Skip to content
2000
image of Expression, Prognostic Value, and Biological Function of CENPM in Colon Adenocarcinoma

Abstract

Introduction

Centromere protein M (CENPM), a member of the CENP family, is correlated with several malignancies, but its role in colon adenocarcinoma (COAD) is unclear. This study aims to explore the expression, prognostic significance, and biological role of CENPM in COAD.

Methods

The association of CENPM with the occurrence and progression of COAD was thoroughly analyzed several bioinformatics databases. Furthermore, the correlation between CENPM expression and clinicopathological features and prognostic value was validated immunohistochemistry (IHC) of tissue microarrays (TMAs) from 80 patients.

Results

CENPM mRNA expression was significantly elevated in COAD samples compared with healthy tissues. As COAD progressed, CENPM expression decreased, and patients with lower CENPM transcript levels had a worse prognosis. IHC results further confirmed the overexpression of CENPM in COAD patients, identifying this gene as an independent prognostic factor. Additionally, high CENPM expression was linked to methylation in COAD patients, and the primary function of CENPM and its neighboring genes was determined to be cell cycle regulation. Immunological analysis demonstrated that CENPM expression was positively correlated with activated CD8+ T cells, CD4+ T cells, and dendritic cells (DCs) but negatively correlated with regulatory T cells (Tregs). CENPM expression was positively correlated with that of the immune checkpoint genes LAG3, CD244, LGALS9, PDCD1 (PD1), and PVRL2 but negatively correlated with the expression of BTLA, CSF1R, KDR, IL10RB, PDCD1LG2, and TGFBR1.

Discussion

These findings collectively highlight a multifaceted role of CENPM in COAD, linking its overexpression to improved patient outcomes through mechanisms involving cell cycle control and immunomodulation. Its significant correlation with key immune infiltrates and checkpoint markers implies potential utility as a novel predictor for immunotherapy responsiveness.

