Skip to content
2000
image of [18F]FDG PET/CT versus Bone Scintigraphy for the Diagnosis of Bone Metastasis in Breast Cancer: A Systematic Review and Meta-Analysis

Abstract

Introduction

Breast cancer has become the most commonly diagnosed cancer in women worldwide, with advanced cases often leading to bone metastases that significantly affect prognosis and quality of life. This meta-analysis and systematic review aims to evaluate and compare the diagnostic performance of [18F]FDG PET/CT and bone scintigraphy for detecting bone metastases in breast cancer patients.

Methods

A systematic search was conducted across PubMed, Embase, Web of Science, and Scopus for studies published up to February 2025. Relevant articles were identified using a combination of subject-specific and free-text keywords, including “breast cancer,” “positron emission tomography,” “bone scintigraphy,” and “bone metastasis.” Studies assessing the diagnostic utility of [18F]FDG PET/CT and bone scintigraphy in detecting bone metastases were included. A bivariate random-effects model was used to calculate pooled estimates of sensitivity, specificity, and diagnostic accuracy with 95% confidence intervals (CIs). Potential sources of heterogeneity were explored using meta-regression analysis. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was applied to evaluate the methodological quality of the included studies.

Results

A total of 1407 publications were initially retrieved, and 13 studies involving 892 patients met the inclusion criteria. The pooled diagnostic performance for [18F]FDG PET/CT demonstrated a sensitivity of 0.91 (95% CI: 0.81-0.96) and a specificity of 0.98 (95% CI: 0.93-1.00), with an area under the curve (AUC) of 0.99 (95% CI: 0.97-0.99). In comparison, bone scintigraphy showed a sensitivity of 0.82 (95% CI: 0.72-0.89), specificity of 0.81 (95% CI: 0.73-0.87), and an AUC of 0.88 (95% CI: 0.85-0.91). Despite its higher diagnostic accuracy, PET/CT exhibited notable heterogeneity across studies, potentially influenced by differences in patient populations and imaging interpretation criteria.

Discussion

Our meta-analysis demonstrated the superior diagnostic performance of [18F]FDG PET/CT over bone scintigraphy, likely attributable to its enhanced sensitivity for osteolytic lesions and integrated anatomical-functional imaging. Nevertheless, considerable inter-study heterogeneity and incomplete clinical data reporting limit the generalizability and robustness, warranting further standardized prospective investigations.

Conclusion

The findings suggest that [18F]FDG PET/CT offers superior diagnostic accuracy compared to bone scintigraphy for detecting bone metastases in breast cancer patients. However, its clinical application requires further validation through large-scale, prospective studies. Additionally, considerations such as cost-effectiveness and accessibility must be addressed before widespread clinical adoption.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673374240250812022451
2025-09-09
2025-11-04
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Veronesi U. Boyle P. Goldhirsch A. Orecchia R. Viale G. Breast cancer. Lancet 2005 365 9472 1727 1741 10.1016/S0140‑6736(05)66546‑4 15894099
    [Google Scholar]
  3. Babavalian A Tekie FSM Ayazi H Reduced polydopamine coated graphene for delivery of Hset1 antisense as a photothermal and gene therapy of breast cancer. J. Drug Deliv. Sci. Technol. 2022 73 103462 10.1016/j.jddst.2022.103462
    [Google Scholar]
