016/S0140‑6736(21)02646‑5 35279261
    [Google Scholar]
  7. Langdahl B.L. Libanati C. Crittenden D.B. Bolognese M.A. Brown J.P. Daizadeh N.S. Dokoupilova E. Engelke K. Finkelstein J.S. Genant H.K. Goemaere S. Hyldstrup L. Jodar-Gimeno E. Keaveny T.M. Kendler D. Lakatos P. Maddox J. Malouf J. Massari F.E. Molina J.F. Ulla M.R. Grauer A. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: A randomised, open-label, phase 3 trial. Lancet 2017 390 10102 1585 1594 10.1016/S0140‑6736(17)31613‑6 28755782
    [Google Scholar]
  8. Robinson D.E. Ali M.S. Pallares N. Tebé C. Elhussein L. Abrahamsen B. Arden N.K. Ben-Shlomo Y. Caskey F.J. Cooper C. Dedman D. Delmestri A. Judge A. Pérez-Sáez M.J. Pascual J. Nogues X. Diez-Perez A. Strauss V.Y. Javaid M.K. Prieto-Alhambra D. Safety of oral bisphosphonates in moderate-to-severe chronic kidney disease: A binational cohort analysis. J. Bone Miner. Res. 2020 36 5 820 832 10.1002/jbmr.4235 33373491
    [Google Scholar]
  9. Evenepoel P. Cunningham J. Ferrari S. Haarhaus M. Javaid M.K. Lafage-Proust M.H. Prieto-Alhambra D. Torres P.U. Cannata-Andia J. Vervloet M. Mazzaferro S. D’Haese P. Bacchetta J. Ferreira A. Salam S. Spasovski G. European consensus statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4–G5D. Nephrol. Dial. Transplant. 2021 36 1 42 59 10.1093/ndt/gfaa192 33098421
    [Google Scholar]
  10. Díez-Pérez A. Adachi J.D. Adami S. Anderson F.A. Jr Boonen S. Chapurlat R. Compston J.E. Cooper C. Gehlbach S.H. Greenspan S.L. Hooven F.H. LaCroix A.Z. Nieves J.W. Netelenbos J.C. Pfeilschifter J. Rossini M. Roux C. Saag K.G. Silverman S. Siris E.S. Wyman A. Rushton-Smith S.K. Watts N.B. Risk factors for treatment failure with antiosteoporosis medication: The global longitudinal study of osteoporosis in women (GLOW). J. Bone Miner. Res. 2014 29 1 260 267 10.1002/jbmr.2023 23794198
    [Google Scholar]
  11. Nelson M.R. Tipney H. Painter J.L. Shen J. Nicoletti P. Shen Y. Floratos A. Sham P.C. Li M.J. Wang J. Cardon L.R. Whittaker J.C. Sanseau P. The support of human genetic evidence for approved drug indications. Nat. Genet. 2015 47 8 856 860 10.1038/ng.3314 26121088
    [Google Scholar]
  12. Abdellaoui A. Yengo L. Verweij K.J.H. Visscher P.M. 15 years of GWAS discovery: Realizing the promise. Am. J. Hum. Genet. 2023 110 2 179 194 10.1016/j.ajhg.2022.12.011 36634672
    [Google Scholar]
  13. Li X. Shen A. Zhao Y. Xia J. Mendelian randomization using the druggable genome reveals genetically supported drug targets for psychiatric disorders. Schizophr. Bull. 2023 49 5 1305 1315 10.1093/schbul/sbad100 37418754
    [Google Scholar]
  14. Sun X. Chen B. Qi Y. Wei M. Chen W. Wu X. Wang Q. Li J. Lei X. Luo G. Multi-omics Mendelian randomization integrating GWAS, eQTL and pQTL data revealed GSTM4 as a potential drug target for migraine. J. Headache Pain 2024 25 1 117 10.1186/s10194‑024‑01828‑w 39039470
    [Google Scholar]
  15. Chen Y. Xu X. Wang L. Li K. Sun Y. Xiao L. Dai J. Huang M. Wang Y. Wang D.W. Genetic insights into therapeutic targets for aortic aneurysms: A Mendelian randomization study. EBioMedicine 2022 83 104199 10.1016/j.ebiom.2022.104199 35952493
