Skip to content
2000
image of Diagnosis and Potential Therapy of Brain Diseases Using 64Cu: A Scoping Review

Abstract

Introduction

This paper provides a comprehensive review examining the application of copper radionuclides, particularly 64Cu, in the diagnosis and potential therapy of various brain diseases.

Methods

Two researchers conducted an independent search of the PubMed and Web of Science databases for original research articles published in English. Following a screening process based on titles and abstracts, 42 publications reporting the use of copper radionuclides for diagnosing or treating brain diseases were selected for this review.

Results

The analysis revealed that several copper isotopes, namely 60 Cu, 61 Cu, 62 Cu, 64Cu, and 67Cu, have been explored for diagnostic or therapeutic purposes in conditions including Alzheimer’s disease, Wilson’s disease, brain tumors, and traumatic brain injury. The isotopes 60 Cu, 61 Cu, and 62 Cu were primarily associated with diagnostic uses. In contrast, 64Cu and 67Cu were identified as having potential for both diagnosis and therapy (theranostic). Furthermore, the availability of 64Cu was noted to be better compared to 67Cu.

Discussion

64Cu radionuclides are frequently employed in imaging techniques for brain pathologies. While their role in radiographic applications is prominent, the therapeutic potential of 64Cu is currently underdeveloped, and current evidence is primarily derived from preclinical studies, highlighting the critical need for clinical trials to validate 64Cu’s efficacy and safety as a theranostic agent in neurological conditions.

Conclusion

64Cu holds significant potential for both diagnosis and therapy of various brain diseases. Continued research and development in this area are crucial to unlock its full therapeutic potential and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354343250728095946
2025-08-28
2025-11-04
Loading full text...

Full text loading...

References

  1. Turnlund J.R. Human whole-body copper metabolism. Am. J. Clin. Nutr. 1998 67 5 960S 964S 10.1093/ajcn/67.5.960S 9587136
    [Google Scholar]
  2. Lech T. Sadlik J.K. Copper concentration in body tissues and fluids in normal subjects of southern Poland. Biol. Trace Elem. Res. 2007 118 1 10 15 10.1007/s12011‑007‑0014‑z 17848725
    [Google Scholar]
  3. Lutsenko S. Bhattacharjee A. Hubbard A.L. Copper handling machinery of the brain. Metallomics 2010 2 9 596 608 10.1039/c0mt00006j 21072351
    [Google Scholar]
  4. Desai V. Kaler S.G. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 2008 88 3 855S 858S 10.1093/ajcn/88.3.855S 18779308
    [Google Scholar]
  5. Madsen E. Gitlin J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci. 2007 30 1 317 337 10.1146/annurev.neuro.30.051606.094232 17367269
    [Google Scholar]
  6. Zucconi G.G. Cipriani S. Scattoni R. Balgkouranidou I. Hawkins D.P. Ragnarsdottir K.V. Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathol. Appl. Neurobiol. 2007 33 2 212 225 10.1111/j.1365‑2990.2006.00793.x 17359362
    [Google Scholar]
  7. Rinaldi A.C. Meeting report--copper research at the top. Biometals 2000 13 1 9 13 10.1023/A:1009228824220 10831219
    [Google Scholar]
  8. Kaler S.G. Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr. Dev. Pathol. 1998 1 1 85 98 10.1007/s100249900011 10463276
    [Google Scholar]
  9. Osborn S.B. Walshe J.M. Studies with radioactive copper (64Cu and 67Cu) in relation to the natural history of Wilson’s disease. Lancet 1967 1 7486 346 350 10.1016/S0140‑6736(67)92893‑0 4163882
    [Google Scholar]
  10. Anderson C.J. Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: Advances in preclinical and clinical research. Cancer Biother. Radiopharm. 2009 24 4 379 393 10.1089/cbr.2009.0674 19694573
    [Google Scholar]
  11. McCarthy D.W. Shefer R.E. Klinkowstein R.E. Bass L.A. Margeneau W.H. Cutler C.S. Anderson C.J. Welch M.J. Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol. 1997 24 1 35 43 10.1016/S0969‑8051(96)00157‑6 9080473
    [Google Scholar]
  12. Cai W. Guzman R. Hsu A.R. Wang H. Chen K. Sun G. Gera A. Choi R. Bliss T. He L. Li Z.B. Maag A.L.D. Hori N. Zhao H. Moseley M. Steinberg G.K. Chen X. Positron emission tomography imaging of poststroke angiogenesis. Stroke 2009 40 1 270 277 10.1161/STROKEAHA.108.517474 18948613
