Skip to content
2000
image of Beneficial Role of Zinc in Metabolic Syndrome: Understanding the Underlying Pathophysiological Mechanisms

Abstract

Metabolic syndrome (MetS) is a complex disorder that comprises metabolic abnormalities such as central obesity, insulin resistance, dyslipidemia, and hypertension. Eventually, MetS leads to type 2 diabetes (T2DM) and increases the risk of other cardiovascular diseases. Patients with MetS are approximately five times more prone to develop T2DM. The increase in global prevalence of MetS is a major cause of concern. The microelement zinc is an essential trace element that plays a pivotal role in numerous biological processes occurring in the body. We carried out a thorough search of published studies in Scopus, PubMed, and Google Scholar databases. Zinc plays an important role in the functioning of the immune system, wound healing, protein synthesis, metabolism, inflammation, and different oxidative stress pathways. It is also vital for insulin homeostasis and signaling. The potential role of zinc in managing insulin resistance may be a key component in the treatment of MetS. Zinc acts various signaling pathways, such as AMPK and mTOR, and influences lipid and glucose metabolism. The regulation of zinc metabolism at the cellular level is important for various biological processes, and disruption in zinc homeostasis results in the development of many diseases. The present review aims to discuss the role of zinc in MetS. It is concluded that zinc level modulation may be a key point in the prevention and treatment of MetS.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673370733250807110441
2025-08-26
2025-11-06
Loading full text...

Full text loading...

References

  1. Mohamed S.M. Shalaby M.A. El-Shiekh R.A. El-Banna H.A. Emam S.R. Bakr A.F. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023 3 100335 10.1016/j.focha.2023.100335
    [Google Scholar]
  2. Swarup S. Ahmed I. Grigorova Y. Zeltser R. Metabolic syndrome. StatPearls Treasure Island (FL) StatPearls Publishing 2024
    [Google Scholar]
  3. Amihăesei I.C. Chelaru L. Metabolic syndrome a widespread threatening condition; risk factors, diagnostic criteria, therapeutic options, prevention and controversies: An overview. Rev. Med. Chir. Soc. Med. Nat. Iasi 2014 118 4 896 900 25581945
    [Google Scholar]
  4. Cameron A.J. Shaw J.E. Zimmet P.Z. The metabolic syndrome: Prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am. 2004 33 2 351 375 10.1016/j.ecl.2004.03.005 15158523
    [Google Scholar]
  5. Harrison, TR.; Fauci A. Harrison’s Principles of Internal Medicine. New York McGraw-Hill, Health Professions Division 1998
    [Google Scholar]
  6. Lopez-Candales A. Hernández Burgos P.M. Hernandez-Suarez D.F. Harris D. Linking chronic inflammation with cardiovascular disease: From normal aging to the metabolic syndrome. J. Nat. Sci. 2017 3 4 341 28670620
    [Google Scholar]
  7. Kolovou G.D. Anagnostopoulou K.K. Salpea K.D. Mikhailidis D.P. The prevalence of metabolic syndrome in various populations. Am. J. Med. Sci. 2007 333 6 362 371 10.1097/MAJ.0b013e318065c3a1 17570989
    [Google Scholar]
  8. Zhang H. Sairam M.R. Sex hormone imbalances and adipose tissue dysfunction impacting on metabolic syndrome; a paradigm for the discovery of novel adipokines. Horm. Mol. Biol. Clin. Investig. 2014 17 2 89 97 10.1515/hmbci‑2014‑0002 25372733
    [Google Scholar]