    [Google Scholar]
  16. Gaziano L. Giambartolomei C. Pereira A.C. Gaulton A. Posner D.C. Swanson S.A. Ho Y.L. Iyengar S.K. Kosik N.M. Vujkovic M. Gagnon D.R. Bento A.P. Barrio-Hernandez I. Rönnblom L. Hagberg N. Lundtoft C. Langenberg C. Pietzner M. Valentine D. Gustincich S. Tartaglia G.G. Allara E. Surendran P. Burgess S. Zhao J.H. Peters J.E. Prins B.P. Angelantonio E.D. Devineni P. Shi Y. Lynch K.E. DuVall S.L. Garcon H. Thomann L.O. Zhou J.J. Gorman B.R. Huffman J.E. O’Donnell C.J. Tsao P.S. Beckham J.C. Pyarajan S. Muralidhar S. Huang G.D. Ramoni R. Beltrao P. Danesh J. Hung A.M. Chang K.M. Sun Y.V. Joseph J. Leach A.R. Edwards T.L. Cho K. Gaziano J.M. Butterworth A.S. Casas J.P. Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nat. Med. 2021 27 4 668 676 10.1038/s41591‑021‑01310‑z 33837377
    [Google Scholar]
  17. Storm C.S. Kia D.A. Almramhi M.M. Bandres-Ciga S. Finan C. Noyce A.J. Kaiyrzhanov R. Middlehurst B. Tan M. Houlden H. Morris H.R. Plun-Favreau H. Holmans P. Hardy J. Trabzuni D. Quinn J. Bubb V. Mok K.Y. Kinghorn K.J. Lewis P. Schreglmann S.R. Lovering R. R’Bibo L. Manzoni C. Rizig M. Ryten M. Guelfi S. Escott-Price V. Chelban V. Foltynie T. Williams N. Morrison K.E. Clarke C. Harvey K. Jacobs B.M. Brice A. Danjou F. Lesage S. Corvol J-C. Martinez M. Schulte C. Brockmann K. Simón-Sánchez J. Heutink P. Rizzu P. Sharma M. Gasser T. Schneider S.A. Cookson M.R. Blauwendraat C. Craig D.W. Billingsley K. Makarious M.B. Narendra D.P. Faghri F. Gibbs J.R. Hernandez D.G. Van Keuren-Jensen K. Shulman J.M. Iwaki H. Leonard H.L. Nalls M.A. Robak L. Bras J. Guerreiro R. Lubbe S. Troycoco T. Finkbeiner S. Mencacci N.E. Lungu C. Singleton A.B. Scholz S.W. Reed X. Uitti R.J. Ross O.A. Grenn F.P. Moore A. Alcalay R.N. Wszolek Z.K. Gan-Or Z. Rouleau G.A. Krohn L. Mufti K. van Hilten J.J. Marinus J. Adarmes-Gómez A.D. Aguilar M. Alvarez I. Alvarez V. Barrero F.J. Yarza J.A.B. Bernal-Bernal I. Blazquez M. Bonilla-Toribio M. Botía J.A. Boungiorno M.T. Buiza-Rueda D. Cámara A. Carrillo F. Carrión-Claro M. Cerdan D. Clarimón J. Compta Y. Diez-Fairen M. Dols-Icardo O. Duarte J. Duran R. Escamilla-Sevilla F. Ezquerra M. Feliz C. Fernández M. Fernández-Santiago R. Garcia C. García-Ruiz P. Gómez-Garre P. Heredia M.J.G. Gonzalez-Aramburu I. Pagola A.G. Hoenicka J. Infante J. Jesús S. Jimenez-Escrig A. Kulisevsky J. Labrador-Espinosa M.A. Lopez-Sendon J.L. de Munain Arregui A.L. Macias D. Torres I.M. Marín J. Marti M.J. Martínez-Castrillo J.C. Méndez-del-Barrio C. González M.M. Mata M. Mínguez A. Mir P. Rezola E.M. Muñoz E. Pagonabarraga J. Pastor P. Errazquin F.P. Periñán-Tocino T. Ruiz-Martínez J. Ruz C. Rodriguez A.S. Sierra M. Suarez-Sanmartin E. Tabernero C. Tartari J.P. Tejera-Parrado C. Tolosa E. Valldeoriola F. Vargas-González L. Vela L. Vives F. Zimprich A. Pihlstrom L. Toft M. Taba P. Koks S. Hassin-Baer S. Majamaa K. Siitonen A. Tienari P. Okubadejo N.U. Ojo O.O. Shashkin C. Zharkinbekova N. Akhmetzhanov V. Kaishybayeva G. Karimova A. Khaibullin T. Lynch T.L. Hingorani A.D. Wood N.W. Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome. Nat. Commun. 2021 12 1 7342 10.1038/s41467‑021‑26280‑1 34930919