Conclusion

CENPM is an independent prognostic factor for COAD, with its overexpression associated with improved survival. It regulates the cell cycle and tumor microenvironment, making it a promising potential predictive biomarker for immune therapy response.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673387182250716075120
2025-08-26
2025-11-04
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Kontovounisios C. Tan E. Pawa N. Brown G. Tait D. Cunningham D. Rasheed S. Tekkis P. The selection process can improve the outcome in locally advanced and recurrent colorectal cancer: activity and results of a dedicated multidisciplinary colorectal cancer centre. Colorectal Dis. 2017 19 4 331 338 10.1111/codi.13517 27629565
    [Google Scholar]
  3. Yantiss R.K. Persistent problems in colorectal cancer reporting. Surg. Pathol. Clin. 2017 10 4 961 976 10.1016/j.path.2017.07.010 29103542
    [Google Scholar]
  4. Shukla H.D. Comprehensive analysis of cancer-proteogenome to identify biomarkers for the early diagnosis and prognosis of cancer. Proteomes 2017 5 4 28 10.3390/proteomes5040028 29068423
    [Google Scholar]
  5. Meng C. Zhang Y. Jiang D. Wang J. CTHRC1 is a prognosis-related biomarker correlated with immune infiltrates in colon adenocarcinoma. World J. Surg. Oncol. 2022 20 1 89 10.1186/s12957‑022‑02557‑7 35307012
    [Google Scholar]
  6. Jin Q. Feng J. Yan Y. Kuang Y. Prognostic and immunological role of adaptor related protein complex 3 subunit mu2 in colon cancer. Sci. Rep. 2024 14 1 483 10.1038/s41598‑023‑50452‑2 38177168
    [Google Scholar]
  7. Perpelescu M. Fukagawa T. The ABCs of CENPs. Chromosoma 2011 120 5 425 446 10.1007/s00412‑011‑0330‑0 21751032
    [Google Scholar]
  8. Johnson S.C. McClelland S.E. Watching cancer cells evolve through chromosomal instability. Nature 2019 570 7760 166 167 10.1038/d41586‑019‑01709‑2 31182831
    [Google Scholar]
  9. Tijhuis A.E. Johnson S.C. McClelland S.E. The emerging links between chromosomal instability (CIN), metastasis, inflammation and tumour immunity. Mol. Cytogenet. 2019 12 1 17 10.1186/s13039‑019‑0429‑1 31114634
    [Google Scholar]
  10. Tanaka K. Hirota T. Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim. Biophys. Acta 2016 1866 1 64 75 27345585
    [Google Scholar]
  11. Lermontova I. Sandmann M. Mascher M. Schmit A.C. Chabouté M.E. Centromeric chromatin and its dynamics in plants. Plant J. 2015 83 1 4 17 10.1111/tpj.12875 25976696
    [Google Scholar]
  12. Dhatchinamoorthy K. Mattingly M. Gerton J.L. Regulation of kinetochore configuration during mitosis. Curr. Genet. 2018 64 6 1197 1203 10.1007/s00294‑018‑0841‑9 29704052
    [Google Scholar]
  13. Ding T.T. Ma H. Feng J.H. A three-gene novel predictor for improving the prognosis of cervical cancer. Oncol. Lett. 2019 18 5 4907 4915 10.3892/ol.2019.10815 31612001
    [Google Scholar]
  14. Zou Y. Sun Z. Sun S. LncRNA HCG18 contributes to the progression of hepatocellular carcinoma via miR-214-3p/CENPM axis. J. Biochem. 2020 168 5 535 546 10.1093/jb/mvaa073 32663252
    [Google Scholar]
  15. Zheng C. Zhang T. Li D. Huang C. Tang H. Ni X.F. Chen B. Upregulation of CENPM facilitates tumor metastasis via the mTOR/p70S6K signaling pathway in pancreatic cancer. Oncol. Rep. 2020 44 3 1003 1012 10.3892/or.2020.7673 32705259
    [Google Scholar]
  16. Chen Q. Hu J. Deng J. Fu B. Guo J. Bioinformatics analysis identified key molecular changes in bladder cancer development and recurrence. BioMed Res. Int. 2019 2019 1 14 10.1155/2019/3917982 31828101
    [Google Scholar]
  17. Tong Y. Zhou T. Wang X. Deng S. Qin L. Upregulation of CENPM promotes breast carcinogenesis by altering immune infiltration. BMC Cancer 2024 24 1 54 10.1186/s12885‑023‑11808‑z 38200449
    [Google Scholar]
  18. Ding N. Li R. Shi W. He C. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion. Gene 2018 674 80 86 10.1016/j.gene.2018.06.067 29936263
    [Google Scholar]
  19. Li T. Fan J. Wang B. Traugh N. Chen Q. Liu J.S. Li B. Liu X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017 77 21 e108 e110 10.1158/0008‑5472.CAN‑17‑0307 29092952
    [Google Scholar]
  20. Chandrashekar D.S. Bashel B. Balasubramanya S.A.H. Creighton C.J. Ponce-Rodriguez I. Chakravarthi B.V.S.K. Varambally S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017 19 8 649 658 10.1016/j.neo.2017.05.002 28732212
    [Google Scholar]
  21. Tang Z. Li C. Kang B. Gao G. Li C. Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017 45 W1 W98 W102 10.1093/nar/gkx247 28407145
    [Google Scholar]
  22. Györffy B. Lanczky A. Eklund A.C. Denkert C. Budczies J. Li Q. Szallasi Z. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 2010 123 3 725 731 10.1007/s10549‑009‑0674‑9 20020197