  4. Lloyd M.R. Jhaveri K. Kalinsky K. Bardia A. Wander S.A. Precision therapeutics and emerging strategies for HR-positive metastatic breast cancer. Nat. Rev. Clin. Oncol. 2024 21 10 743 761 10.1038/s41571‑024‑00935‑6 39179659
    [Google Scholar]
  5. Curigliano G. Burstein H.J. Winer E.P. Gnant M. Dubsky P. Loibl S. Colleoni M. Regan M.M. Piccart-Gebhart M. Senn H.J. Thürlimann B. André F. Baselga J. Bergh J. Bonnefoi H. Brucker S.Y. Cardoso F. Carey L. Ciruelos E. Cuzick J. Denkert C. Di Leo A. Ejlertsen B. Francis P. Galimberti V. Garber J. Gulluoglu B. Goodwin P. Harbeck N. Hayes D.F. Huang C.S. Huober J. Khaled H. Jassem J. Jiang Z. Karlsson P. Morrow M. Orecchia R. Osborne K.C. Pagani O. Partridge A.H. Pritchard K. Ro J. Rutgers E.J.T. Sedlmayer F. Semiglazov V. Shao Z. Smith I. Toi M. Tutt A. Viale G. Watanabe T. Whelan T.J. Xu B. De-escalating and escalating treatments for early-stage breast cancer: The St. gallen international expert consensus conference on the primary therapy of early breast cancer 2017. Ann. Oncol. 2017 28 8 1700 1712 10.1093/annonc/mdx308 28838210
    [Google Scholar]
  6. Xiong X. Zheng L.W. Ding Y. Chen Y.F. Cai Y.W. Wang L.P. Huang L. Liu C.C. Shao Z.M. Yu K.D. Breast cancer: Pathogenesis and treatments. Signal Transduct. Target. Ther. 2025 10 1 49 10.1038/s41392‑024‑02108‑4 39966355
    [Google Scholar]
  7. Esteva F.J. Hubbard-Lucey V.M. Tang J. Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet. Oncol. 2019 20 3 e175 e186 10.1016/S1470‑2045(19)30026‑9 30842061
    [Google Scholar]
  8. Ashrafizadeh M. Zarrabi A. Bigham A. Taheriazam A. Saghari Y. Mirzaei S. Hashemi M. Hushmandi K. Karimi-Maleh H. Nazarzadeh Zare E. Sharifi E. Ertas Y.N. Rabiee N. Sethi G. Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med. Res. Rev. 2023 43 6 2115 2176 10.1002/med.21971 37165896
    [Google Scholar]
  9. Liu Y. Hu Y. Xue J. Li J. Yi J. Bu J. Zhang Z. Qiu P. Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol. Cancer 2023 22 1 145 10.1186/s12943‑023‑01850‑7 37660039
    [Google Scholar]
  10. Jiang R. Li L. Li M. Biomimetic construction of degradable DNAzyme-loaded nanocapsules for self-sufficient gene therapy of pulmonary metastatic breast cancer. ACS Nano 2023 17 21 22129 22144 10.1021/acsnano.3c09581 37925681
    [Google Scholar]
  11. Merchant S. Stebbing J. Black cohosh, hot flushes, and breast cancer. Lancet Oncol. 2015 16 2 137 138 10.1016/S1470‑2045(15)70041‑0 25638678
    [Google Scholar]
  12. Hatamie S Akhavan O Sadrnezhaad SK Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015 55 482 489 10.1016/j.msec.2015.05.077 26117780
    [Google Scholar]
  13. Tchernof A Mansour MF Pelletier M Updated survey of the steroid-converting enzymes in human adipose tissues. J. Steroid Biochem. Mol. Biol. 2015 147 56 69 10.1016/j.jsbmb.2014.11.011 25448733
    [Google Scholar]
  14. Moradi S Tayyebi A Rahighi R Mohammadzadeh M Saligheh Rade H R Magnetite/dextran-functionalized graphene oxide nanosheets for in vivo positive contrast magnetic resonance imaging. RSC Advances 2015 5 59 10.1039/C5RA03331D
    [Google Scholar]
  15. Wang L. Wang C. Tao Z. Zhao L. Zhu Z. Wu W. He Y. Chen H. Zheng B. Huang X. Yu Y. Yang L. Liang G. Cui R. Chen T. Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J. Exp. Clin. Cancer Res. 2019 38 1 460 10.1186/s13046‑019‑1424‑4 31703744
    [Google Scholar]
  16. Bars-Cortina D Sakhawat A Piñol-Felis C Chemopreventive effects of anthocyanins on colorectal and breast cancer: A review. Semin. Cancer. Biol. 2022 81 241 258 10.1016/j.semcancer.2020.12.013 33359264
    [Google Scholar]
  17. Liu Y. Solomon M. Achilefu S. Perspectives and potential applications of nanomedicine in breast and prostate cancer. Med. Res. Rev. 2013 33 1 3 32 10.1002/med.20233 23239045