    [Google Scholar]
  18. Burgess S. Swanson S.A. Labrecque J.A. Are Mendelian randomization investigations immune from bias due to reverse causation? Eur. J. Epidemiol. 2021 36 3 253 257 10.1007/s10654‑021‑00726‑8 33611685
    [Google Scholar]
  19. Han B.X. Yan S.S. Yu Han Xu Q. Zhao Q.G. Ma X.L. Ni J.J. Zhang L. Pei Y.F. Causal effects of plasma proteome on osteoporosis and osteoarthritis. Calcif. Tissue Int. 2022 112 3 350 358 10.1007/s00223‑022‑01049‑w 36576504
    [Google Scholar]
  20. Wang L. Guo X. Qin J. Jin Z. Liu Q. Sun C. Sun K. Li L. Wei X. Zhang Y. Assessing the causal relationship between plasma proteins and osteoporosis: Novel insights into pathological mechanisms and therapeutic implications. Osteoporos. Int. 2024 35 11 1973 1987 10.1007/s00198‑024‑07225‑y 39120624
    [Google Scholar]
  21. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Davies N.M. Swanson S.A. VanderWeele T.J. Timpson N.J. Higgins J.P.T. Dimou N. Langenberg C. Loder E.W. Golub R.M. Egger M. Davey Smith G. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021 375 2233 n2233 10.1136/bmj.n2233 34702754
    [Google Scholar]
  22. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Yarmolinsky J. Davies N.M. Swanson S.A. VanderWeele T.J. Higgins J.P.T. Timpson N.J. Dimou N. Langenberg C. Golub R.M. Loder E.W. Gallo V. Tybjaerg-Hansen A. Davey Smith G. Egger M. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization. JAMA 2021 326 16 1614 1621 10.1001/jama.2021.18236 34698778
    [Google Scholar]
  23. Percie du Sert N. Hurst V. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Garner P. Holgate S.T. Howells D.W. Karp N.A. Lazic S.E. Lidster K. MacCallum C.J. Macleod M. Pearl E.J. Petersen O.H. Rawle F. Reynolds P. Rooney K. Sena E.S. Silberberg S.D. Steckler T. Würbel H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020 16 1 242 10.1186/s12917‑020‑02451‑y 32660541
    [Google Scholar]
  24. Sun B.B. Maranville J.C. Peters J.E. Stacey D. Staley J.R. Blackshaw J. Burgess S. Jiang T. Paige E. Surendran P. Oliver-Williams C. Kamat M.A. Prins B.P. Wilcox S.K. Zimmerman E.S. Chi A. Bansal N. Spain S.L. Wood A.M. Morrell N.W. Bradley J.R. Janjic N. Roberts D.J. Ouwehand W.H. Todd J.A. Soranzo N. Suhre K. Paul D.S. Fox C.S. Plenge R.M. Danesh J. Runz H. Butterworth A.S. Genomic atlas of the human plasma proteome. Nature 2018 558 7708 73 79 10.1038/s41586‑018‑0175‑2 29875488
    [Google Scholar]
  25. Ferkingstad E. Sulem P. Atlason B.A. Sveinbjornsson G. Magnusson M.I. Styrmisdottir E.L. Gunnarsdottir K. Helgason A. Oddsson A. Halldorsson B.V. Jensson B.O. Zink F. Halldorsson G.H. Masson G. Arnadottir G.A. Katrinardottir H. Juliusson K. Magnusson M.K. Magnusson O.T. Fridriksdottir R. Saevarsdottir S. Gudjonsson S.A. Stacey S.N. Rognvaldsson S. Eiriksdottir T. Olafsdottir T.A. Steinthorsdottir V. Tragante V. Ulfarsson M.O. Stefansson H. Jonsdottir I. Holm H. Rafnar T. Melsted P. Saemundsdottir J. Norddahl G.L. Lund S.H. Gudbjartsson D.F. Thorsteinsdottir U. Stefansson K. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021 53 12 1712 1721 10.1038/s41588‑021‑00978‑w 34857953
