Skip to content
2000
image of New Indazole Derivatives as Potential Scaffolds for the Development of Anticancer, Antiviral, and Anti-tuberculosis Chemotherapeutic Compounds

Abstract

Introduction

Chemotherapy remains essential despite advances in immunotherapy, radiotherapy, and biological therapy. However, the wide range of chemical drugs is limited by a narrow therapeutic index, low selectivity, and the development of resistance. In this regard, new high-efficiency drugs are in extremely high demand. The indazole moiety, a scaffold found in many biologically active compounds, was selected for use in new drug design.

Methods

Six new indazole derivatives were synthesized Suzuki-Miyaura coupling starting from bromoindazole. Their antiviral (against influenza A and SARS-CoV-2), antibacterial (against ), and antiproliferative activities (against neuroblastoma, glioma, leukemia cell lines) were evaluated . Acute toxicity was assessed in mice of both sexes single intragastric administration, with toxicometric parameters and pathomorphological changes studied.

Results

6-(1H-pyrazol-4-yl)-1H-indazole () suppressed the reproduction of the influenza virus at non-toxic doses to the MDCK cells and showed cytotoxicity against cancer cell lines, with an IC between 4 and 14 µM. However, it exhibited significant acute toxicity in mice (LD 40 mg/kg), causing systemic organ damage.

Discussion

Derivative demonstrated promising antiviral and antiproliferative activities but exhibited considerable acute toxicity . The antiviral efficacy, although lower than oseltamivir, is meaningful and justifies further optimization and investigation. Its antibacterial activity against adds to its potential as a multifunctional agent.

Conclusion

While derivative has shown potential as an antiviral and anticancer agent, its high toxicity highlights the need for further studies to define a safe and effective therapeutic window. Overall, the indazole scaffold remains a valuable platform for the development of new therapeutic compounds.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673389070250822065247
2025-09-05
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673389070250822065247/BMS-CMC-2025-HT139-6061-22.html?itemId=/content/journals/cmc/10.2174/0109298673389070250822065247&mimeType=html&fmt=ahah