    [Google Scholar]
  13. Willmann J.K. Chen K. Wang H. Paulmurugan R. Rollins M. Cai W. Wang D.S. Chen I.Y. Gheysens O. Rodriguez-Porcel M. Chen X. Gambhir S.S. Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 2008 117 7 915 922 10.1161/CIRCULATIONAHA.107.733220 18250264
    [Google Scholar]
  14. Cai W. Chen K. Mohamedali K.A. Cao Q. Gambhir S.S. Rosenblum M.G. Chen X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med. 2006 47 12 2048 2056 17138749
    [Google Scholar]
  15. Aft R.L. Lewis J.S. Zhang F. Kim J. Welch M.J. Enhancing targeted radiotherapy by copper(II)diacetyl- bis(N4-methylthiosemicarbazone) using 2-deoxy-D-glucose. Cancer Res. 2003 63 17 5496 5504 14500386
    [Google Scholar]
  16. Fujibayashi Y. Cutler C. Anderson C. McCarthy D. Jones L. Sharp T. Yonekura Y. Welch M. Comparative studies of Cu-64-ATSM and C-11-Acetate in an acute myocardial infarction model: ex vivo imaging of hypoxia in rats. Nucl. Med. Biol. 1999 26 1 117 121 10.1016/S0969‑8051(98)00049‑3 10096511
    [Google Scholar]
  17. Xie F. Xi Y. Pascual J.M. Muzik O. Peng F. Age-dependent changes of cerebral copper metabolism in Atp7b −/− knockout mouse model of Wilson’s disease by [64Cu]CuCl2-PET/CT. Metab. Brain Dis. 2017 32 3 717 726 10.1007/s11011‑017‑9956‑9 28130615
    [Google Scholar]
  18. Peng F. Muzik O. Gatson J. Kernie S.G. Diaz-Arrastia R. Assessment of traumatic brain injury by increased 64Cu uptake on 64CuCl2 PET/CT. J. Nucl. Med. 2015 56 8 1252 1257 10.2967/jnumed.115.154575 26112025
    [Google Scholar]
  19. Hayne D.J. Lim S. Donnelly P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014 43 19 6701 6715 10.1039/C4CS00026A 24671229
    [Google Scholar]
  20. Panichelli P. Villano C. Cistaro A. Bruno A. Barbato F. Piccardo A. Duatti A. Imaging of brain tumors with copper-64 chloride: Early experience and results. Cancer Biother. Radiopharm. 2016 31 5 159 167 10.1089/cbr.2016.2028 27228278
    [Google Scholar]
  21. Kong G.K.W. Miles L.A. Crespi G.A.N. Morton C.J. Ng H.L. Barnham K.J. McKinstry W.J. Cappai R. Parker M.W. Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur. Biophys. J. 2008 37 3 269 279 10.1007/s00249‑007‑0234‑3 18030462
    [Google Scholar]
  22. Lee J. Prohaska J.R. Thiele D.J. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc. Natl. Acad. Sci. USA 2001 98 12 6842 6847 10.1073/pnas.111058698 11391005
    [Google Scholar]
  23. Garrick M.D. Dolan K.G. Horbinski C. Ghio A.J. Higgins D. Porubcin M. Moore E.G. Hainsworth L.N. Umbreit J.N. Conrad M.E. Feng L. Lis A. Roth J.A. Singleton S. Garrick L.M. DMT1: A mammalian transporter for multiple metals. Biometals 2003 16 1 41 54 10.1023/A:1020702213099 12572663
    [Google Scholar]
  24. Lee J. Peña M.M.O. Nose Y. Thiele D.J. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 2002 277 6 4380 4387 10.1074/jbc.M104728200 11734551
    [Google Scholar]
  25. Cobine P.A. Ojeda L.D. Rigby K.M. Winge D.R. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J. Biol. Chem. 2004 279 14 14447 14455 10.1074/jbc.M312693200 14729672
    [Google Scholar]
  26. Maxfield A.B. Heaton D.N. Winge D.R. Cox17 is functional when tethered to the mitochondrial inner membrane. J. Biol. Chem. 2004 279 7 5072 5080 10.1074/jbc.M311772200 14615477
    [Google Scholar]
  27. Robinson N.J. Winge D.R. Copper metallochaperones. Annu. Rev. Biochem. 2010 79 1 537 562 10.1146/annurev‑biochem‑030409‑143539 20205585
    [Google Scholar]
  28. Scheiber I.F. Mercer J.F.B. Dringen R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014 116 33 57 10.1016/j.pneurobio.2014.01.002 24440710
    [Google Scholar]
  29. Dringen R. Scheiber I.F. Mercer J.F.B. Copper metabolism of astrocytes. Front. Aging Neurosci. 2013 5 9 10.3389/fnagi.2013.00009 23503037
    [Google Scholar]
  30. Sheline C.T. Choi E.H. Kim-Han J.S. Dugan L.L. Choi D.W. Cofactors of mitochondrial enzymes attenuate copper-induced death in vitro and in vivo. Ann. Neurol. 2002 52 2 195 204 10.1002/ana.10276 12210790
    [Google Scholar]
  31. Tang D. Chen X. Kroemer G. Cuproptosis: A copper-triggered modality of mitochondrial cell death. Cell Res. 2022 32 5 417 418 10.1038/s41422‑022‑00653‑7 35354936
    [Google Scholar]
