Skip to content
2000
image of Selenium Enhances Osteogenic Differentiation and Mineralization in Human Osteoblasts: Implications for Bone Health and Metabolism

Abstract

Introduction

Sodium Selenite (NaSe) is a molecule with various biological activities. Bone fractures and osteoporotic diseases are increasingly common health issues, prompting the search for alternative treatments. Therefore, the purpose of this study was to examine the antioxidant and osteogenic properties of NaSe.

Methods

The experiments were conducted using the hFOB1.19 osteoblast cell line. The MTT assay was used to assess the effects of NaSe on cell viability, while cytotoxicity was evaluated with Lactate Dehydrogenase (LDH) assays. Osteogenic differentiation was assessed by alizarin red staining, and Alkaline Phosphatase (ALP) activity and intracellular Reactive Oxygen Species (ROS) levels were also analyzed.

Results

The results showed that NaSe significantly enhanced cell viability in a dose-dependent manner at low doses (0.01-1μM), with the most effective dose being 1μM (<0.05). LDH activity remained similar to the control within the 0.01-1μM range but increased significantly at higher concentrations (5-50 μM) in both 24- and 48-hour experiments (<0.05). NaSe reduced intracellular ROS levels significantly between 0.01-1 μM, with 1 μM being the most effective concentration (<0.05). The highest ALP activity was observed at 0.1 μM NaSe ( < 0.05), and calcium deposition increased in a concentration-dependent manner (<0.05). The most effective dose for enhancing mineralization was 0.1 μM (<0.05).

Conclusion

This study demonstrates that NaSe has antioxidant and osteogenic effects at low doses in hFOB cells. These positive effects suggest that NaSe could be a promising candidate for , and clinical trials, providing hope for new treatments for bone diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673391434250430053916
2025-08-21
2025-09-03
Loading full text...

Full text loading...