    [Google Scholar]
  26. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. ’t Hoen P.A.C. van Meurs J. van Dongen J. van Iterson M. Swertz M.A. Jan Bonder M. Dmitrieva J. Elansary M. Fairfax B.P. Georges M. Heijmans B.T. Hewitt A.W. Kähönen M. Kim Y. Knight J.C. Kovacs P. Krohn K. Li S. Loeffler M. Marigorta U.M. Mei H. Momozawa Y. Müller-Nurasyid M. Nauck M. Nivard M.G. Penninx B.W.J.H. Pritchard J.K. Raitakari O.T. Rotzschke O. Slagboom E.P. Stehouwer C.D.A. Stumvoll M. Sullivan P. ’t Hoen P.A.C. Thiery J. Tönjes A. van Dongen J. van Iterson M. Veldink J.H. Völker U. Warmerdam R. Wijmenga C. Swertz M. Andiappan A. Montgomery G.W. Ripatti S. Perola M. Kutalik Z. Dermitzakis E. Bergmann S. Frayling T. van Meurs J. Prokisch H. Ahsan H. Pierce B.L. Lehtimäki T. Boomsma D.I. Psaty B.M. Gharib S.A. Awadalla P. Milani L. Ouwehand W.H. Downes K. Stegle O. Battle A. Visscher P.M. Yang J. Scholz M. Powell J. Gibson G. Esko T. Franke L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  27. Morris J.A. Kemp J.P. Youlten S.E. Laurent L. Logan J.G. Chai R.C. Vulpescu N.A. Forgetta V. Kleinman A. Mohanty S.T. Sergio C.M. Quinn J. Nguyen-Yamamoto L. Luco A.L. Vijay J. Simon M.M. Pramatarova A. Medina-Gomez C. Trajanoska K. Ghirardello E.J. Butterfield N.C. Curry K.F. Leitch V.D. Sparkes P.C. Adoum A.T. Mannan N.S. Komla-Ebri D.S.K. Pollard A.S. Dewhurst H.F. Hassall T.A.D. Beltejar M.J.G. Adams D.J. Vaillancourt S.M. Kaptoge S. Baldock P. Cooper C. Reeve J. Ntzani E.E. Evangelou E. Ohlsson C. Karasik D. Rivadeneira F. Kiel D.P. Tobias J.H. Gregson C.L. Harvey N.C. Grundberg E. Goltzman D. Adams D.J. Lelliott C.J. Hinds D.A. Ackert-Bicknell C.L. Hsu Y.H. Maurano M.T. Croucher P.I. Williams G.R. Bassett J.H.D. Evans D.M. Richards J.B. An atlas of genetic influences on osteoporosis in humans and mice. Nat. Genet. 2019 51 2 258 266 10.1038/s41588‑018‑0302‑x 30598549
    [Google Scholar]
  28. Kemp J.P. Morris J.A. Medina-Gomez C. Forgetta V. Warrington N.M. Youlten S.E. Zheng J. Gregson C.L. Grundberg E. Trajanoska K. Logan J.G. Pollard A.S. Sparkes P.C. Ghirardello E.J. Allen R. Leitch V.D. Butterfield N.C. Komla-Ebri D. Adoum A.T. Curry K.F. White J.K. Kussy F. Greenlaw K.M. Xu C. Harvey N.C. Cooper C. Adams D.J. Greenwood C.M.T. Maurano M.T. Kaptoge S. Rivadeneira F. Tobias J.H. Croucher P.I. Ackert-Bicknell C.L. Bassett J.H.D. Williams G.R. Richards J.B. Evans D.M. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat. Genet. 2017 49 10 1468 1475 10.1038/ng.3949 28869591
    [Google Scholar]
  29. Sun J. Zhao J. Jiang F. Wang L. Xiao Q. Han F. Chen J. Yuan S. Wei J. Larsson S.C. Zhang H. Dunlop M.G. Farrington S.M. Ding K. Theodoratou E. Li X. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome. Genome Med. 2023 15 1 75 10.1186/s13073‑023‑01229‑9 37726845