  32. Parpura V. Heneka M.T. Montana V. Oliet S.H.R. Schousboe A. Haydon P.G. Stout R.F. Jr Spray D.C. Reichenbach A. Pannicke T. Pekny M. Pekna M. Zorec R. Verkhratsky A. Glial cells in (patho)physiology. J. Neurochem. 2012 121 1 4 27 10.1111/j.1471‑4159.2012.07664.x 22251135
    [Google Scholar]
  33. Kodama H. Fujisawa C. Bhadhprasit W. Pathology, clinical features and treatments of congenital copper metabolic disorders – Focus on neurologic aspects. Brain Dev. 2011 33 3 243 251 10.1016/j.braindev.2010.10.021 21112168
    [Google Scholar]
  34. Scheiber I.F. Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem. Int. 2013 62 5 556 565 10.1016/j.neuint.2012.08.017 22982300
    [Google Scholar]
  35. Brown N.M. Torres A.S. Doan P.E. O’Halloran T.V. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 2004 101 15 5518 5523 10.1073/pnas.0401175101 15064408
    [Google Scholar]
  36. Haywood S. Vaillant C. Overexpression of copper transporter CTR1 in the brain barrier of North Ronaldsay sheep: Implications for the study of neurodegenerative disease. J. Comp. Pathol. 2014 150 2-3 216 224 10.1016/j.jcpa.2013.09.002 24172593
    [Google Scholar]
  37. Haywood S. Paris J. Ryvar R. Botteron C. Brain copper elevation and neurological changes in north ronaldsay sheep: A model for neurodegenerative disease? J. Comp. Pathol. 2008 139 4 252 255 10.1016/j.jcpa.2008.06.008 18786681
    [Google Scholar]
  38. Pope S.A.S. Milton R. Heales S.J.R. Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochem. Res. 2008 33 7 1410 1418 10.1007/s11064‑008‑9602‑3 18335314
    [Google Scholar]
  39. di Penta A. Moreno B. Reix S. Fernandez-Diez B. Villanueva M. Errea O. Escala N. Vandenbroeck K. Comella J.X. Villoslada P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 2013 8 2 e54722 10.1371/journal.pone.0054722 23431360
    [Google Scholar]
  40. Pal A. Rani I. Pawar A. Picozza M. Rongioletti M. Squitti R. Microglia and astrocytes in Alzheimer’s Disease in the context of the aberrant copper homeostasis hypothesis. Biomolecules 2021 11 11 1598 10.3390/biom11111598 34827595
    [Google Scholar]
  41. Kaler S.G. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat. Rev. Neurol. 2011 7 1 15 29 10.1038/nrneurol.2010.180 21221114
    [Google Scholar]
  42. Ala A. Walker A.P. Ashkan K. Dooley J.S. Schilsky M.L. Wilson’s disease. Lancet 2007 369 9559 397 408 10.1016/S0140‑6736(07)60196‑2 17276780
    [Google Scholar]
  43. Bandmann O. Weiss K.H. Kaler S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015 14 1 103 113 10.1016/S1474‑4422(14)70190‑5 25496901
    [Google Scholar]
  44. Brady D.C. Crowe M.S. Turski M.L. Hobbs G.A. Yao X. Chaikuad A. Knapp S. Xiao K. Campbell S.L. Thiele D.J. Counter C.M. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 2014 509 7501 492 496 10.1038/nature13180 24717435
    [Google Scholar]
  45. Paterson B.M. Donnelly P.S. Copper complexes of bis(thiosemicarbazones): From chemotherapeutics to diagnostic and therapeutic radiopharmaceuticals. Chem. Soc. Rev. 2011 40 5 3005 3018 10.1039/c0cs00215a 21409228
    [Google Scholar]
  46. McCarthy D.W. Bass L.A. Cutler P.D. Shefer R.E. Klinkowstein R.E. Herrero P. Lewis J.S. Cutler C.S. Anderson C.J. Welch M.J. High purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol. 1999 26 4 351 358 10.1016/S0969‑8051(98)00113‑9 10382836
    [Google Scholar]
  47. Rowshanfarzad P. Sabet M. Reza Jalilian A. Kamalidehghan M. An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron. Appl. Radiat. Isot. 2006 64 12 1563 1573 10.1016/j.apradiso.2005.11.012 16377202
    [Google Scholar]
  48. Fukumura T. Okada K. Suzuki H. Nakao R. Mukai K. Szelecsényi F. Kovács Z. Suzuki K. An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl. Med. Biol. 2006 33 6 821 827 10.1016/j.nucmedbio.2006.05.003 16934701
    [Google Scholar]
  49. Green M.A. Klippenstein D.L. Tennison J.R. Copper(II) bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J. Nucl. Med. 1988 29 9 1549 1557 3261785
    [Google Scholar]
  50. Mastren T. Pen A. Peaslee G.F. Wozniak N. Loveless S. Essenmacher S. Sobotka L.G. Morrissey D.J. Lapi S.E. Feasibility of isotope harvesting at a projectile fragmentation facility: 67Cu. Sci. Rep. 2014 4 1 6706 10.1038/srep06706 25330839
    [Google Scholar]
  51. Eiblmaier D.B.M. Copper-64 radiopharmaceuticals for receptor-mediated tumor imaging and radiotherapy. Doctoral thesis, Dresden University of Technology, Dresden, 2008.