    [Google Scholar]
  23. Gao J. Aksoy B.A. Dogrusoz U. Dresdner G. Gross B. Sumer S.O. Sun Y. Jacobsen A. Sinha R. Larsson E. Cerami E. Sander C. Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013 6 269 pl1 10.1126/scisignal.2004088 23550210
    [Google Scholar]
  24. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  25. Warde-Farley D Donaldson SL Comes O Zuberi K Badrawi R Chao P Franz M Grouios C Kazi F Lopes CT Maitland A Mostafavi S Montojo J Shao Q Wright G Bader GD Morris Q. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research 2010 July 38 Web Server issue W214 W220 10.1093/nar/gkq537
    [Google Scholar]
  26. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  27. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: an integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  28. Liu C.J. Hu F.F. Xie G.Y. Miao Y.R. Li X.W. Zeng Y. Guo A.Y. GSCA: an integrated platform for gene set cancer analysis at genomic, pharmacogenomic and immunogenomic levels. Brief. Bioinform. 2023 24 1 bbac558 10.1093/bib/bbac558 36549921
    [Google Scholar]
  29. Zhang Y. Zhu Y. Chen Y. Wang Y. Liu B. Pan Y. Liao X. Pan J. Gao H. Yang W. Yu G. Nuclear translocation of cleaved PCDH9 impairs gastric cancer metastasis by downregulating CDH2 expression. iScience 2024 27 2 109011 10.1016/j.isci.2024.109011 38357662
    [Google Scholar]
  30. Qi N. Niu Y. Li Z. Xiao L. Tang D. Gao W. The prognostic value and mechanisms of centromere protein M in patients with lung adenocarcinoma. Transl. Cancer Res. 2022 11 10 3471 3490 10.21037/tcr‑22‑491 36388055
    [Google Scholar]
  31. Wang J. Li X. Qiang X. Yin X. Guo L. Analyzing the expression and clinical significance of CENPE in gastric cancer. BMC Med. Genomics 2024 17 1 119 10.1186/s12920‑024‑01887‑7 38702677
    [Google Scholar]
  32. Vermeulen K. Van Bockstaele D.R. Berneman Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003 36 3 131 149 10.1046/j.1365‑2184.2003.00266.x 12814430
    [Google Scholar]
  33. Zhang W. Mao J.H. Zhu W. Jain A.K. Liu K. Brown J.B. Karpen G.H. Centromere and kinetochore gene misexpression predicts cancer patient survival and response to radiotherapy and chemotherapy. Nat. Commun. 2016 7 1 12619 10.1038/ncomms12619 27577169
    [Google Scholar]
  34. Liu Y. Yu W. Ren P. Zhang T. Upregulation of centromere protein M promotes tumorigenesis: A potential predictive target for cancer in humans. Mol. Med. Rep. 2020 22 5 3922 3934 10.3892/mmr.2020.11461 33000180
    [Google Scholar]
  35. Cao Y. Jiao N. Sun T. Ma Y. Zhang X. Chen H. Hong J. Zhang Y. CXCL11 correlates with antitumor immunity and an improved prognosis in colon cancer. Front. Cell Dev. Biol. 2021 9 646252 10.3389/fcell.2021.646252 33777950
    [Google Scholar]
  36. Oliver A.J. Lau P.K.H. Unsworth A.S. Loi S. Darcy P.K. Kershaw M.H. Slaney C.Y. Tissue-dependent tumor microenvironments and their impact on immunotherapy responses. Front. Immunol. 2018 9 70 10.3389/fimmu.2018.00070 29445373
    [Google Scholar]
  37. Hinshaw D.C. Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 79 18 4557 4566 10.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  38. Bassani B. Baci D. Gallazzi M. Poggi A. Bruno A. Mortara L. Natural killer cells as key players of tumor progression and angiogenesis: Old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancers (Basel) 2019 11 4 461 10.3390/cancers11040461 30939820
    [Google Scholar]
  39. Cai Z. Li W. Brenner M. Bahiraii S. Heiss E.H. Weckwerth W. Branched-chain ketoacids derived from cancer cells modulate macrophage polarization and metabolic reprogramming. Front. Immunol. 2022 13 966158 10.3389/fimmu.2022.966158 36311795
    [Google Scholar]
  40. Tsukamoto H. Komohara Y. Oshiumi H. The role of macrophages in anti-tumor immune responses: pathological significance and potential as therapeutic targets. Hum. Cell 2021 34 4 1031 1039 10.1007/s13577‑021‑00514‑2 33905102
    [Google Scholar]
  41. Farhood B. Najafi M. Mortezaee K. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review. J. Cell. Physiol. 2019 234 6 8509 8521 10.1002/jcp.27782 30520029
    [Google Scholar]
  42. Raskov H. Orhan A. Christensen J.P. Gögenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br. J. Cancer 2021 124 2 359 367 10.1038/s41416‑020‑01048‑4 32929195
    [Google Scholar]
  43. Van Dalen F.J. Van Stevendaal M.H.M.E. Fennemann F.L. Verdoes M. Ilina O. Molecular repolarisation of tumour-associated macrophages. Molecules 2018 24 1 9 10.3390/molecules24010009 30577495
    [Google Scholar]
  44. Cózar B. Greppi M. Carpentier S. Narni-Mancinelli E. Chiossone L. Vivier E. Tumor-infiltrating natural killer cells. Cancer Discov. 2021 11 1 34 44 10.1158/2159‑8290.CD‑20‑0655 33277307