References

  1. Breeland G. Sinkler M.A. Menezes R.G. Embryology, Bone Ossification. StatPearls Florida StatPearls Publishing LLC 2023
    [Google Scholar]
  2. Raggatt L.J. Partridge N.C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 2010 285 33 25103 25108 10.1074/jbc.R109.041087 20501658
    [Google Scholar]
  3. Chen Y. Mehmood K. Chang Y.F. Tang Z. Li Y. Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci. 2023 335 335 122243 10.1016/j.lfs.2023.122243 37949211
    [Google Scholar]
  4. Liu L. Luo P. Wen P. Xu P. Effects of selenium and iodine on Kashin-Beck disease: an updated review. Front. Nutr. 2024 11 1402559 10.3389/fnut.2024.1402559 38757132
    [Google Scholar]
  5. Kieliszek M. Lipinski B. Błażejak S. Application of sodium selenite in the prevention and treatment of cancers. Cells 2017 6 4 39 10.3390/cells6040039 29064404
    [Google Scholar]
  6. Benstoem C. Goetzenich A. Kraemer S. Borosch S. Manzanares W. Hardy G. Stoppe C. Selenium and its supplementation in cardiovascular disease-what do we know? Nutrients 2015 7 5 3094 3118 10.3390/nu7053094 25923656
    [Google Scholar]
  7. Yang L. Cai Y.S. Xu K. Zhu J.L. Li Y.B. Wu X.Q. Sun J. Lu S.M. Xu P. Sodium selenite induces apoptosis and inhibits autophagy in human synovial sarcoma cell line SW982 in�vitro. Mol. Med. Rep. 2018 17 5 6560 6568 10.3892/mmr.2018.8679 29512717
    [Google Scholar]
  8. Yang T. Lee S.Y. Park K.C. Park S.H. Chung J. Lee S. The effects of selenium on bone health: from element to therapeutics. Molecules 2022 27 2 392 424 10.3390/molecules27020392 35056706
    [Google Scholar]
  9. Moreno-Reyes R. Egrise D. Nève J. Pasteels J.L. Schoutens A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J. Bone Miner. Res. 2001 16 8 1556 1563 10.1359/jbmr.2001.16.8.1556 11499879
    [Google Scholar]
  10. Luo Y. Xiang Y. Lu B. Tan X. Li Y. Mao H. Huang Q. Association between dietary selenium intake and the prevalence of osteoporosis and its role in the treatment of glucocorticoid-induced osteoporosis. J. Orthop. Surg. Res. 2023 18 1 867 10.1186/s13018‑023‑04276‑5 37968755
    [Google Scholar]
  11. Präbst K. Engelhardt H. Ringgeler S. Hübner H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Methods Mol. Biol. 2017 1601 1 17 10.1007/978‑1‑4939‑6960‑9_1 28470513
    [Google Scholar]
  12. Peng Z. Xu R. You Q. Role of traditional Chinese medicine in bone regeneration and osteoporosis. Front. Bioeng. Biotechnol. 2022 10 911326 10.3389/fbioe.2022.911326 35711635
    [Google Scholar]
  13. Cardoso B.R. Cominetti C. Seale L.A. Editorial: Selenium, Human Health and Chronic Disease. Front. Nutr. 2022 8 827759 10.3389/fnut.2021.827759 35118114
    [Google Scholar]
  14. Mehdi Y. Hornick J.L. Istasse L. Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013 18 3 3292 3311 10.3390/molecules18033292 23486107
    [Google Scholar]
  15. Razaghi A. Poorebrahim M. Sarhan D. Björnstedt M. Selenium stimulates the antitumour immunity: Insights to future research. Eur. J. Cancer 2021 155 256 267 10.1016/j.ejca.2021.07.013 34392068
    [Google Scholar]
  16. Fairweather-Tait S.J. Bao Y. Broadley M.R. Collings R. Ford D. Hesketh J.E. Hurst R. Selenium in human health and disease. Antioxid. Redox Signal. 2011 14 7 1337 1383 10.1089/ars.2010.3275 20812787
    [Google Scholar]
  17. Duță C. Muscurel C. Dogaru C.B. Stoian I. Selenoproteins: Zoom-in to their metal-binding properties in neurodegenerative diseases. Int. J. Mol. Sci. 2025 26 3 1305 10.3390/ijms26031305 39941073
    [Google Scholar]
  18. Zhang F. Li X. Wei Y. Selenium and Selenoproteins in Health. Biomolecules 2023 13 5 799 10.3390/biom13050799 37238669
    [Google Scholar]
  19. Liu X. Jiang M. Pang C. Wang J. Hu L. Sodium selenite inhibits proliferation and metastasis through ROS-mediated NF-κB signaling in renal cell carcinoma. BMC Cancer 2022 22 1 870 884 10.1186/s12885‑022‑09965‑8 35945549
    [Google Scholar]
  20. Abedelahi A. Salehnia M. Allameh A.A. Davoodi D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Hum. Reprod. 2010 25 4 977 985 10.1093/humrep/deq002 20139425
    [Google Scholar]