    [Google Scholar]
  18. Assali A. Akhavan O. Adeli M. Razzazan S. Dinarvand R. Zanganeh S. Soleimani M. Dinarvand M. Atyabi F. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. Nanomedicine 2018 14 6 1891 1903 10.1016/j.nano.2018.05.016 29885900
    [Google Scholar]
  19. Afzal M 2021 Nanomedicine in treatment of breast cancer – A challenge to conventional therapy. Semin. Cancer Biol. 2021 69 279 292 10.1016/j.semcancer.2019.12.016 31870940
    [Google Scholar]
  20. Zhao P Wang S Jiang J Targeting lactate metabolism and immune interaction in breast tumor via protease-triggered delivery. J. Control. Release 2023 358 706 717 10.1016/j.jconrel.2023.05.024 37207796
    [Google Scholar]
  21. Pan WL Tan Y Meng W Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022 283 121449 10.1016/j.biomaterials.2022.121449 35247637
    [Google Scholar]
  22. Kumbhar P Kole K Khadake V Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J. Control. Release 2022 349 812 830 10.1016/j.jconrel.2022.07.039 35914614
    [Google Scholar]
  23. Chen Y. Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv. Sci. 2018 5 6 1700964 10.1002/advs.201700964 29938175
    [Google Scholar]
  24. Leo, C.; Schwedler, K.; Condorelli, R.; Bürki, N.; Huober, J.; Zaman, K.; Kurzeder, C.; Vetter, M. Routine genetic testing of germline breast cancer susceptibility- challenges and opportunities. Healthbook Times Oncol. Hematol. 2023 17 3 16 25 10.36000/HBT.OH.2023.17.117
    [Google Scholar]
  25. Wheeler S.B. Rocque G. Basch E. Benefits of breast cancer screening and treatment on mortality. JAMA 2024 331 3 199 200 10.1001/jama.2023.26730 38227044
    [Google Scholar]
  26. Coleman C. Early detection and screening for breast cancer. Semin. Oncol. Nurs. 2017 33 2 141 155 10.1016/j.soncn.2017.02.009
    [Google Scholar]
  27. Vourtsis A. Berg W.A. Breast density implications and supplemental screening. Eur. Radiol. 2019 29 4 1762 1777 10.1007/s00330‑018‑5668‑8 30255244
    [Google Scholar]
  28. Conti A. Duggento A. Indovina I. Radiomics in breast cancer classification and prediction. Semin. Cancer Biol. 2021 72 238 250 10.1016/j.semcancer.2020.04.002 32371013
    [Google Scholar]
  29. Sun Y.S. Zhao Z. Yang Z.N. Xu F. Lu H.J. Zhu Z.Y. Shi W. Jiang J. Yao P.P. Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017 13 11 1387 1397 10.7150/ijbs.21635 29209143
    [Google Scholar]
  30. McDonald E.S. Oustimov A. Weinstein S.P. Synnestvedt M.B. Schnall M. Conant E.F. Effectiveness of digital breast tomosynthesis compared with digital mammography. JAMA Oncol. 2016 2 6 737 743 10.1001/jamaoncol.2015.5536 26893205
    [Google Scholar]
  31. Fazaeli Y. Akhavan O. Rahighi R. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C 2014 45 196 204 10.1016/j.msec.2014.09.019 25491820
    [Google Scholar]
  32. Alabousi M. Wadera A. Kashif Al-Ghita M. Kashef Al-Ghetaa R. Salameh J.P. Pozdnyakov A. Zha N. Samoilov L. Dehmoobad Sharifabadi A. Sadeghirad B. Freitas V. McInnes M.D.F. Alabousi A. Performance of digital breast tomosynthesis, synthetic mammography, and digital mammography in breast cancer screening: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2021 113 6 680 690 10.1093/jnci/djaa205 33372954
    [Google Scholar]
  33. McDonald E.S. Oustimov A. Weinstein S.P. Synnestvedt M.B. Schnall M. Conant E.F. Effectiveness of digital breast tomosynthesis compared with digital mammography: Outcomes analysis from 3 years of breast cancer screening. JAMA Oncol. 2016 2 6 737 743 10.1001/jamaoncol.2015.5536 26893205
    [Google Scholar]