    [Google Scholar]
  30. Yang C. Fagan A.M. Perrin R.J. Rhinn H. Harari O. Cruchaga C. Mendelian randomization and genetic colocalization infer the effects of the multi-tissue proteome on 211 complex disease-related phenotypes. Genome Med. 2022 14 1 140 10.1186/s13073‑022‑01140‑9 36510323
    [Google Scholar]
  31. Zhang Y. Xie J. Wen S. Cao P. Xiao W. Zhu J. Li S. Wang Z. Cen H. Zhu Z. Ding C. Ruan G. Evaluating the causal effect of circulating proteome on the risk of osteoarthritis-related traits. Ann. Rheum. Dis. 2023 82 12 1606 1617 10.1136/ard‑2023‑224459 37595989
    [Google Scholar]
  32. Hemani G. Zheng J. Elsworth B. Wade K.H. Haberland V. Baird D. Laurin C. Burgess S. Bowden J. Langdon R. Tan V.Y. Yarmolinsky J. Shihab H.A. Timpson N.J. Evans D.M. Relton C. Martin R.M. Davey Smith G. Gaunt T.R. Haycock P.C. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018 7 34408 10.7554/eLife.34408 29846171
    [Google Scholar]
  33. Yavorska O.O. Burgess S. MendelianRandomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017 46 6 1734 1739 10.1093/ije/dyx034 28398548
    [Google Scholar]
  34. Conway J.R. Lex A. Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017 33 18 2938 2940 10.1093/bioinformatics/btx364 28645171
    [Google Scholar]
  35. Yuan S. Xu F. Li X. Chen J. Zheng J. Mantzoros C.S. Larsson S.C. Plasma proteins and onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian randomization and colocalization analyses. Cell Rep. Med. 2023 4 9 101174 10.1016/j.xcrm.2023.101174 37652020
    [Google Scholar]
  36. Greco M F.D. Minelli C. Sheehan N.A. Thompson J.R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med. 2015 34 21 2926 2940 10.1002/sim.6522 25950993
    [Google Scholar]
  37. Jafari M. Ansari-Pour N. Why, when and how to adjust your p values? Cell J. 2019 20 4 604 607 30124010
    [Google Scholar]
  38. Bhattacharyya U. John J. Lam M. Fisher J. Sun B. Baird D. Chen C.Y. Lencz T. Large-scale mendelian randomization study reveals circulating blood-based proteomic biomarkers for psychopathology and cognitive task performance. medRxiv 2024 1 5
    [Google Scholar]
  39. Taschler B. Smith S.M. Nichols T.E. Causal inference on neuroimaging data with Mendelian randomisation. Neuroimage 2022 258 119385 10.1016/j.neuroimage.2022.119385 35714886
    [Google Scholar]
  40. Ortín Vela S. Beyeler M.J. Trofimova O. Iuliani I. Vargas Quiros J.D. de Vries V.A. Meloni I. Elwakil A. Hoogewoud F. Liefers B. Presby D. Ramdas W.D. Tomasoni M. Schlingemann R. Klaver C.C.W. Bergmann S. Phenotypic and genetic characteristics of retinal vascular parameters and their association with diseases. Nat. Commun. 2024 15 1 9593 10.1038/s41467‑024‑52334‑1 39505872
    [Google Scholar]
  41. Burgess S. Davies N.M. Thompson S.G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 2016 40 7 597 608 10.1002/gepi.21998 27625185
    [Google Scholar]