  9. Thor S.M. Yau J.W. Ramadas A. Nutritional and lifestyle intervention strategies for metabolic syndrome in Southeast Asia: A scoping review of recent evidence. PLoS One 2021 16 9 0257433 10.1371/journal.pone.0257433 34520483
    [Google Scholar]
  10. Pérez-Martínez P. Mikhailidis D.P. Athyros V.G. Bullo M. Couture P. Covas M.I. de Koning L. Delgado-Lista J. Díaz-López A. Drevon C.A. Estruch R. Esposito K. Fitó M. Garaulet M. Giugliano D. García-Ríos A. Katsiki N. Kolovou G. Lamarche B. Maiorino M.I. Mena-Sánchez G. Muñoz-Garach A. Nikolic D. Ordovás J.M. Pérez-Jiménez F. Rizzo M. Salas-Salvadó J. Schröder H. Tinahones F.J. de la Torre R. van Ommen B. Wopereis S. Ros E. López-Miranda J. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017 75 5 307 326 10.1093/nutrit/nux014 28521334
    [Google Scholar]
  11. Scheen A.J. Management of the metabolic syndrome. Minerva Endocrinol. 2004 29 2 31 45 15257254
    [Google Scholar]
  12. Rask Larsen J. Dima L. Correll C.U. Manu P. The pharmacological management of metabolic syndrome. Expert Rev. Clin. Pharmacol. 2018 11 4 397 410 10.1080/17512433.2018.1429910 29345505
    [Google Scholar]
  13. Fujioka K. Metabolic syndrome treatment strategies. Pharmacotherapy 2006 26 12part2 222S 226S 10.1592/phco.26.12part2.222S 17125449
    [Google Scholar]
  14. Hayden M.R. Overview and new insights into the metabolic syndrome: Risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease. Medicina 2023 59 3 561 10.3390/medicina59030561 36984562
    [Google Scholar]
  15. Gruzdeva O. Borodkina D. Uchasova E. Dyleva Y. Barbarash O. Leptin resistance: Underlying mechanisms and diagnosis. Diabetes Metab. Syndr. Obes. 2019 12 191 198 10.2147/DMSO.S182406 30774404
    [Google Scholar]
  16. Chistiakov D.A. Sobenin I.A. Revin V.V. Orekhov A.N. Bobryshev Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed Res. Int. 2014 2014 1 7 10.1155/2014/238463 24818134
    [Google Scholar]
  17. Dabke K. Hendrick G. Devkota S. The gut microbiome and metabolic syndrome. J. Clin. Invest. 2019 129 10 4050 4057 10.1172/JCI129194 31573550
    [Google Scholar]
  18. Fragner M.L. Parikh M.A. Jackson K.A. Schwartzman M.L. Frishman W.H. Peterson S.J. GPR75: A newly identified receptor for targeted intervention in the treatment of obesity and metabolic syndrome. Cardiol. Rev. 2024 10.1097/CRD.0000000000000711 38695569
    [Google Scholar]
  19. Riediger N.D. Clara I. Prevalence of metabolic syndrome in the Canadian adult population. CMAJ 2011 183 15 E1127 E1134 10.1503/cmaj.110070 21911558
    [Google Scholar]
  20. Aguilar M. Bhuket T. Torres S. Liu B. Wong R.J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 2015 313 19 1973 1974 10.1001/jama.2015.4260 25988468
    [Google Scholar]
  21. Aguilar-Salinas C.A. Rojas R. Gómez-Pérez F.J. Valles V. Ríos-Torres J.M. Franco A. Olaiz G. Rull J.A. Sepúlveda J. High prevalence of metabolic syndrome in Mexico. Arch. Med. Res. 2004 35 1 76 81 10.1016/j.arcmed.2003.06.006 15036804
    [Google Scholar]
  22. Vernay M. Salanave B. de Peretti C. Druet C. Malon A. Deschamps V. Hercberg S. Castetbon K. Metabolic syndrome and socioeconomic status in France: The French Nutrition and Health Survey (ENNS, 2006–2007). Int. J. Public Health 2013 58 6 855 864 10.1007/s00038‑013‑0501‑2 23999626
    [Google Scholar]
  23. Moebus S. Hanisch J. Bramlage P. Lösch C. Hauner H. Wasem J. Jöckel K.H. Regional differences in the prevalence of the metabolic syndrome in primary care practices in Germany. Dtsch. Arztebl. Int. 2008 105 12 207 213 10.3238/artzebl.2008.0207 19629210