References

  1. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909 32326131
    [Google Scholar]
  2. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results. Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  3. Mermer A. Keles T. Sirin Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem. 2021 114 105076 10.1016/j.bioorg.2021.105076 34157555
    [Google Scholar]
  4. Nadar S. Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem. Biol. Drug. Des. 2022 100 6 818 842 10.1111/cbdd.14001 34914188
    [Google Scholar]
  5. Jampilek J. Heterocycles in medicinal chemistry. Molecules. 2019 24 21 3839 10.3390/molecules24213839 31731387
    [Google Scholar]
  6. Matyugina E.S. Kochetkov S.N. Khandazhinskaya A.L. Synthesis and biological activity of aza and deaza analogues of purine nucleosides. Russ. Chem. Rev. 2021 90 11 1454 1491 10.1070/RCR5013
    [Google Scholar]
  7. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  8. Qin J. Cheng W. Duan Y.T. Yang H. Yao Y. Indazole as a privileged scaffold: The derivatives and their therapeutic applications. Anticancer. Agents Med. Chem. 2021 21 7 839 860 10.2174/1871520620999200818160350 32819234
    [Google Scholar]
  9. Zhang S.G. Liang C.G. Zhang W.H. Recent advances in indazole-containing derivatives: Synthesis and biological perspectives. Molecules. 2018 23 11 2783 10.3390/molecules23112783 30373212
    [Google Scholar]
  10. Denya I. Malan S.F. Joubert J. Indazole derivatives and their therapeutic applications: A patent review (2013-2017). Expert Opin. Ther. Pat. 2018 28 6 441 453 10.1080/13543776.2018.1472240 29718740
    [Google Scholar]
  11. Ghosh S. Mondal S. Hajra A. Direct catalytic functionalization of indazole derivatives. Adv. Synth. Catal. 2020 362 18 3768 3794 10.1002/adsc.202000423
    [Google Scholar]
  12. Puri S. Sawant S. Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J. Mol. Struct. 2023 1284 135327 10.1016/j.molstruc.2023.135327
    [Google Scholar]
  13. Al-Tuwaijri H.M. Al-Abdullah E.S. El-Rashedy A.A. Ansari S.A. Almomen A. Alshibl H.M. Haiba M.E. Alkahtani H.M. New indazol-pyrimidine-based derivatives as selective anticancer agents: Design, synthesis, and in silico studies. Molecules. 2023 28 9 3664 10.3390/molecules28093664 37175074
    [Google Scholar]
  14. Bastos I.M. Rebelo S. Silva V.L.M. A comprehensive review on phosphatidylinositol-3-kinase (PI3K) and its inhibitors bearing pyrazole or indazole core for cancer therapy. Chem. Biol. Interact. 2024 398 111073 10.1016/j.cbi.2024.111073 38823538
    [Google Scholar]
  15. Hoang V.H. Trang N.T.K. Minh T.C. Long L.T.B. Lan T.H. Hue N.T. Tien L.Q. Nguyen T.X. Nguyen Y.T.K. Yoo H. Tran P.T. Design, synthesis and evaluation the bioactivities of novel 1,3-dimethyl-6-amino-1H-indazole derivatives as anticancer agents. Bioorg. Med. Chem. 2023 90 117377 10.1016/j.bmc.2023.117377 37352576
    [Google Scholar]
  16. Qin Q. Lu S. Guo Z. Li Z. Fu Q. Wang X. Wu T. Sun Y. Liu N. zhang H. Zhao D. Cheng M. Discovery of novel indazole derivatives as second-generation TRK inhibitors. Eur. J. Med. Chem. 2024 276 116640 10.1016/j.ejmech.2024.116640 39033612
    [Google Scholar]
  17. Wan Y. He S. Li W. Tang Z. Indazole derivatives: Promising anti-tumor agents. Anticancer. Agents Med. Chem. 2019 18 9 1228 1234 10.2174/1871520618666180510113822 29745343
    [Google Scholar]
  18. Wang C. Zhu M. Long X. Wang Q. Wang Z. Ouyang G. Design, synthesis and antitumor activity of 1H -indazole-3-amine derivatives. Int. J. Mol. Sci. 2023 24 10 8686 10.3390/ijms24108686 37240028
    [Google Scholar]
  19. Heo Y.A. Duggan S.T. Niraparib: A review in ovarian cancer. Target. Oncol. 2018 13 4 533 539 10.1007/s11523‑018‑0582‑1 30073633
    [Google Scholar]
  20. Nguyen D.T. Shayahi S. Pazopanib: approval for soft-tissue sarcoma. J. Adv. Pract. Oncol. 2013 4 1 53 57 25031981
    [Google Scholar]
  21. Tsironis G. Liontos M. Kyriazoglou A. Koutsoukos K. Tsiara A. Kaparelou M. Zakopoulou R. Cohen A. Skafida E. Fontara S. Zagouri F. Bamias A. Dimopoulos M.A. Axitinib as a third or further line of treatment in renal cancer: a single institution experience. BMC Urol. 2020 20 1 60 10.1186/s12894‑020‑00618‑1 32487200
    [Google Scholar]