    [Google Scholar]
  52. Williams H.A. Robinson S. Julyan P. Zweit J. Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur. J. Nucl. Med. Mol. Imaging 2005 32 12 1473 1480 10.1007/s00259‑005‑1906‑9 16258764
    [Google Scholar]
  53. Cordeiro S.M. Neves A.B. Ribeiro C.T. Petersen M.L. Gouveia E.L. Ribeiro G.S. Lôbo T.S. Reis J.N. Salgado K.M. Reis M.G. Ko A.I. Hospital-based surveillance of meningococcal meningitis in Salvador, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2007 101 11 1147 1153 10.1016/j.trstmh.2007.06.012 17681359
    [Google Scholar]
  54. Winkelmann D.A. Bermke Y. Petering D.H. Comparative properties of the antineoplastic agent, 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazonato) copper(II) and related chelates: Linear free energy correlations. Bioinorg. Chem. 1974 3 3 261 277 10.1016/S0006‑3061(00)80074‑5 4417822
    [Google Scholar]
  55. Green M.A. The potential for generator-based PET perfusion tracers. J. Nucl. Med. 1990 31 10 1641 1645 2213186
    [Google Scholar]
  56. John E.K. Green M.A. Structure-activity relationships for metal-labeled blood flow tracers: Comparison of keto aldehyde bis(thiosemicarbazonato)copper(II) derivatives. J. Med. Chem. 1990 33 6 1764 1770 10.1021/jm00168a035 2342070
    [Google Scholar]
  57. Paudyal P. Paudyal B. Hanaoka H. Oriuchi N. Iida Y. Yoshioka H. Tominaga H. Watanabe S. Watanabe S. Ishioka N.S. Endo K. Imaging and biodistribution of Her2/neu expression in non-small cell lung cancer xenografts with 64 Cu-labeled trastuzumab PET. Cancer Sci. 2010 101 4 1045 1050 10.1111/j.1349‑7006.2010.01480.x 20219072
    [Google Scholar]
  58. Peng F. Xie F. Muzik O. Alteration of copper fluxes in brain aging: A longitudinal study in rodent using 64CuCl2-PET/CT. Aging Dis. 2018 9 1 109 118 10.14336/AD.2017.1025 29392086
    [Google Scholar]
  59. Cai W. Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front. Biosci. 2007 12 8-12 4267 4279 10.2741/2386 17485373
    [Google Scholar]
  60. Shi Y. Li J. Zhang Z. Duan D. Zhang Z. Liu H. Liu T. Liu Z. Tracing boron with fluorescence and positron emission tomography imaging of boronated porphyrin nanocomplex for imaging-guided boron neutron capture therapy. ACS Appl. Mater. Interfaces 2018 10 50 43387 43395 10.1021/acsami.8b14682 30451482
    [Google Scholar]
  61. Zeng D. Lee N.S. Liu Y. Zhou D. Dence C.S. Wooley K.L. Katzenellenbogen J.A. Welch M.J. 64Cu Core-labeled nanoparticles with high specific activity via metal-free click chemistry. ACS Nano 2012 6 6 5209 5219 10.1021/nn300974s 22548282
    [Google Scholar]
  62. Jørgensen J.T. Persson M. Madsen J. Kjær A. High tumor uptake of 64Cu: Implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl. Med. Biol. 2013 40 3 345 350 10.1016/j.nucmedbio.2013.01.002 23394821
    [Google Scholar]
  63. Ishida S. Andreux P. Poitry-Yamate C. Auwerx J. Hanahan D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl. Acad. Sci. USA 2013 110 48 19507 19512 10.1073/pnas.1318431110 24218578
    [Google Scholar]
  64. da Silva D.A. De Luca A. Squitti R. Rongioletti M. Rossi L. Machado C.M.L. Cerchiaro G. Copper in tumors and the use of copper-based compounds in cancer treatment. J. Inorg. Biochem. 2022 226 111634 10.1016/j.jinorgbio.2021.111634 34740035
    [Google Scholar]
  65. Xu V.W. Nizami M.Z.I. Yin I.X. Niu J.Y. Yu O.Y. Chu C.H. Copper materials for caries management: a scoping review. J Funct Biomater 2024 15 1 10 10.3390/jfb15010010
    [Google Scholar]
  66. Jiang L. Tu Y. Hu X. Bao A. Chen H. Ma X. Doyle T. Shi H. Cheng Z. Pilot Study of 64Cu(I) for PET Imaging of Melanoma. Sci. Rep. 2017 7 1 2574 10.1038/s41598‑017‑02691‑3 28566692
    [Google Scholar]
  67. Vallabhajosula S. Molecular Imaging and Targeted Therapy: Radiopharmaceuticals and Clinical Applications. Vallabhajosula S. Cham Springer International Publishing 2023 461 499 10.1007/978‑3‑031‑23205‑3_17
    [Google Scholar]
  68. Banerjee S.R. Pullambhatla M. Foss C.A. Nimmagadda S. Ferdani R. Anderson C.J. Mease R.C. Pomper M.G. 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J. Med. Chem. 2014 57 6 2657 2669 10.1021/jm401921j 24533799
    [Google Scholar]
  69. Hicks R.J. Jackson P. Kong G. Ware R.E. Hofman M.S. Pattison D.A. Akhurst T.A. Drummond E. Roselt P. Callahan J. Price R. Jeffery C.M. Hong E. Noonan W. Herschtal A. Hicks L.J. Hedt A. Harris M. Paterson B.M. Donnelly P.S. 64 Cu-SARTATE PET imaging of patients with neuroendocrine tumors demonstrates high tumor uptake and retention, potentially allowing prospective dosimetry for peptide receptor radionuclide therapy. J. Nucl. Med. 2019 60 6 777 785 10.2967/jnumed.118.217745 30442752
    [Google Scholar]