  34. Zhang J. Wu J. Zhou X.S. Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches. Semin. Cancer. Biol. 2023 96 11 25 10.1016/j.semcancer.2023.09.001 37704183
    [Google Scholar]
  35. Kuhl C.K. Abbreviated breast MRI: State of the art. Radiology 2024 310 3 e221822 10.1148/radiol.221822 38530181
    [Google Scholar]
  36. Berry D.A. Cronin K.A. Plevritis S.K. Fryback D.G. Clarke L. Zelen M. Mandelblatt J.S. Yakovlev A.Y. Habbema J.D.F. Feuer E.J. Effect of screening and adjuvant therapy on mortality from breast cancer. N. Engl. J. Med. 2005 353 17 1784 1792 10.1056/NEJMoa050518 16251534
    [Google Scholar]
  37. Surveillance E. Results E. SEER*Stat databases: SEER november 2021 submission. 2021 Available from: https://seer.cancer.gov/data-software/documentation/seerstat/nov2021/
  38. Nik-Zainal S. Alexandrov L.B. Wedge D.C. Van Loo P. Greenman C.D. Raine K. Jones D. Hinton J. Marshall J. Stebbings L.A. Menzies A. Martin S. Leung K. Chen L. Leroy C. Ramakrishna M. Rance R. Lau K.W. Mudie L.J. Varela I. McBride D.J. Bignell G.R. Cooke S.L. Shlien A. Gamble J. Whitmore I. Maddison M. Tarpey P.S. Davies H.R. Papaemmanuil E. Stephens P.J. McLaren S. Butler A.P. Teague J.W. Jönsson G. Garber J.E. Silver D. Miron P. Fatima A. Boyault S. Langerød A. Tutt A. Martens J.W.M. Aparicio S.A.J.R. Borg Å. Salomon A.V. Thomas G. Børresen-Dale A.L. Richardson A.L. Neuberger M.S. Futreal P.A. Campbell P.J. Stratton M.R. Mutational processes molding the genomes of 21 breast cancers. Cell 2012 149 5 979 993 10.1016/j.cell.2012.04.024 22608084
    [Google Scholar]
  39. Gao R. Bai S. Henderson Y.C. Lin Y. Schalck A. Yan Y. Kumar T. Hu M. Sei E. Davis A. Wang F. Shaitelman S.F. Wang J.R. Chen K. Moulder S. Lai S.Y. Navin N.E. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 2021 39 5 599 608 10.1038/s41587‑020‑00795‑2 33462507
    [Google Scholar]
  40. Riggio A.I. Varley K.E. Welm A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021 124 1 13 26 10.1038/s41416‑020‑01161‑4 33239679
    [Google Scholar]
  41. Ihle C.L. Wright-Hobart S.J. Owens P. Therapeutics targeting the metastatic breast cancer bone microenvironment. Pharmacol. Ther. 2022 239 108280 10.1016/j.pharmthera.2022.108280 36116682
    [Google Scholar]
  42. Fornetti J. Welm A.L. Stewart S.A. Understanding the bone in cancer metastasis. J. Bone. Miner. Res. 2018 33 12 2099 2113 10.1002/jbmr.3618 30476357
    [Google Scholar]
  43. Hamaoka T. Madewell J.E. Podoloff D.A. Hortobagyi G.N. Ueno N.T. Bone imaging in metastatic breast cancer. J. Clin. Oncol. 2004 22 14 2942 2953 10.1200/JCO.2004.08.181 15254062
    [Google Scholar]
  44. Weigel M.T. Dowsett M. Current and emerging biomarkers in breast cancer: Prognosis and prediction. Endocr. Relat. Cancer 2010 17 4 R245 R262 10.1677/ERC‑10‑0136 20647302
    [Google Scholar]
  45. van Es S.C. Velleman T. Elias S.G. Bensch F. Brouwers A.H. Glaudemans A.W.J.M. Kwee T.C. Iersel M.W. Maduro J.H. Oosting S.F. de Vries E.G.E. Schröder C.P. Assessment of bone lesions with 18 F-FDG PET compared with 99mTc bone scintigraphy leads to clinically relevant differences in metastatic breast cancer management. J. Nucl. Med. 2021 62 2 177 183 10.2967/jnumed.120.244640 32817140
    [Google Scholar]
  46. Quattrocchi C.C. Piciucchi S. Sammarra M. Santini D. Vincenzi B. Tonini G. Grasso R.F. Zobel B.B. Bone metastases in breast cancer: Higher prevalence of osteosclerotic lesions. Radiol. Med. 2007 112 7 1049 1059 10.1007/s11547‑007‑0205‑x 17952675
    [Google Scholar]
  47. Groheux D. FDG-PET/CT for primary staging and detection of recurrence of breast cancer. Semin. Nucl. Med. 2022 52 5 508 519 10.1053/j.semnuclmed.2022.05.001 35636977