    [Google Scholar]
  24. Miccoli R. Bianchi C. Odoguardi L. Penno G. Caricato F. Giovannitti M.G. Pucci L. Del Prato S. Prevalence of the metabolic syndrome among Italian adults according to ATP III definition. Nutr. Metab. Cardiovasc. Dis. 2005 15 4 250 254 10.1016/j.numecd.2004.09.002 16054548
    [Google Scholar]
  25. Athyros V.G. Bouloukos V.I. Pehlivanidis A.N. Papageorgiou A.A. Dionysopoulou S.G. Symeonidis A.N. Petridis D.I. Kapousouzi M.I. Satsoglou E.A. Mikhailidis D.P. The prevalence of the metabolic syndrome in Greece: The MetS-Greece Multicentre Study. Diabetes Obes. Metab. 2005 7 4 397 405 10.1111/j.1463‑1326.2004.00409.x 15955126
    [Google Scholar]
  26. Metelskaya V.A. Shkolnikova M.A. Shalnova S.A. Andreev E.M. Deev A.D. Jdanov D.A. Shkolnikov V.M. Vaupel J.W. Prevalence, components, and correlates of metabolic syndrome (MetS) among elderly Muscovites. Arch. Gerontol. Geriatr. 2012 55 2 231 237 10.1016/j.archger.2011.09.005 21955584
    [Google Scholar]
  27. Abd Elaziz K.M. Gabal M.S. Aldafrawy O.A. Abou Seif H.A.A. Allam M.F. Prevalence of metabolic syndrome and cardiovascular risk factors among voluntary screened middle-aged and elderly Egyptians. J. Public Health 2014 37 4 fdu097 10.1093/pubmed/fdu097 25503580
    [Google Scholar]
  28. Onat A. Ceyhan K. Başar Ö. Erer B. Toprak S. Sansoy V. Metabolic syndrome: Major impact on coronary risk in a population with low cholesterol levels—a prospective and cross-sectional evaluation. Atherosclerosis 2002 165 2 285 292 10.1016/S0021‑9150(02)00236‑8 12417279
    [Google Scholar]
  29. Owolabi E.O. Ter Goon D. Adeniyi O.V. Adedokun A.O. Seekoe E. Prevalence and correlates of metabolic syndrome among adults attending healthcare facilities in Eastern Cape, South Africa. Open Public Health J. 2017 10 1 148 159 10.2174/1874944501710010148
    [Google Scholar]
  30. Al-Rubeaan K. Bawazeer N. Al Farsi Y. Youssef A.M. Al-Yahya A.A. AlQumaidi H. Al-Malki B.M. Naji K.A. Al-Shehri K. Al Rumaih F.I. Prevalence of metabolic syndrome in Saudi Arabia - a cross sectional study. BMC Endocr. Disord. 2018 18 1 16 10.1186/s12902‑018‑0244‑4 29506520
    [Google Scholar]
  31. Pengpid S. Peltzer K. Prevalence and associated factors of metabolic syndrome among a national population-based sample of 18–108-year-olds in Iraq: Results of the 2015 STEPS survey. Int. J. Diabetes Dev. Ctries. 2021 41 3 427 434 10.1007/s13410‑020‑00912‑6
    [Google Scholar]
  32. Al-Lawati J.A. Mabry R. Mohammed A.J. Addressing the threat of chronic diseases in Oman. Prev. Chronic Dis. 2008 5 3 A99 18558048
    [Google Scholar]
  33. Mahmoud I. Sulaiman N. Prevalence of metabolic syndrome and associated risk factors in the United Arab Emirates: A cross-sectional population-based study. Front. Public Health 2022 9 811006 10.3389/fpubh.2021.811006 35141192
    [Google Scholar]
  34. Al-Thani M.H. Al-Thani A.A.M. Cheema S. Sheikh J. Mamtani R. Lowenfels A.B. Al-Chetachi W.F. Almalki B.A. Hassan Khalifa S.A. Haj Bakri A.O. Maisonneuve P. Prevalence and determinants of metabolic syndrome in Qatar: Results from a National Health Survey. BMJ Open 2016 6 9 009514 10.1136/bmjopen‑2015‑009514 27601485
    [Google Scholar]
  35. Ali N.S. Khuwaja A.K. Adnan-ur-Rahman Nanji K. Retrospective analysis of metabolic syndrome: Prevalence and distribution in executive population in urban pakistan. Int. J. Family Med. 2012 2012 1 8 10.1155/2012/649383 22988504
