
Full text loading...
Sodium Selenite (NaSe) is a molecule with various biological activities. Bone fractures and osteoporotic diseases are increasingly common health issues, prompting the search for alternative treatments. Therefore, the purpose of this study was to examine the antioxidant and osteogenic properties of NaSe.
The experiments were conducted using the hFOB1.19 osteoblast cell line. The MTT assay was used to assess the effects of NaSe on cell viability, while cytotoxicity was evaluated with Lactate Dehydrogenase (LDH) assays. Osteogenic differentiation was assessed by alizarin red staining, and Alkaline Phosphatase (ALP) activity and intracellular Reactive Oxygen Species (ROS) levels were also analyzed.
The results showed that NaSe significantly enhanced cell viability in a dose-dependent manner at low doses (0.01-1μM), with the most effective dose being 1μM (p<0.05). LDH activity remained similar to the control within the 0.01-1μM range but increased significantly at higher concentrations (5-50 μM) in both 24- and 48-hour experiments (p<0.05). NaSe reduced intracellular ROS levels significantly between 0.01-1 μM, with 1 μM being the most effective concentration (p<0.05). The highest ALP activity was observed at 0.1 μM NaSe (p < 0.05), and calcium deposition increased in a concentration-dependent manner (p<0.05). The most effective dose for enhancing mineralization was 0.1 μM (p<0.05).
This study demonstrates that NaSe has antioxidant and osteogenic effects at low doses in hFOB cells. These positive effects suggest that NaSe could be a promising candidate for in-vitro, in-vivo, and clinical trials, providing hope for new treatments for bone diseases.