  22. Dong J. Zhang Q. Wang Z. Huang G. Li S. Recent advances in the development of indazole-based anticancer agents. ChemMedChem 2018 13 15 1490 1507 10.1002/cmdc.201800253 29863292
    [Google Scholar]
  23. Gopi B. Vijayakumar V. An efficient and simple approach for synthesizing indazole compounds using palladium-catalyzed Suzuki–Miyaura cross-coupling. RSC Advances. 2024 14 36 26494 26504 10.1039/D4RA04633A 39175677
    [Google Scholar]
  24. Park Y. Pacitto A. Bayliss T. Cleghorn L.A.T. Wang Z. Hartman T. Arora K. Ioerger T.R. Sacchettini J. Rizzi M. Donini S. Blundell T.L. Ascher D.B. Rhee K. Breda A. Zhou N. Dartois V. Jonnala S.R. Via L.E. Mizrahi V. Epemolu O. Stojanovski L. Simeons F. Osuna-Cabello M. Ellis L. MacKenzie C.J. Smith A.R.C. Davis S.H. Murugesan D. Buchanan K.I. Turner P.A. Huggett M. Zuccotto F. Rebollo-Lopez M.J. Lafuente-Monasterio M.J. Sanz O. Diaz G.S. Lelièvre J. Ballell L. Selenski C. Axtman M. Ghidelli-Disse S. Pflaumer H. Bösche M. Drewes G. Freiberg G.M. Kurnick M.D. Srikumaran M. Kempf D.J. Green S.R. Ray P.C. Read K. Wyatt P. Barry C.E. III Boshoff H.I. Essential but not vulnerable: Indazole sulfonamides targeting inosine monophosphate dehydrogenase as potential leads against Mycobacterium tuberculosis. ACS Infect. Dis. 2017 3 1 18 33 10.1021/acsinfecdis.6b00103 27704782
    [Google Scholar]
  25. Teneva Y. Simeonova R. Valcheva V. Angelova V.T. Recent advances in anti-tuberculosis drug discovery based on hydrazide–hydrazone and thiadiazole derivatives targeting inhA. Pharmaceuticals (Basel) 2023 16 4 484 10.3390/ph16040484 37111241
    [Google Scholar]
  26. Shaikh F. Arif M. Khushtar M. Nematullah M. Rahman M.A. Synthesis and evaluation of antibacterial activity of novel 3-methyl-1H-indazole derivatives. Intelligent Pharmacy 2024 2 1 12 16 10.1016/j.ipha.2023.09.003
    [Google Scholar]
  27. Asad N. Lyons M. Muniz Machado Rodrigues S. Burns J. Roper T. Laidlaw G. Ahmad S. Gupton B. Klumpp D. Jin L. Practical synthesis of 7-bromo-4-chloro-1 H -indazol-3-amine: An important intermediate to lenacapavir. Molecules 2024 29 12 2705 10.3390/molecules29122705 38930779
    [Google Scholar]
  28. Turner L.D. Summers A.J. Johnson L.O. Knowles M.A. Fishwick C.W.G. Identification of an indazole-based pharmacophore for the inhibition of FGFR kinases using fragment-led de Novo design. ACS Med. Chem. Lett. 2017 8 12 1264 1268 10.1021/acsmedchemlett.7b00349 29259745
    [Google Scholar]
  29. Turner L.D. Trinh C.H. Hubball R.A. Orritt K.M. Lin C.C. Burns J.E. Knowles M.A. Fishwick C.W.G. From fragment to lead: de novo design and development toward a selective FGFR2 inhibitor. J. Med. Chem. 2022 65 2 1481 1504 10.1021/acs.jmedchem.1c01163 34780700
    [Google Scholar]
  30. Zhong L. Li Y. Xiong L. Wang W. Wu M. Yuan T. Yang W. Tian C. Miao Z. Wang T. Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021 6 1 201 10.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  31. Matyugina E. Petushkov I. Surzhikov S. Kezin V. Maslova A. Ivanova O. Smirnova O. Kirillov I. Fedyakina I. Kulbachinskiy A. Kochetkov S. Khandazhinskaya A. Nucleoside analogs that inhibit SARS- CoV-2 replication by blocking interaction of virus polymerase with RNA. Int. J. Mol. Sci. 2023 24 4 3361 10.3390/ijms24043361 36834771
    [Google Scholar]
  32. Manual for the laboratory diagnosis and virological surveillance of influenza. WHO Global Influenza Surveillance Network WHO Press 2011
    [Google Scholar]
  33. Fediakina I.T. Konopleva M.V. Proshina E.S. Linnik E.V. Nikitina N.I. Antiviral effect of «Kagocel» substance in vitro on influenza viruses H1N1, H1N1pdm09 and H3N2. Vopr. Virusol. 2019 64 3 125 131 10.18821/0507‑4088‑2019‑64‑3‑125‑131 31622059
    [Google Scholar]
  34. Matyugina E. Khandazhinskaya A. Chernousova L. Andreevskaya S. Smirnova T. Chizhov A. Karpenko I. Kochetkov S. Alexandrova L. The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorg. Med. Chem. 2012 20 22 6680 6686 10.1016/j.bmc.2012.09.019 23062712
    [Google Scholar]
  35. Matyugina E. Novikov M. Babkov D. Ozerov A. Chernousova L. Andreevskaya S. Smirnova T. Karpenko I. Chizhov A. Murthu P. Lutz S. Kochetkov S. Seley-Radtke K.L. Khandazhinskaya A.L. 5-arylaminouracil derivatives: New inhibitors of Mycobacterium tuberculosis. Chem. Biol. Drug Des. 2015 86 6 1387 1396 10.1111/cbdd.12603 26061192