  21. Ma Y. Wang L. He J. Ma X. Wang J. Yan R. Ma W. Ma H. Liu Y. Sun H. Zhang X. Jia S. Wang H. Sodium selenite ameliorates silver nanoparticles induced vascular endothelial cytotoxic injury by antioxidative properties and suppressing inflammation through activating the Nrf2 signaling pathway. Biol. Trace Elem. Res. 2024 202 10 4567 4585 10.1007/s12011‑023‑04014‑2 38150116
    [Google Scholar]
  22. Umapathy S. Pan I. Issac P.K. Kumar M.S.K. Giri J. Guru A. Arockiaraj J. Selenium nanoparticles as neuroprotective agents: Insights into molecular mechanisms for Parkinson’s disease treatment. Mol. Neurobiol. 2024 1 28 10.1007/s12035‑024‑04253‑x 38837103
    [Google Scholar]
  23. Dufour C. Gironde C. Rigal M. Furger C. Le Roux E. Bioactivity of grape pomace extract and sodium selenite, key components of the oenogrape advanced complex, on target human cells: Intracellular ROS scavenging and Nrf2/ARE induction following in vitro intestinal absorption. Antioxidants 2024 13 11 1392 10.3390/antiox13111392 39594534
    [Google Scholar]
  24. Jirong Y. Huiyun P. Zhongzhe Y. Birong D. Weimin L. Ming Y. Yi S. Sodium selenite for treatment of Kashin-Beck disease in children: a systematic review of randomised controlled trials. Osteoarthritis Cartilage 2012 20 7 605 613 10.1016/j.joca.2012.02.012 22370124
    [Google Scholar]
  25. Pasco J.A. Anderson K.B. Williams L.J. Stuart A.L. Hyde N.K. Holloway-Kew K.L. Dietary intakes of copper and selenium in association with bone mineral density. Nutrients 2024 16 16 2777 10.3390/nu16162777 39203913
    [Google Scholar]
  26. Margulies B.S. Damron T.A. Allen M.J. The differential effects of the radioprotectant drugs amifostine and sodium selenite treatment in combination with radiation therapy on constituent bone cells, ewing’s sarcoma of bone tumor cells, and rhabdomyosarcoma tumor cells in vitro. J. Orthop. Res. 2008 26 11 1512 1519 10.1002/jor.20679 18473385
    [Google Scholar]
  27. Rocha A.S.S. Ramos-Perez F.M.M. Bóscolo F.N. Manzi F.R. Cchicarelo M. Almeida S.M. Effect of sodium selenite on bone repair in tibiae of irradiated rats. Braz. Dent. J. 2009 20 3 186 190 10.1590/S0103‑64402009000300002 19784461
    [Google Scholar]
  28. Freitas D.Q. Ramos-Perez F.M.M. Neves E.G. Marques M.R. Bóscolo F.N. Almeida S.M. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats. Braz. Dent. J. 2012 23 6 723 728 10.1590/S0103‑64402012000600017 23338268
    [Google Scholar]
  29. Sun J.Y. Hou Y.J. Fu X.Y. Fu X.T. Ma J.K. Yang M.F. Sun B.L. Fan C.D. Oh J. Selenium-containing protein from selenium-enriched spirulina platensis attenuates cisplatin-induced apoptosis in MC3T3-E1 mouse preosteoblast by inhibiting mitochondrial dysfunction and ROS-mediated oxidative damage. Front. Physiol. 1907 2018 9 30687122
    [Google Scholar]
  30. Sharma A.R. Sharma G. Lee Y.H. Chakraborty C. Lee S.S. Seo E.M. Sodium selenite promotes osteoblast differentiation via the WNT/ß-catenin signaling pathway. Cell J. 2022 24 6 309 315 35892229
    [Google Scholar]
  31. Chen M. Jia L. Gao R. Association between dietary copper, iron, zinc, selenium intake and osteopenia or osteoporosis in elderly hypertensive patients: a retrospective cohort study. Front. Nutr. 2024 11 11 1419379 10.3389/fnut.2024.1419379 39206314
    [Google Scholar]
  32. Xue G. Liu R. Association between dietary selenium intake and bone mineral density in the US general population. Ann. Transl. Med. 2022 10 16 869 10.21037/atm‑22‑3441 36111054
    [Google Scholar]
  33. Walsh J.S. Jacques R. Schomburg L. Hill T. Mathers J. Williams G. Eastell R. Selenium supplementation to improve bone health in postmenopausal women: the SeMS three-arm RCT. Efficacy and Mechanism Evaluation Southampton, UK NIHR Journals Library 2021
    [Google Scholar]
  34. Sahin E. Arafat M. Koparal A.T. Selenomethionine, a trace element, increases osteoblastic activity of hFOB 1.19 cells (an in vitro study). Biol. Trace Elem. Res. 2024 202 11 5000 5005 10.1007/s12011‑023‑04055‑7 38200249
    [Google Scholar]
  35. Breschi A. Gingeras T.R. Guigó R. Comparative transcriptomics in human and mouse. Nat. Rev. Genet. 2017 18 7 425 440 10.1038/nrg.2017.19 28479595
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673391434250430053916
Loading
/content/journals/cmc/10.2174/0109298673391434250430053916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test