    [Google Scholar]
  48. Rong J. Wang S. Ding Q. Yun M. Zheng Z. Ye S. Comparison of 18FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg. Oncol. 2013 22 2 86 91 10.1016/j.suronc.2013.01.002 23726506
    [Google Scholar]
  49. Zhang C. Liang Z. Liu W. Zeng X. Mo Y. Comparison of whole-body 18F-FDG PET/CT and PET/MRI for distant metastases in patients with malignant tumors: A meta-analysis. BMC Cancer 2023 23 1 37 10.1186/s12885‑022‑10493‑8 36624425
    [Google Scholar]
  50. Arends L.R. Hamza T.H. van Houwelingen J.C. Heijenbrok-Kal M.H. Hunink M.G.M. Stijnen T. Bivariate random effects meta-analysis of ROC curves. Med. Decis. Making 2008 28 5 621 638 10.1177/0272989X08319957 18591542
    [Google Scholar]
  51. Yoon S.H. Kim K.S. Kang S.Y. Song H.S. Jo K.S. Choi B.H. Lee S.J. Yoon J.K. An Y.S. Usefulness of 18F-fluoride PET/CT in breast cancer patients with osteosclerotic bone metastases. Nucl. Med. Mol. Imaging 2013 47 1 27 35 10.1007/s13139‑012‑0178‑0 24895505
    [Google Scholar]
  52. Damle N.A. Bal C. Bandopadhyaya G.P. Kumar L. Kumar P. Malhotra A. Lata S. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: A comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn. J. Radiol. 2013 31 4 262 269 10.1007/s11604‑013‑0179‑7 23377765
    [Google Scholar]
  53. Fuster D. Duch J. Paredes P. Velasco M. Muñoz M. Santamaría G. Fontanillas M. Pons F. Preoperative staging of large primary breast cancer with [18F]fluorodeoxyglucose positron emission tomography/computed tomography compared with conventional imaging procedures. J. Clin. Oncol. 2008 26 29 4746 4751 10.1200/JCO.2008.17.1496 18695254
    [Google Scholar]
  54. Sahin E Zincirkeser S Akcan AB Is (99m)Tc-MDP whole body bone scintigraphy adjuvant to (18)F-FDG-PET for the detection of skeletal metastases? J. Balkan Union Oncol. 2014 19 1 291 296 24659678
    [Google Scholar]
  55. Teke F. Teke M. Inal A. Kaplan M.A. Kucukoner M. Aksu R. Urakci Z. Tasdemir B. Isikdogan A. Significance of hormone receptor status in comparison of 18F -FDG-PET/CT and 99mTc-MDP bone scintigraphy for evaluating bone metastases in patients with breast cancer: Single center experience. Asian Pac. J. Cancer Prev. 2015 16 1 387 391 10.7314/APJCP.2015.16.1.387 25640386
    [Google Scholar]
  56. Manohar K. Mittal B.R. Senthil R. Kashyap R. Bhattacharya A. Singh G. Clinical utility of F-18 FDG PET/CT in recurrent breast carcinoma. Nucl. Med. Commun. 2012 33 6 591 596 10.1097/MNM.0b013e3283516716 22334135
    [Google Scholar]
  57. Niikura N. Costelloe C.M. Madewell J.E. Hayashi N. Yu T.K. Liu J. Palla S.L. Tokuda Y. Theriault R.L. Hortobagyi G.N. Ueno N.T. FDG-PET/CT compared with conventional imaging in the detection of distant metastases of primary breast cancer. Oncologist 2011 16 8 1111 1119 10.1634/theoncologist.2011‑0089 21765193
    [Google Scholar]
  58. Balci T.A. Koc Z.P. Komek H. Bone scan or (18)f-fluorodeoxyglucose positron emission tomography/computed tomography; Which modality better shows bone metastases of breast cancer? Breast Care 2012 7 5 1 10.1159/000341559 24647778
    [Google Scholar]
  59. Caglar M. Kupik O. Karabulut E. Høilund-Carlsen P.F. Detection of bone metastases in breast cancer patients in the PET/CT era: Do we still need the bone scan? Rev. Esp. Med. Nucl. Imagen Mol. 2016 35 1 3 11 10.1016/j.remn.2015.08.006 26514321
    [Google Scholar]
  60. Hahn S. Heusner T. Kümmel S. Köninger A. Nagarajah J. Müller S. Boy C. Forsting M. Bockisch A. Antoch G. Stahl A. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta. Radiol. 2011 52 9 1009 1014 10.1258/AR.2011.100507 21969709