  70. Masters C.L. Cappai R. Barnham K.J. Villemagne V.L. Molecular mechanisms for Alzheimer’s disease: Implications for neuroimaging and therapeutics. J. Neurochem. 2006 97 6 1700 1725 10.1111/j.1471‑4159.2006.03989.x 16805778
    [Google Scholar]
  71. Selkoe D.J. Resolving controversies on the path to Alzheimer’s therapeutics. Nat. Med. 2011 17 9 1060 1065 10.1038/nm.2460 21900936
    [Google Scholar]
  72. Masters C.L. Simms G. Weinman N.A. Multhaup G. McDonald B.L. Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985 82 12 4245 4249 10.1073/pnas.82.12.4245 3159021
    [Google Scholar]
  73. Glenner G.G. Wong C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984 120 3 885 890 10.1016/S0006‑291X(84)80190‑4 6375662
    [Google Scholar]
  74. Taniguchi M. Saito M. Kuga T. Yamagishi N. Binding of Cu2+ to Aβ1-29 causes aggregation and toxicity in SH-SY5Y cells. Biochem. Biophys. Res. Commun. 2021 534 617 623 10.1016/j.bbrc.2020.11.031 33208229
    [Google Scholar]
  75. Preshlock S. Tredwell M. Gouverneur V. 18 F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 2016 116 2 719 766 10.1021/acs.chemrev.5b00493 26751274
    [Google Scholar]
  76. Vāvere A.L. Lewis J.S. Cu–ATSM: A radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007 43 4893 4902 10.1039/b705989b 17992274
    [Google Scholar]
  77. Cowley A.R. Dilworth J.R. Donnelly P.S. Labisbal E. Sousa A. An unusual dimeric structure of a Cu(I) bis(thiosemicarbazone) complex: Implications for the mechanism of hypoxic selectivity of the Cu(II) derivatives. J. Am. Chem. Soc. 2002 124 19 5270 5271 10.1021/ja012668z 11996559
    [Google Scholar]
  78. Ballard C. Gauthier S. Corbett A. Brayne C. Aarsland D. Jones E. Alzheimer’s disease. Lancet 2011 377 9770 1019 1031 10.1016/S0140‑6736(10)61349‑9 21371747
    [Google Scholar]
  79. Hung Y.H. Bush A.I. Cherny R.A. Copper in the brain and Alzheimer’s disease. J. Biol. Inorg. Chem. 2010 15 1 61 76 10.1007/s00775‑009‑0600‑y 19862561
    [Google Scholar]
  80. Torres J.B. Andreozzi E.M. Dunn J.T. Siddique M. Szanda I. Howlett D.R. Sunassee K. Blower P.J. PET imaging of copper trafficking in a mouse model of Alzheimer Disease. J. Nucl. Med. 2016 57 1 109 114 10.2967/jnumed.115.162370 26449834
    [Google Scholar]
  81. Peng F. Lutsenko S. Sun X. Muzik O. Positron emission tomography of copper metabolism in the Atp7b-/- knock-out mouse model of Wilson’s disease. Mol. Imaging Biol. 2012 14 1 70 78 10.1007/s11307‑011‑0476‑4 21327972
    [Google Scholar]
  82. Nomura S. Nozaki S. Hamazaki T. Takeda T. Ninomiya E. Kudo S. Hayashinaka E. Wada Y. Hiroki T. Fujisawa C. Kodama H. Shintaku H. Watanabe Y. PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. J. Nucl. Med. 2014 55 5 845 851 10.2967/jnumed.113.131797 24627433
    [Google Scholar]
  83. Dearling J.L. Lewis J.S. Mullen G.E. Welch M.J. Blower P.J. Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: Structure-activity relationships. J. Biol. Inorg. Chem. 2002 7 3 249 259 10.1007/s007750100291 11935349
    [Google Scholar]
  84. de Bie P. van de Sluis B. Burstein E. van de Berghe P.V.E. Muller P. Berger R. Gitlin J.D. Wijmenga C. Klomp L.W.J. Distinct Wilson’s disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology 2007 133 4 1316 1326 10.1053/j.gastro.2007.07.020 17919502
    [Google Scholar]
  85. Yu C.H. Yang N. Bothe J. Tonelli M. Nokhrin S. Dolgova N.V. Braiterman L. Lutsenko S. Dmitriev O.Y. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J. Biol. Chem. 2017 292 44 18169 18177 10.1074/jbc.M117.811752 28900031
    [Google Scholar]
  86. Shanmugavel K.P. Wittung-Stafshede P. Copper relay path through the N-terminus of Wilson disease protein, ATP7B. Metallomics 2019 11 9 1472 1480 10.1039/c9mt00147f 31321400
    [Google Scholar]
  87. Forbes J.R. Hsi G. Cox D.W. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J. Biol. Chem. 1999 274 18 12408 12413 10.1074/jbc.274.18.12408 10212214
    [Google Scholar]
  88. Goodyer I.D. Jones E.E. Monaco A.P. Francis M.J. Characterization of the Menkes protein copper-binding domains and their role in copper-induced protein relocalization. Hum. Mol. Genet. 1999 8 8 1473 1478 10.1093/hmg/8.8.1473 10400994
    [Google Scholar]
  89. Banci L. Bertini I. Cantini F. Rosenzweig A.C. Yatsunyk L.A. Metal binding domains 3 and 4 of the Wilson disease protein: solution structure and interaction with the copper(I) chaperone HAH1. Biochemistry 2008 47 28 7423 7429 10.1021/bi8004736 18558714
    [Google Scholar]
  90. Antonucci L. Porcu C. Iannucci G. Balsano C. Barbaro B. Non-alcoholic fatty liver disease and nutritional implications: Special focus on copper. Nutrients 2017 9 10 1137 10.3390/nu9101137 29057834
    [Google Scholar]