    [Google Scholar]
  36. Khandazhinskaya A. Eletskaya B. Mironov A. Konstantinova I. Efremenkova O. Andreevskaya S. Smirnova T. Chernousova L. Kondrashova E. Chizhov A. Seley-Radtke K. Kochetkov S. Matyugina E. New flexible analogues of 8-aza-7-deazapurine nucleosides as potential antibacterial agents. Int. J. Mol. Sci. 2023 24 20 15421 10.3390/ijms242015421 37895100
    [Google Scholar]
  37. Lipatova A.V. Soboleva A.V. Gorshkov V.A. Bubis J.A. Solovyeva E.M. Krasnov G.S. Kochetkov D.V. Vorobyev P.O. Ilina I.Y. Moshkovskii S.A. Kjeldsen F. Gorshkov M.V. Chumakov P.M. Tarasova I.A. Multi-omics analysis of glioblastoma cells’ sensitivity to oncolytic viruses. Cancers (Basel) 2021 13 21 5268 10.3390/cancers13215268 34771433
    [Google Scholar]
  38. Novikova O.N. Matyugina E.S. Gorshenin A.V. Velikorodnaya Y.I. Krengauz M.D. Vedernikova V.O. Spirin P.V. Prassolov V.S. Kochetkov S.N. Khandazhinskaya A.L. 5′-noraristeromycin repurposing: Well-known S-adenosyl-L-homocysteine hydrolase inhibitor as a potential drug against leukemia. Acta Nat. (Engl. Ed.) 2024 16 3 60 66 39555174
    [Google Scholar]
  39. Voronina, TA.; Guzeevatykh ,LS.; Mironov AN. Guidelines for conducting preclinical studies of drugs. Guidelines for the Study of the Analgesic Activity of Drugs/Edited. , 2012,197-218. Grif and K, Moscow. 2012 197 218
    [Google Scholar]
  40. Düfert M.A. Billingsley K.L. Buchwald S.L. Suzuki-Miyaura cross-coupling of unprotected, nitrogen-rich heterocycles: Substrate scope and mechanistic investigation. J. Am. Chem. Soc. 2013 135 34 12877 12885 10.1021/ja4064469 23909907
    [Google Scholar]
  41. Matyugina E.S. Khandazhinskaya A.L. Kochetkov S.N. Seley-Radtke K.L. Synthesis of 3-hetarylpyrroles by Suzuki–Miyaura cross-coupling. Mendeleev Commun. 2020 30 2 231 232 10.1016/j.mencom.2020.03.034
    [Google Scholar]
  42. Khandazhinskaya A. Eletskaya B. Fateev I. Kharitonova M. Konstantinova I. Barai V. Azhayev A. Hyvonen M.T. Keinanen T.A. Kochetkov S. Seley-Radtke K. Khomutov A. Matyugina E. Novel fleximer pyrazole-containing adenosine analogues: Chemical, enzymatic and highly efficient biotechnological synthesis. Org. Biomol. Chem. 2021 19 34 7379 7389 10.1039/D1OB01069G 34198312
    [Google Scholar]
  43. Technical manual for culture-based drug susceptibility testing of antituberculosis drugs used in the treatment of tuberculosis. WHO operational handbook on tuberculosis. Module 3: diagnosis - rapid diagnostics for tuberculosis detection 3rd ed. World Health Organization Geneva 2024
    [Google Scholar]
  44. Merkulov G.A. Course in pathohistological technique. 5th ed. Medicine. Leningrad Department Leningrad 1969
    [Google Scholar]
  45. Microscopic technique: Manual. Moscow Medicine 1996
    [Google Scholar]
  46. Finney D.J. Probit analysis. A statistical treatment of the sigmoid response curve./D.J. Finney. Cambridge Cambridge University Press 1947
    [Google Scholar]
  47. Husaini R. Ahmad M. Zakaria Z. Effectiveness of imatinib mesylate over etoposide in the treatment of sensitive and resistant chronic myeloid leukaemia cells in vitro. Exp. Ther. Med. 2017 13 6 3209 3216 10.3892/etm.2017.4443 28587395
    [Google Scholar]
  48. Zhou Z. Zwelling L.A. Ganapathi R. Kleinerman E.S. Enhanced etoposide sensitivity following adenovirus-mediated human topoisomerase II α gene transfer is independent of topoisomerase II β. Br. J. Cancer 2001 85 5 747 751 10.1054/bjoc.2001.1966 11531262
    [Google Scholar]
  49. Kluska M. Woźniak K. Natural polyphenols as modulators of etoposide anti-cancer activity. Int. J. Mol. Sci. 2021 22 12 6602 10.3390/ijms22126602 34202987
    [Google Scholar]
  50. Slater L. Osann K. Eklof A. Arquilla E. Stupecky M. Sweet P. Etoposide induction of tumor immunity in Lewis lung cancer. Cancer Chemother. Pharmacol. 2001 48 4 327 332 10.1007/s002800100357 11710634
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673389070250822065247
Loading
/content/journals/cmc/10.2174/0109298673389070250822065247
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test