  42. Burgess S. Thompson S.G. Collaboration C.C.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011 40 3 755 764 10.1093/ije/dyr036 21414999
    [Google Scholar]
  43. Giambartolomei C. Vukcevic D. Schadt E.E. Franke L. Hingorani A.D. Wallace C. Plagnol V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014 10 5 1004383 10.1371/journal.pgen.1004383 24830394
    [Google Scholar]
  44. Lonsdale J. Thomas J. Salvatore M. Phillips R. Lo E. Shad S. Hasz R. Walters G. Garcia F. Young N. Foster B. Moser M. Karasik E. Gillard B. Ramsey K. Sullivan S. Bridge J. Magazine H. Syron J. Fleming J. Siminoff L. Traino H. Mosavel M. Barker L. Jewell S. Rohrer D. Maxim D. Filkins D. Harbach P. Cortadillo E. Berghuis B. Turner L. Hudson E. Feenstra K. Sobin L. Robb J. Branton P. Korzeniewski G. Shive C. Tabor D. Qi L. Groch K. Nampally S. Buia S. Zimmerman A. Smith A. Burges R. Robinson K. Valentino K. Bradbury D. Cosentino M. Diaz-Mayoral N. Kennedy M. Engel T. Williams P. Erickson K. Ardlie K. Winckler W. Getz G. DeLuca D. MacArthur D. Kellis M. Thomson A. Young T. Gelfand E. Donovan M. Meng Y. Grant G. Mash D. Marcus Y. Basile M. Liu J. Zhu J. Tu Z. Cox N.J. Nicolae D.L. Gamazon E.R. Im H.K. Konkashbaev A. Pritchard J. Stevens M. Flutre T. Wen X. Dermitzakis E.T. Lappalainen T. Guigo R. Monlong J. Sammeth M. Koller D. Battle A. Mostafavi S. McCarthy M. Rivas M. Maller J. Rusyn I. Nobel A. Wright F. Shabalin A. Feolo M. Sharopova N. Sturcke A. Paschal J. Anderson J.M. Wilder E.L. Derr L.K. Green E.D. Struewing J.P. Temple G. Volpi S. Boyer J.T. Thomson E.J. Guyer M.S. Ng C. Abdallah A. Colantuoni D. Insel T.R. Koester S.E. Little A.R. Bender P.K. Lehner T. Yao Y. Compton C.C. Vaught J.B. Sawyer S. Lockhart N.C. Demchok J. Moore H.F. (GTEx) project. Nat. Genet. 2013 45 6 580 585 10.1038/ng.2653 23715323
    [Google Scholar]
  45. Xie L. Feng E. Li S. Chai H. Chen J. Li L. Ge J. Comparisons of gene expression between peripheral blood mononuclear cells and bone tissue in osteoporosis. Medicine 2023 102 20 33829 10.1097/MD.0000000000033829 37335694
    [Google Scholar]
  46. Cassidy F.C. Shortiss C. Thompson K. Arroquia A.S. Murphy C.G. Kearns S.R. Curtin W. Goljanek-Whysall K. O’Brien T. Coleman C.M. Mesenchymal stromal cells from people with osteoporosis are fewer, and defective in both osteogenic and adipogenic capacity. Explorat. Musculosk. Dis. 2024 2 3 164 180 10.37349/emd.2024.00046
    [Google Scholar]
  47. Charan J. Kantharia N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013 4 4 303 306 10.4103/0976‑500X.119726 24250214
    [Google Scholar]
  48. Cline-Smith A. Axelbaum A. Shashkova E. Chakraborty M. Sanford J. Panesar P. Peterson M. Cox L. Baldan A. Veis D. Aurora R. Ovariectomy activates chronic low-grade inflammation mediated by memory t cells, which promotes osteoporosis in mice. J. Bone Miner. Res. 2020 35 6 1174 1187 10.1002/jbmr.3966 31995253
    [Google Scholar]
  49. Capulli M. Olstad O.K. Önnerfjord P. Tillgren V. Muraca M. Gautvik K.M. Heinegård D. Rucci N. Teti A. The C-terminal domain of chondroadherin: A new regulator of osteoclast motility counteracting bone loss. J. Bone Miner. Res. 2014 29 8 1833 1846 10.1002/jbmr.2206 24616121