  91. Wu F. Wang J. Pu C. Qiao L. Jiang C. Wilson’s disease: A comprehensive review of the molecular mechanisms. Int. J. Mol. Sci. 2015 16 3 6419 6431 10.3390/ijms16036419 25803104
    [Google Scholar]
  92. Ruttkay-Nedecky B. Nejdl L. Gumulec J. Zitka O. Masarik M. Eckschlager T. Stiborova M. Adam V. Kizek R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013 14 3 6044 6066 10.3390/ijms14036044 23502468
    [Google Scholar]
  93. Scheinberg I.H. Morell A.G. Exchange of ceruloplasmin copper with ionic 64Cu with reference to Wilson’s disease. J. Clin. Invest. 1957 36 8 1193 1201 10.1172/JCI103515 13463081
    [Google Scholar]
  94. Murillo O. Collantes M. Gazquez C. Moreno D. Hernandez-Alcoceba R. Barberia M. Ecay M. Tamarit B. Douar A. Ferrer V. Combal J.P. Peñuelas I. Bénichou B. Gonzalez-Aseguinolaza G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson’s disease. Mol. Ther. Methods Clin. Dev. 2022 26 98 106 10.1016/j.omtm.2022.06.001 35795774
    [Google Scholar]
  95. Shinojima N. Tada K. Shiraishi S. Kamiryo T. Kochi M. Nakamura H. Makino K. Saya H. Hirano H. Kuratsu J. Oka K. Ishimaru Y. Ushio Y. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res. 2003 63 20 6962 6970 14583498
    [Google Scholar]
  96. Hackel B.J. Kimura R.H. Gambhir S.S. Use of (64)Cu-labeled fibronectin domain with EGFR-overexpressing tumor xenograft: molecular imaging. Radiology 2012 263 1 179 188 10.1148/radiol.12111504 22344401
    [Google Scholar]
  97. Cassady J.R. Clinical radiation nephropathy. Int. J. Radiat. Oncol. Biol. Phys. 1995 31 5 1249 1256 10.1016/0360‑3016(94)00428‑N 7713786
    [Google Scholar]
  98. Duchen M.R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 2004 25 4 365 451 10.1016/j.mam.2004.03.001 15302203
    [Google Scholar]
  99. Modica-Napolitano J.S. Singh K. Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med. 2002 4 9 1 19 10.1017/S1462399402004453 14987393
    [Google Scholar]
  100. Johnson L.V. Walsh M.L. Chen L.B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 1980 77 2 990 994 10.1073/pnas.77.2.990 6965798
    [Google Scholar]
  101. Modica-Napolitano J.S. Aprille J.R. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 1987 47 16 4361 4365 2886218
    [Google Scholar]
  102. Davis S. Weiss M.J. Wong J.R. Lampidis T.J. Chen L.B. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J. Biol. Chem. 1985 260 25 13844 13850 10.1016/S0021‑9258(17)38802‑6 4055760
    [Google Scholar]
  103. Dairkee S.H. Hackett A.J. Differential retention of rhodamine 123 by breast carcinoma and normal human mammary tissue. Breast Cancer Res. Treat. 1991 18 1 57 61 10.1007/BF01975444 1854980
    [Google Scholar]
  104. Kroemer G. Dallaporta B. Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 1998 60 1 619 642 10.1146/annurev.physiol.60.1.619 9558479
    [Google Scholar]
  105. Modica-Napolitano J.S. Aprille J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 2001 49 1-2 63 70 10.1016/S0169‑409X(01)00125‑9 11377803
    [Google Scholar]
  106. Ross M.F. Kelso G.F. Blaikie F.H. James A.M. Cochemé H.M. Filipovska A. Da Ros T. Hurd T.R. Smith R.A.J. Murphy M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc.) 2005 70 2 222 230 10.1007/s10541‑005‑0104‑5 15807662
    [Google Scholar]
  107. Lichtshtein D. Kaback H.R. Blume A.J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc. Natl. Acad. Sci. USA 1979 76 2 650 654 10.1073/pnas.76.2.650 284390
    [Google Scholar]
  108. Lefevre C. Kang H.C. Haugland R.P. Malekzadeh N. Arttamangkul S. Haugland R.P. Texas Res-X and rhodamine Red-X, new derivatives of sulforhodamine 101 and lissamine rhodamine B with improved labeling and fluorescence properties. Bioconjug. Chem. 1996 7 4 482 489 10.1021/bc960034p 8853462
    [Google Scholar]
  109. Lavis L.D. Chao T.Y. Raines R.T. Fluorogenic label for biomolecular imaging. ACS Chem. Biol. 2006 1 4 252 260 10.1021/cb600132m 17163679
    [Google Scholar]
  110. Mao C. Kisaalita W.S. Determination of resting membrane potential of individual neuroblastoma cells (IMR-32) using a potentiometric dye (TMRM) and confocal microscopy. J. Fluoresc. 2004 14 6 739 743 10.1023/B:JOFL.0000047224.41328.f8 15649026
    [Google Scholar]
  111. Scaduto R.C. Jr Grotyohann L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 1999 76 1 469 477 10.1016/S0006‑3495(99)77214‑0 9876159
    [Google Scholar]
  112. Glunde K. Foss C.A. Takagi T. Wildes F. Bhujwalla Z.M. Synthesis of 6′-O-lissamine-rhodamine B-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors. Bioconjug. Chem. 2005 16 4 843 851 10.1021/bc050046n 16029026
    [Google Scholar]
  113. Luker G.D. Fracasso P.M. Dobkin J. Piwnica-Worms D. Modulation of the multidrug resistance P-glycoprotein: detection with technetium-99m-sestamibi in vivo. J. Nucl. Med. 1997 38 3 369 372 9074520