    [Google Scholar]
  61. Koolen B.B. Vrancken Peeters M.J.T.F.D. Aukema T.S. Vogel W.V. Oldenburg H.S.A. van der Hage J.A. Hoefnagel C.A. Stokkel M.P.M. Loo C.E. Rodenhuis S. Rutgers E.J.T. Valdés Olmos R.A. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: Comparison with conventional imaging techniques. Breast. Cancer. Res. Treat. 2012 131 1 117 126 10.1007/s10549‑011‑1767‑9 21935602
    [Google Scholar]
  62. Wang, S.; Xudong, H.; Wang, X.; Yang, G.; Mary; Wenshu, Z. Diagnosis of recurrence and meyastasis in post-treatment breast cancer patients using 18F-FDG PET/CT imaging. Chin. J. Cancer. Prev. Treat. 2013 20 12 945 948 10.16073/j.cnki.cjcpt.2013.12.017
    [Google Scholar]
  63. Demir S.S. Aktas G.E. Yenici F.U. A lesion based and sub-regional comparison of FDG PET/CT and MDP bone scintigraphy in detection of bone metastasis in breast cancer. Curr. Med. Imaging 2017 13 4 422 430 10.2174/1573405613666170126121221
    [Google Scholar]
  64. Harlianto N.I. van der Star S. Suelmann B.B.M. de Jong P.A. Verlaan J.J. Foppen W. Diagnostic accuracy of imaging modalities for detection of spinal metastases: A systematic review and meta-analysis. Clin. Transl. Oncol. 2024 5 2316 2326 10.1007/s12094‑024‑03765‑1 39470945
    [Google Scholar]
  65. Gerke O. Naghavi-Behzad M. Nygaard S.T. Sigaroudi V.R. Vogsen M. Vach W. Hildebrandt M.G. Diagnosing bone metastases in breast cancer: A systematic review and network meta-analysis on diagnostic test accuracy studies of 2-[18F]FDG-PET/CT, 18F-NaF-PET/CT, MRI, contrast-enhanced CT, and bone scintigraphy. Semin. Nucl. Med. 2025 55 1 137 151 10.1053/j.semnuclmed.2024.10.008 39547916
    [Google Scholar]
  66. Groheux D. Espié M. Giacchetti S. Hindié E. Performance of FDG PET/CT in the clinical management of breast cancer. Radiology 2013 266 2 388 405 10.1148/radiol.12110853 23220901
    [Google Scholar]
  67. Hansen J.A. Naghavi-Behzad M. Gerke O. Baun C. Falch K. Duvnjak S. Alavi A. Høilund-Carlsen P.F. Hildebrandt M.G. Diagnosis of bone metastases in breast cancer: Lesion-based sensitivity of dual-time-point FDG-PET/CT compared to low-dose CT and bone scintigraphy. PLoS One 2021 16 11 e0260066 10.1371/journal.pone.0260066 34793550
    [Google Scholar]
  68. Sugihara T. Koizumi M. Koyama M. Terauchi T. Gomi N. Ito Y. Hatake K. Sata N. Bone metastases from breast cancer: Associations between morphologic CT patterns and glycolytic activity on PET and bone scintigraphy as well as explorative search for influential factors. Ann. Nucl. Med. 2017 31 10 719 725 10.1007/s12149‑017‑1202‑3 28864931
    [Google Scholar]
  69. Nielsen O.S. Munro A.J. Tannock I.F. Bone metastases: Pathophysiology and management policy. J. Clin. Oncol. 1991 9 3 509 524 10.1200/JCO.1991.9.3.509 1705581
    [Google Scholar]
  70. Hunt N.C.A. Fujikawa Y. Sabokbar A. Itonaga I. Harris A. Athanasou N.A. Cellular mechanisms of bone resorption in breast carcinoma. Br. J. Cancer 2001 85 1 78 84 10.1054/bjoc.2001.1856 11437406
    [Google Scholar]
  71. Mastro A.M. Gay C.V. Welch D.R. Donahue H.J. Jewell J. Mercer R. DiGirolamo D. Chislock E.M. Guttridge K. Breast cancer cells induce osteoblast apoptosis: A possible contributor to bone degradation. J. Cell. Biochem. 2004 91 2 265 276 10.1002/jcb.10746 14743387
    [Google Scholar]
  72. Gil-Rendo A. Martínez-Regueira F. Zornoza G. García-Velloso M.J. Beorlegui C. Rodriguez-Spiteri N. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br. J. Surg. 2009 96 2 166 170 10.1002/bjs.6459 19160365
    [Google Scholar]