    [Google Scholar]
  36. Bansal S. Paliwal A. Verma V. Chauhan J. A study on prevalence of metabolic syndrome in general population in Western Uttar Pradesh, India. Int. J. Res. Med. Sci. 2017 5 6 2641 2645 10.18203/2320‑6012.ijrms20172462
    [Google Scholar]
  37. Mainuddin A.K.M. Choudhury K.N. Ahmed K.R. Akter S. Islam N. Masud J.H.B. The metabolic syndrome: Comparison of newly proposed IDF, modified ATP III and WHO criteria and their agreements. Cardiovascular Journal 2013 6 1 17 22 10.3329/cardio.v6i1.16110
    [Google Scholar]
  38. Aekplakorn W. Chongsuvivatwong V. Tatsanavivat P. Suriyawongpaisal P. Prevalence of metabolic syndrome defined by the International Diabetes Federation and National Cholesterol Education Program criteria among Thai adults. Asia Pac. J. Public Health 2011 23 5 792 800 10.1177/1010539511424482 21984495
    [Google Scholar]
  39. Zainuddin L.R. Isa N. Muda W.M. Mohamed H.J. The prevalence of metabolic syndrome according to various definitions and hypertriglyceridemic-waist in malaysian adults. Int. J. Prev. Med. 2011 2 4 229 237 22174962
    [Google Scholar]
  40. Gu D. Reynolds K. Wu X. Chen J. Duan X. Reynolds R.F. Whelton P.K. He J. Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 2005 365 9468 1398 1405 10.1016/S0140‑6736(05)66375‑1 15836888
    [Google Scholar]
  41. Park H.S. Park C.Y. Oh S.W. Yoo H.J. Kim Y.S. Prevalence of obesity and metabolic syndrome in Korean adults. Obes. Rev. 2008 9 2 104 107 10.1111/j.1467‑789X.2007.00421.x 17986177
    [Google Scholar]
  42. Hidaka T. Hayakawa T. Kakamu T. Kumagai T. Hiruta Y. Hata J. Tsuji M. Fukushima T. Prevalence of metabolic syndrome and its components among Japanese workers by clustered business category. PLoS One 2016 11 4 0153368 10.1371/journal.pone.0153368 27082961
    [Google Scholar]
  43. Cameron A.J. Magliano D.J. Zimmet P.Z. Welborn T. Shaw J.E. The metabolic syndrome in australia: Prevalence using four definitions. Diabetes Res. Clin. Pract. 2007 77 3 471 478 10.1016/j.diabres.2007.02.002 17350710
    [Google Scholar]
  44. Calder P. Carr A. Gombart A. Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 2020 12 4 1181 10.3390/nu12041181 32340216
    [Google Scholar]
  45. Allen L. de Benoist B. Dary O. Hurrell R. Guidelines on Food Fortification with Micronutrients. Geneva World Health Organization 2006
    [Google Scholar]
  46. Sanna A. Firinu D. Zavattari P. Valera P. Zinc status and autoimmunity: A systematic review and meta-analysis. Nutrients 2018 10 1 68 10.3390/nu10010068 29324654
    [Google Scholar]
  47. Zinc. 2025 Available from: https://www.britannica.com/science/zinc
  48. Dreosti I.E. Zinc and the gene. Mutat. Res. 2001 475 1-2 161 167 10.1016/S0027‑5107(01)00067‑7 11295161
    [Google Scholar]
  49. Casadevall M. Sarkar B. Effect of redox conditions on the DNA-binding efficiency of the retinoic acid receptor zinc-finger. J. Inorg. Biochem. 1998 71 3-4 147 152 10.1016/S0162‑0134(98)10046‑6 9833319
    [Google Scholar]
  50. Marikovsky M. Ziv V. Nevo N. Harris-Cerruti C. Mahler O. Cu/Zn superoxide dismutase plays important role in immune response. J. Immunol. 2003 170 6 2993 3001 10.4049/jimmunol.170.6.2993 12626552
    [Google Scholar]
  51. Nelson D.L. Cox M.M. Lehninger Principles of Biochemistry. 4th ed New York W.H. Freeman 2005