    [Google Scholar]
  114. Sharma V. Piwnica-Worms D. Metal complexes for therapy and diagnosis of drug resistance. Chem. Rev. 1999 99 9 2545 2560 10.1021/cr980429x 11749491
    [Google Scholar]
  115. Vaidyanathan G. Zalutsky M. Imaging drug resistance with radiolabeled molecules. Curr. Pharm. Des. 2004 10 24 2965 2979 10.2174/1381612043383449 15379662
    [Google Scholar]
  116. Wang J. Yang C.T. Kim Y.S. Sreerama S.G. Cao Q. Li Z.B. He Z. Chen X. Liu S. 64Cu-Labeled triphenylphosphonium and triphenylarsonium cations as highly tumor-selective imaging agents. J. Med. Chem. 2007 50 21 5057 5069 10.1021/jm0704088 17867662
    [Google Scholar]
  117. Kim Y.S. Yang C.T. Wang J. Wang L. Li Z.B. Chen X. Liu S. Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations. J. Med. Chem. 2008 51 10 2971 2984 10.1021/jm7015045 18419113
    [Google Scholar]
  118. Yang C.T. Kim Y.S. Wang J. Wang L. Shi J. Li Z.B. Chen X. Fan M. Li J.J. Liu S. 64Cu-labeled 2-(diphenylphosphoryl)ethyldiphenylphosphonium cations as highly selective tumor imaging agents: effects of linkers and chelates on radiotracer biodistribution characteristics. Bioconjug. Chem. 2008 19 10 2008 2022 10.1021/bc8002056 18763821
    [Google Scholar]
  119. Duckworth J.L. Grimes J. Ling G.S.F. Pathophysiology of battlefield associated traumatic brain injury. Pathophysiology 2013 20 1 23 30 10.1016/j.pathophys.2012.03.001 22703708
    [Google Scholar]
  120. Chen X. Huang X. Liu C. Li S. Yang Z. Zhang F. Chen X. Shan H. Tao L. Zhang M. Surface-fill H2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater. 2022 154 259 274 10.1016/j.actbio.2022.11.021 36402296
    [Google Scholar]
  121. Zhang M. Shan H. Wang T. Liu W. Wang Y. Wang L. Zhang L. Chang P. Dong W. Chen X. Tao L. Dynamic change of hydrogen sulfide after traumatic brain injury and its effect in mice. Neurochem. Res. 2013 38 4 714 725 10.1007/s11064‑013‑0969‑4 23325453
    [Google Scholar]
  122. Zhang M. Shan H. Chang P. Wang T. Dong W. Chen X. Tao L. Hydrogen sulfide offers neuroprotection on traumatic brain injury in parallel with reduced apoptosis and autophagy in mice. PLoS One 2014 9 1 e87241 10.1371/journal.pone.0087241 24466346
    [Google Scholar]
  123. Zia N.A. Cullinane C. Van Zuylekom J.K. Waldeck K. McInnes L.E. Buncic G. Haskali M.B. Roselt P.D. Hicks R.J. Donnelly P.S. A bivalent inhibitor of prostate specific membrane antigen radiolabeled with copper-64 with high tumor uptake and retention. Angew. Chem. Int. Ed. 2019 58 42 14991 14994 10.1002/anie.201908964 31437347
    [Google Scholar]
  124. Nahrendorf M. Hoyer F.F. Meerwaldt A.E. van Leent M.M.T. Senders M.L. Calcagno C. Robson P.M. Soultanidis G. Pérez-Medina C. Teunissen A.J.P. Toner Y.C. Ishikawa K. Fish K. Sakurai K. van Leeuwen E.M. Klein E.D. Sofias A.M. Reiner T. Rohde D. Aguirre A.D. Wojtkiewicz G. Schmidt S. Iwamoto Y. Izquierdo-Garcia D. Caravan P. Swirski F.K. Weissleder R. Mulder W.J.M. Imaging cardiovascular and lung macrophages with the positron emission tomography sensor 64 Cu-macrin in mice,rabbits, and pigs. Circ. Cardiovasc. Imaging 2020 13 10 e010586 10.1161/CIRCIMAGING.120.010586 33076700
    [Google Scholar]
  125. Richardson P. Mitsiades C. Schlossman R. Ghobrial I. Hideshima T. Chauhan D. Munshi N. Anderson K. The treatment of relapsed and refractory multiple myeloma. Hematology (Am. Soc. Hematol. Educ. Program) 2007 2007 1 317 323 10.1182/asheducation‑2007.1.317 18024646
    [Google Scholar]
  126. Anderson K.C. Kyle R.A. Rajkumar S.V. Stewart A.K. Weber D. Richardson P. ASH/FDA panel on clinical endpoints in multiple myeloma Clinically relevant end points and new drug approvals for myeloma. Leukemia 2008 22 2 231 239 10.1038/sj.leu.2405016 17972944
    [Google Scholar]
  127. Cavo M. Terpos E. Nanni C. Moreau P. Lentzsch S. Zweegman S. Hillengass J. Engelhardt M. Usmani S.Z. Vesole D.H. San-Miguel J. Kumar S.K. Richardson P.G. Mikhael J.R. da Costa F.L. Dimopoulos M.A. Zingaretti C. Abildgaard N. Goldschmidt H. Orlowski R.Z. Chng W.J. Einsele H. Lonial S. Barlogie B. Anderson K.C. Rajkumar S.V. Durie B.G.M. Zamagni E. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol. 2017 18 4 e206 e217 10.1016/S1470‑2045(17)30189‑4 28368259
    [Google Scholar]
  128. Raza S. Leng S. Lentzsch S. The critical role of imaging in the management of multiple myeloma. Curr. Hematol. Malig. Rep. 2017 12 3 168 175 10.1007/s11899‑017‑0379‑9 28317080
    [Google Scholar]