    [Google Scholar]
  50. Weigl M. Kocijan R. Ferguson J. Leinfellner G. Heimel P. Feichtinger X. Pietschmann P. Grillari J. Zwerina J. Redl H. Hackl M. Longitudinal changes of circulating mirnas during bisphosphonate and teriparatide treatment in an animal model of postmenopausal osteoporosis. J. Bone Miner. Res. 2020 36 6 1131 1144 10.1002/jbmr.4276 33598975
    [Google Scholar]
  51. Krawiec J.A. Chen H. Alom-Ruiz S. Jaye M. Modified PAXgene™ method allows for isolation of high-integrity total RNA from microlitre volumes of mouse whole blood. Lab. Anim. 2009 43 4 394 398 10.1258/la.2008.0070157 19502296
    [Google Scholar]
  52. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  53. Bai L. Liu Y. Zhang X. Chen P. Hang R. Xiao Y. Wang J. Liu C. Osteoporosis remission via an anti-inflammaging effect by icariin activated autophagy. Biomaterials 2023 297 122125 10.1016/j.biomaterials.2023.122125 37058900
    [Google Scholar]
  54. Kollias N.S. Hess W.J. Johnson C.L. Murphy M. Golab G. A literature review on current practices, knowledge, and viewpoints on pentobarbital euthanasia performed by veterinarians and animal remains disposal in the United States. J. Am. Vet. Med. Assoc. 2023 261 5 733 738 10.2460/javma.22.08.0373 36800298
    [Google Scholar]
  55. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  56. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  57. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  58. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  59. Piñero J. Bravo À. Queralt-Rosinach N. Gutiérrez-Sacristán A. Deu-Pons J. Centeno E. García-García J. Sanz F. Furlong L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  60. Kaabeche K. Lemonnier J. Le Mée S. Caverzasio J. Marie P.J. Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J. Biol. Chem. 2004 279 35 36259 36267 10.1074/jbc.M402469200 15190072
    [Google Scholar]
  61. Gavali S. Gupta M.K. Daswani B. Wani M.R. Sirdeshmukh R. Khatkhatay M.I. LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 3 547 557 10.1016/j.bbadis.2018.12.016 30579930
    [Google Scholar]
  62. Matsubara T. Addison W.N. Kokabu S. Neff L. Horne W. Gori F. Baron R. Characterization of unique functionalities in c-Src domains required for osteoclast podosome belt formation. J. Biol. Chem. 2021 296 100790 10.1016/j.jbc.2021.100790 34019873
    [Google Scholar]
  63. Kazim N. Yen A. Evidence of off-target effects of bosutinib that promote retinoic acid-induced differentiation of non-APL AML cells. Cell Cycle 2021 20 24 2638 2651 10.1080/15384101.2021.2005275 34836491
    [Google Scholar]
  64. Leonard Jessica T. Targeting BCL-2 and ABL/LYN in philadelphia chromosome-positive acute lymphoblastic leukemia. Sci. Transl. Med. 2016 8 354 354ra114 10.1126/scitranslmed.aaf5309
    [Google Scholar]