  73. Avril N. Rosé C.A. Schelling M. Dose J. Kuhn W. Bense S. Weber W. Ziegler S. Graeff H. Schwaiger M. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: Use and limitations. J. Clin. Oncol. 2000 18 20 3495 3502 10.1200/JCO.2000.18.20.3495 11032590
    [Google Scholar]
  74. Ko H. Baghdadi Y. Love C. Sparano J.A. Clinical utility of 18F-FDG PET/CT in staging localized breast cancer before initiating preoperative systemic therapy. J. Natl. Compr. Canc. Netw. 2020 18 9 1240 1246 10.6004/jnccn.2020.7592 32886897
    [Google Scholar]
  75. Dayes I.S. Metser U. Hodgson N. Parpia S. Eisen A.F. George R. Blanchette P. Cil T.D. Arnaout A. Chan A. Levine M.N. Impact of 18F-labeled fluorodeoxyglucose positron emission tomography-computed tomography versus conventional staging in patients with locally advanced breast cancer. J. Clin. Oncol. 2023 41 23 3909 3916 10.1200/JCO.23.00249 37235845
    [Google Scholar]
  76. Ulaner G.A. Silverstein M. Nangia C. Tetef M. Vandermolen L. Coleman C. Khan S. MacDonald H. Patel T. Techasith T. Mauguen A. ER-targeted PET for initial staging and suspected recurrence in ER-positive breast cancer. JAMA Netw. Open 2024 7 7 e2423435 10.1001/jamanetworkopen.2024.23435 39058489
    [Google Scholar]
  77. Hyland C.J. Varghese F. Yau C. Beckwith H. Khoury K. Varnado W. Hirst G.L. Flavell R.R. Chien A.J. Yee D. Isaacs C.J. Forero-Torres A. Esserman L.J. Melisko M.E. Use of 18F-FDG PET/CT as an initial staging procedure for stage II–III breast cancer: A multicenter value analysis. J. Natl. Compr. Canc. Netw. 2020 18 11 1510 1517 10.6004/jnccn.2020.7598 33152704
    [Google Scholar]
  78. Bernsdorf M. Berthelsen A.K. Wielenga V.T. Kroman N. Teilum D. Binderup T. Tange U.B. Andersson M. Kjær A. Loft A. Graff J. Preoperative PET/CT in early-stage breast cancer. Ann. Oncol. 2012 23 9 2277 2282 10.1093/annonc/mds002 22357250
    [Google Scholar]
  79. Schlumberger M. Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat. Rev. Endocrinol. 2021 17 3 176 188 10.1038/s41574‑020‑00448‑z 33339988
    [Google Scholar]
  80. Elit L.M. Fyles A.W. Gu C.S. Pond G.R. D’Souza D. Samant R. Anthes M. Thomas G. Filion M. Arsenault J. Dayes I. Whelan T.J. Gulenchyn K.Y. Metser U. Dhamanaskar K. Levine M.N. Effect of positron emission tomography imaging in women with locally advanced cervical cancer. JAMA Netw. Open 2018 1 5 e182081 10.1001/jamanetworkopen.2018.2081 30646153
    [Google Scholar]
  81. Stranne J. Henry A. Oprea-Lager D.E. Use of prostate-specific membrane antigen positron emission tomography/computed tomography for nodal staging in prostate cancer and tailoring of treatment: A continuing conundrum. Eur. Urol. 2025 87 2 108 109 10.1016/j.eururo.2024.11.025 39701872
    [Google Scholar]
  82. Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019 39 1 76 10.1186/s40880‑019‑0425‑1 31753020
    [Google Scholar]
  83. Chow K.M. So W.Z. Lee H.J. Lee A. Yap D.W.T. Takwoingi Y. Tay K.J. Tuan J. Thang S.P. Lam W. Yuen J. Lawrentschuk N. Hofman M.S. Murphy D.G. Chen K. Head-to-head comparison of the diagnostic accuracy of prostate-specific membrane antigen positron emission tomography and conventional imaging modalities for initial staging of intermediate- to high-risk prostate cancer: A systematic review and meta-analysis. Eur. Urol. 2023 84 1 36 48 10.1016/j.eururo.2023.03.001 37032189
    [Google Scholar]
  84. Hope T.A. Eiber M. Armstrong W.R. Juarez R. Murthy V. Lawhn-Heath C. Behr S.C. Zhang L. Barbato F. Ceci F. Farolfi A. Schwarzenböck S.M. Unterrainer M. Zacho H.D. Nguyen H.G. Cooperberg M.R. Carroll P.R. Reiter R.E. Holden S. Herrmann K. Zhu S. Fendler W.P. Czernin J. Calais J. Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection. JAMA Oncol. 2021 7 11 1635 1642 10.1001/jamaoncol.2021.3771 34529005