    [Google Scholar]
  45. Tran Janco J.M. Lamichhane P. Karyampudi L. Knutson K.L. Tumor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol. 2015 194 7 2985 2991 10.4049/jimmunol.1403134 25795789
    [Google Scholar]
  46. Zhao W. Jin L. Chen P. Li D. Gao W. Dong G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett. 2022 545 215816 10.1016/j.canlet.2022.215816 35810989
    [Google Scholar]
  47. Chong X. Madeti Y. Cai J. Li W. Cong L. Lu J. Mo L. Liu H. He S. Yu C. Zhou Z. Wang B. Cao Y. Wang Z. Shen L. Wang Y. Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J. Hematol. Oncol. 2024 17 1 65 10.1186/s13045‑024‑01578‑x 39123202
    [Google Scholar]
  48. Yan S. Wang W. Feng Z. Xue J. Liang W. Wu X. Tan Z. Zhang X. Zhang S. Li X. Zhang C. Immune checkpoint inhibitors in colorectal cancer: limitation and challenges. Front. Immunol. 2024 15 1403533 10.3389/fimmu.2024.1403533 38919624
    [Google Scholar]
  49. Cai L. Li Y. Tan J. Xu L. Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J. Hematol. Oncol. 2023 16 1 101 10.1186/s13045‑023‑01499‑1 37670328
    [Google Scholar]
  50. Chavanton A. Mialhe F. Abrey J. Baeza Garcia A. Garrido C. LAG-3 : Recent developments in combinational therapies in cancer. Cancer Sci. 2024 115 8 2494 2505 10.1111/cas.16205 38702996
    [Google Scholar]
  51. Chiang E.Y. Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J. Immunother. Cancer 2022 10 4 e004711 10.1136/jitc‑2022‑004711 35379739
    [Google Scholar]
  52. Qin S. Xu L. Yi M. Yu S. Wu K. Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 2019 18 1 155 10.1186/s12943‑019‑1091‑2 31690319
    [Google Scholar]
  53. Papaccio F. García-Mico B. Gimeno-Valiente F. Cabeza-Segura M. Gambardella V. Gutiérrez-Bravo M.F. Alfaro-Cervelló C. Martinez-Ciarpaglini C. Rentero-Garrido P. Zúñiga-Trejos S. Carbonell-Asins J.A. Fleitas T. Roselló S. Huerta M. Sánchez del Pino M.M. Sabater L. Roda D. Tarazona N. Cervantes A. Castillo J. “Proteotranscriptomic analysis of advanced colorectal cancer patient derived organoids for drug sensitivity prediction”. J. Exp. Clin. Cancer Res. 2023 42 1 8 10.1186/s13046‑022‑02591‑z 36604765
    [Google Scholar]
  54. Papaccio F. Cabeza-Segura M. García-Micó B. Gimeno-Valiente F. Zúñiga-Trejos S. Gambardella V. Gutiérrez-Bravo M.F. Martinez-Ciarpaglini C. Rentero-Garrido P. Fleitas T. Roselló S. Carbonell-Asins J.A. Huerta M. Moro-Valdezate D. Roda D. Tarazona N. Sánchez del Pino M.M. Cervantes A. Castillo J. Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids. J. Exp. Clin. Cancer Res. 2025 44 1 77 10.1186/s13046‑025‑03308‑8 40022181
    [Google Scholar]
  55. Cao J. Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer 2020 6 7 580 592 10.1016/j.trecan.2020.02.003 32610068
    [Google Scholar]
  56. Moore L.D. Le T. Fan G. DNA methylation and its basic function. Neuropsychopharmacology 2013 38 1 23 38 10.1038/npp.2012.112 22781841
    [Google Scholar]
  57. Huynh K.M. Kim G. Kim D.J. Yang S.J. Park S. Yeom Y.I. Fisher P.B. Kang D. Gene expression analysis of terminal differentiation of human melanoma cells highlights global reductions in cell cycle-associated genes. Gene 2009 433 1-2 32 39 10.1016/j.gene.2008.11.013 19100317
    [Google Scholar]
  58. Pauklin S. Madrigal P. Bertero A. Vallier L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev. 2016 30 4 421 433 10.1101/gad.271452.115 26883361
    [Google Scholar]
  59. Xiao Y. Najeeb R.M. Ma D. Yang K. Zhong Q. Liu Q. Upregulation of CENPM promotes hepatocarcinogenesis through mutiple mechanisms. J. Exp. Clin. Cancer Res. 2019 38 1 458 10.1186/s13046‑019‑1444‑0 31703591
    [Google Scholar]
  60. Kim W.T. Seo S.P. Byun Y.J. Kang H.W. Kim Y.J. Lee S.C. Jeong P. Song H.J. Choe S.Y. Kim D.J. Kim S.K. Ha Y.S. Moon S.K. Lee G.T. Kim I.Y. Yun S.J. Kim W.J. The anticancer effects of garlic extracts on bladder cancer compared to cisplatin: A common mechanism of action via centromere protein M. Am. J. Chin. Med. 2018 46 3 689 705 10.1142/S0192415X18500362 29595070
    [Google Scholar]
  61. Prystowsky M.B. Adomako A. Smith R.V. Kawachi N. McKimpson W. Atadja P. Chen Q. Schlecht N.F. Parish J.L. Childs G. Belbin T.J. The histone deacetylase inhibitor LBH589 inhibits expression of mitotic genes causing G2/M arrest and cell death in head and neck squamous cell carcinoma cell lines. J. Pathol. 2009 218 4 467 477 10.1002/path.2554 19402126
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673387182250716075120
Loading
/content/journals/cmc/10.2174/0109298673387182250716075120
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Colon adenocarcinoma ; cell cycle ; COAD patients ; CENPM ; prognostic biomarker ; therapeutic target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test