  65. Liu F. Wang L. Qi H. Wang J. Wang Y. Jiang W. Xu L. Liu N. Zhuang S. Nintedanib, a triple tyrosine kinase inhibitor, attenuates renal fibrosis in chronic kidney disease. Clin. Sci. 2017 131 16 2125 2143 10.1042/CS20170134 28646122
    [Google Scholar]
  66. Chen B.A. Chen R. The role of dasatinib in the management of chronic myeloid leukemia. Drug Des. Devel. Ther. 2015 9 773 779 10.2147/DDDT.S80207 25709401
    [Google Scholar]
  67. Robak T. Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin. Investig. Drugs 2012 21 7 921 947 10.1517/13543784.2012.685650 22612424
    [Google Scholar]
  68. Vandyke K. Fitter S. Drew J. Fukumoto S. Schultz C.G. Sims N.A. Yeung D.T. Hughes T.P. Zannettino A.C.W. Prospective histomorphometric and DXA evaluation of bone remodeling in imatinib-treated CML patients: Evidence for site-specific skeletal effects. J. Clin. Endocrinol. Metab. 2013 98 1 67 76 10.1210/jc.2012‑2426 23144472
    [Google Scholar]
  69. Cohen P. Cross D. Jänne P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov. 2021 20 7 551 569 10.1038/s41573‑021‑00195‑4 34002056
    [Google Scholar]
  70. Qiu W. Hu Y. Andersen T.E. Jafari A. Li N. Chen W. Kassem M. Tumor necrosis factor receptor superfamily member 19 (TNFRSF19) regulates differentiation fate of human mesenchymal (stromal) stem cells through canonical Wnt signaling and C/EBP. J. Biol. Chem. 2010 285 19 14438 14449 10.1074/jbc.M109.052001 20223822
    [Google Scholar]
  71. Pei Y.F. Liu L. Liu T.L. Yang X.L. Zhang H. Wei X.T. Feng G.J. Hai R. Ran S. Zhang L. Joint association analysis identified 18 new loci for bone mineral density. J. Bone Miner. Res. 2019 34 6 1086 1094 10.1002/jbmr.3681 30690781
    [Google Scholar]
  72. Wu H. Whitfield T.W. Gordon J.A.R. Dobson J.R. Tai P.W.L. van Wijnen A.J. Stein J.L. Stein G.S. Lian J.B. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol. 2014 15 3 R52 10.1186/gb‑2014‑15‑3‑r52 24655370
    [Google Scholar]
  73. Nilsson K.H. Henning P. El Shahawy M. Nethander M. Andersen T.L. Ejersted C. Wu J. Gustafsson K.L. Koskela A. Tuukkanen J. Souza P.P.C. Tuckermann J. Lorentzon M. Ruud L.E. Lehtimäki T. Tobias J.H. Zhou S. Lerner U.H. Richards J.B. Movérare-Skrtic S. Ohlsson C. RSPO3 is important for trabecular bone and fracture risk in mice and humans. Nat. Commun. 2021 12 1 4923 10.1038/s41467‑021‑25124‑2 34389713
    [Google Scholar]
  74. Nilsson K.H. Wu J. Gustafsson K.L. El Shahawy M. Koskela A. Tuukkanen J. Tuckermann J. Henning P. Lerner U.H. Ohlsson C. Movérare-Skrtic S. Estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other. Am. J. Physiol. Endocrinol. Metab. 2022 322 3 E211 E218 10.1152/ajpendo.00383.2021 35068191
    [Google Scholar]
  75. Liu L. Wang T. Duan C. Mao S. Wu B. Chen Y. Huang D. Cao Y. Genetically supported drug targets and dental traits: A mendelian randomization study. J. Dent. Res. 2024 103 12 1271 1280 10.1177/00220345241272045 39370703
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673385463250811030618
Loading
/content/journals/cmc/10.2174/0109298673385463250811030618
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test