    [Google Scholar]
  85. Bjurlin M.A. Rosenkrantz A.B. Beltran L.S. Raad R.A. Taneja S.S. Imaging and evaluation of patients with high-risk prostate cancer. Nat. Rev. Urol. 2015 12 11 617 628 10.1038/nrurol.2015.242 26481576
    [Google Scholar]
  86. Majhail N.S. Urbain J.L. Albani J.M. Kanvinde M.H. Rice T.W. Novick A.C. Mekhail T.M. Olencki T.E. Elson P. Bukowski R.M. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J. Clin. Oncol. 2003 21 21 3995 4000 10.1200/JCO.2003.04.073 14581422
    [Google Scholar]
  87. Strobel K. Dummer R. Husarik D.B. Pérez Lago M. Hany T.F. Steinert H.C. High-risk melanoma: Accuracy of FDG PET/CT with added CT morphologic information for detection of metastases. Radiology 2007 244 2 566 574 10.1148/radiol.2442061099 17641374
    [Google Scholar]
  88. Zou Y. Zhu S. Kong Y. Precision matters: The value of PET/CT and PET/MRI in the clinical management of cervical cancer. Strahlenther. Onkol. 2025 201 5 507 518 10.1007/s00066‑024‑02294‑8 39331065
    [Google Scholar]
  89. White S.J. Phua Q.S. Lu L. Yaxley K.L. McInnes M.D.F. To M.S. Heterogeneity in systematic reviews of medical imaging diagnostic test accuracy studies. JAMA Netw. Open 2024 7 2 e240649 e240649 10.1001/jamanetworkopen.2024.0649 38421646
    [Google Scholar]
  90. Dinnes J. Deeks J. Kirby J. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health. Technol. Assess. 2005 9 12 1 113 10.3310/hta9120 15774235
    [Google Scholar]
  91. McInnes M.D.F. Bossuyt P.M.M. Pitfalls of systematic reviews and meta-analyses in imaging research. Radiology 2015 277 1 13 21 10.1148/radiol.2015142779 26402491
    [Google Scholar]
  92. Imrey P.B. Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw. Open 2020 3 1 e1919325 10.1001/jamanetworkopen.2019.19325 31922554
    [Google Scholar]
  93. Kim K.W. Lee J. Choi S.H. Huh J. Park S.H. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: A practical review for clinical researchers-part I. general guidance and tips. Korean J. Radiol. 2015 16 6 1175 1187 10.3348/kjr.2015.16.6.1175 26576106
    [Google Scholar]
  94. Castillo C. Steffens T. Sim L. Caffery L. The effect of clinical information on radiology reporting: A systematic review. J. Med. Radiat. Sci. 2021 68 1 60 74 10.1002/jmrs.424 32870580
    [Google Scholar]
  95. Reitsma J.B. Glas A.S. Rutjes A.W.S. Scholten R.J.P.M. Bossuyt P.M. Zwinderman A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 2005 58 10 982 990 10.1016/j.jclinepi.2005.02.022 16168343
    [Google Scholar]
  96. Plana MN Pérez T Zamora J New measures improved the reporting of heterogeneity in diagnostic test accuracy reviews: A metaepidemiological study. J. Clin. Epidemiol. 2021 131 101 112 10.1016/j.jclinepi.2020.11.011 33227449
    [Google Scholar]
  97. McInnes M.D.F. Moher D. Thombs B.D. McGrath T.A. Bossuyt P.M. Clifford T. Cohen J.F. Deeks J.J. Gatsonis C. Hooft L. Hunt H.A. Hyde C.J. Korevaar D.A. Leeflang M.M.G. Macaskill P. Reitsma J.B. Rodin R. Rutjes A.W.S. Salameh J.P. Stevens A. Takwoingi Y. Tonelli M. Weeks L. Whiting P. Willis B.H. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies. JAMA 2018 319 4 388 396 10.1001/jama.2017.19163 29362800
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673374240250812022451
Loading
/content/journals/cmc/10.2174/0109298673374240250812022451
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: scopus ; bone scintigraphy ; breast cancer ; PET/CT ; osteoclasts ; bone metastasis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test