  129. Kumar S. Paiva B. Anderson K.C. Durie B. Landgren O. Moreau P. Munshi N. Lonial S. Bladé J. Mateos M.V. Dimopoulos M. Kastritis E. Boccadoro M. Orlowski R. Goldschmidt H. Spencer A. Hou J. Chng W.J. Usmani S.Z. Zamagni E. Shimizu K. Jagannath S. Johnsen H.E. Terpos E. Reiman A. Kyle R.A. Sonneveld P. Richardson P.G. McCarthy P. Ludwig H. Chen W. Cavo M. Harousseau J.L. Lentzsch S. Hillengass J. Palumbo A. Orfao A. Rajkumar S.V. Miguel J.S. Avet-Loiseau H. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016 17 8 e328 e346 10.1016/S1470‑2045(16)30206‑6 27511158
    [Google Scholar]
  130. Caserta E. Chea J. Minnix M. Poku E.K. Viola D. Vonderfecht S. Yazaki P. Crow D. Khalife J. Sanchez J.F. Palmer J.M. Hui S. Carlesso N. Keats J. Kim Y. Buettner R. Marcucci G. Rosen S. Shively J. Colcher D. Krishnan A. Pichiorri F. Copper 64–labeled daratumumab as a PET/CT imaging tracer for multiple myeloma. Blood 2018 131 7 741 745 10.1182/blood‑2017‑09‑807263 29301755
    [Google Scholar]
  131. Zheng W. Monnot A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther. 2012 133 2 177 188 10.1016/j.pharmthera.2011.10.006 22115751
    [Google Scholar]
  132. Kuo Y.M. Gybina A.A. Pyatskowit J.W. Gitschier J. Prohaska J.R. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J. Nutr. 2006 136 1 21 26 10.1093/jn/136.1.21 16365053
    [Google Scholar]
  133. Gaier E.D. Eipper B.A. Mains R.E. Copper signaling in the mammalian nervous system: Synaptic effects. J. Neurosci. Res. 2013 91 1 2 19 10.1002/jnr.23143 23115049
    [Google Scholar]
  134. Gutfilen B. Souza S. Valentini G. Copper-64: a real theranostic agent. Drug Des. Devel. Ther. 2018 12 3235 3245 10.2147/DDDT.S170879 30323557
    [Google Scholar]
  135. Kung H.F. Overview of radiopharmaceuticals for diagnosis of central nervous disorders. Crit. Rev. Clin. Lab. Sci. 1991 28 4 269 286 10.3109/10408369109106866 1930679
    [Google Scholar]
  136. Zhang Q. Liao Y. Wang X. Zhang T. Feng J. Deng J. Shi K. Chen L. Feng L. Ma M. Xue L. Hou H. Dou X. Yu C. Ren L. Ding Y. Chen Y. Wu S. Chen Z. Zhang H. Zhuo C. Tian M. A deep learning framework for 18F-FDG PET imaging diagnosis in pediatric patients with temporal lobe epilepsy. Eur. J. Nucl. Med. Mol. Imaging 2021 48 8 2476 2485 10.1007/s00259‑020‑05108‑y 33420912
    [Google Scholar]
  137. Carrasco-Hernandez J. Ramos-Méndez J. Padilla-Rodal E. Avila-Rodriguez M.A. Cellular lethal damage of 64Cu incorporated in mammalian genome evaluated with Monte Carlo methods. Front. Med. (Lausanne) 2023 10 1253746 10.3389/fmed.2023.1253746 37841004
    [Google Scholar]
  138. Chakravarty R. Chakraborty S. Dash A. 64Cu 2+ ions as PET probe: An emerging paradigm in molecular imaging of cancer. Mol. Pharm. 2016 13 11 3601 3612 10.1021/acs.molpharmaceut.6b00582 27709959
    [Google Scholar]
  139. Guerreiro J. Alves V. Abrunhosa A. Paulo A. Gil O. Mendes F. Radiobiological characterization of 64CuCl2 as a simple tool for prostate cancer theranostics. Molecules 2018 23 11 2944 10.3390/molecules23112944 30423862
    [Google Scholar]
  140. Serban R.M. Niculae D. Manda G. Neagoe I. Dobre M. Niculae D.A. Temelie M. Mustăciosu C. Leonte R.A. Chilug L.E. Cornoiu M.R. Cocioabă D. Stan M. Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front. Med. (Lausanne) 2023 10 1197846 10.3389/fmed.2023.1197846 37415761
    [Google Scholar]
  141. Avila-Rodriguez M.A. Rios C. Carrasco-Hernandez J. Manrique-Arias J.C. Martinez-Hernandez R. García-Pérez F.O. Jalilian A.R. Martinez-Rodriguez E. Romero-Piña M.E. Diaz-Ruiz A. Biodistribution and radiation dosimetry of [64Cu]copper dichloride: first-in-human study in healthy volunteers. EJNMMI Res. 2017 7 1 98 10.1186/s13550‑017‑0346‑4 29234903
    [Google Scholar]
  142. Kjærgaard K. Sandahl T.D. Frisch K. Vase K.H. Keiding S. Vilstrup H. Ott P. Gormsen L.C. Munk O.L. Intravenous and oral copper kinetics, biodistribution and dosimetry in healthy humans studied by [64Cu]copper PET/CT. EJNMMI Radiopharm. Chem. 2020 5 1 15 10.1186/s41181‑020‑00100‑1 32556736
    [Google Scholar]
  143. Laforest R. Ghai A. Fraum T.J. Oyama R. Frye J. Kaemmerer H. Gaehle G. Voller T. Mpoy C. Rogers B.E. Fiala M. Shoghi K.I. Achilefu S. Rettig M. Vij R. DiPersio J.F. Schwarz S. Shokeen M. Dehdashti F. First-in-humans evaluation of safety and dosimetry of First-in-humans evaluation of safety and dosimetry of 64 Cu-LLP2A for PET imaging. J. Nucl. Med. 2023 64 2 320 328 10.2967/jnumed.122.264349 36008121
    [Google Scholar]
  144. National Heart, Lung, and Blood Institute (NHLBI). 2022 Available from:https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-heart-lung-blood-institute-nhlbi (accessed on 14-3-2024).
/content/journals/cmc/10.2174/0109298673354343250728095946
Loading
/content/journals/cmc/10.2174/0109298673354343250728095946
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test