    [Google Scholar]
  52. Zago M.P. Verstraeten S. Oteiza P. Zinc in the prevention of Fe2+ initiated lipid and protein oxidation. Biol. Res. 2000 33 2 143 150 10.4067/S0716‑97602000000200014 15693281
    [Google Scholar]
  53. Ryu M-S. Aydemir T.B. Zinc. Present Knowledge in Nutrition. 11th ed Marriott B.P. Birt D.F. Stallings V.A. Yates A.A. Hoboken, NJ Wiley-Blackwell 2020 393 408 10.1016/B978‑0‑323‑66162‑1.00023‑8
    [Google Scholar]
  54. King J.C. Cousins R.J. Zinc. Modern Nutrition in Health and Disease. 11th ed Ross A.C. Caballero B. Cousins R.J. Tucker K.L. Ziegler T.R. Philadelphia Lippincott Williams & Wilkins 2014 189 205
    [Google Scholar]
  55. Dietary reference intakes for vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. 2001 Available from: https://www.ncbi.nlm.nih.gov/books/NBK222317/
  56. Liu S. Wang N. Long Y. Wu Z. Zhou S. Zinc homeostasis: An emerging therapeutic target for neuroinflammation related diseases. Biomolecules 2023 13 3 416 10.3390/biom13030416 36979351
    [Google Scholar]
  57. Huth P.J. Fulgoni V.L. III Keast D.R. Park K. Auestad N. Major food sources of calories, added sugars, and saturated fat and their contribution to essential nutrient intakes in the U.S. diet: Data from the national health and nutrition examination survey (2003–2006). Nutr. J. 2013 12 1 116 10.1186/1475‑2891‑12‑116 23927718
    [Google Scholar]
  58. Naz S. Idris M. Khalique M.A. Zia-Ur-Rahman Alhidary I.A. Abdelrahman M.M. Khan R.U. Chand N. Farooq U. Ahmad S. The activity and use of zinc in poultry diets. Worlds Poult. Sci. J. 2016 72 1 159 167 10.1017/S0043933915002755
    [Google Scholar]
  59. Carducci B. Keats E.C. Bhutta Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Libr. 2021 2021 3 CD000230 10.1002/14651858.CD000230.pub6 33724446
    [Google Scholar]
  60. Krebs N.F. Update on zinc deficiency and excess in clinical pediatric practice. Ann. Nutr. Metab. 2013 62 Suppl. 1 19 29 10.1159/000348261 23689110
    [Google Scholar]
  61. Gupta S. Brazier A.K.M. Lowe N.M. Zinc deficiency in low- and middle-income countries: Prevalence and approaches for mitigation. J. Hum. Nutr. Diet. 2020 33 5 624 643 10.1111/jhn.12791 32627912
    [Google Scholar]
  62. Roohani N. Hurrell R. Kelishadi R. Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013 18 2 144 157 23914218
    [Google Scholar]
  63. Brown K.H. Peerson J.M. Allen L.H. Effect of zinc supplementation on children’s growth: A meta-analysis of intervention trials. Forum Nutr. 1998 54 54 76 83 10.1159/000059448 9597173
    [Google Scholar]
  64. Hambidge K.M. Zinc and diarrhea. Acta Paediatr. 1992 81 s383 82 86 10.1111/j.1651‑2227.1992.tb12377.x 1421947
    [Google Scholar]
  65. Gray N.A. Dhana A. Stein D.J. Khumalo N.P. Potgieter F. Morrow B. Khumalo N.P. Zinc and atopic dermatitis: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2019 33 6 1042 1050 10.1111/jdv.15524 30801794
    [Google Scholar]
  66. Rostan E.F. DeBuys H.V. Madey D.L. Pinnell S.R. Evidence supporting zinc as an important antioxidant for skin. Int. J. Dermatol. 2002 41 9 606 611 10.1046/j.1365‑4362.2002.01567.x 12358835
    [Google Scholar]
  67. Bonaventura P. Benedetti G. Albarède F. Miossec P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015 14 4 277 285 10.1016/j.autrev.2014.11.008 25462582
    [Google Scholar]
  68. Schoofs H. Schmit J. Rink L. Zinc toxicity: Understanding the limits. Molecules 2024 29 13 3130 10.3390/molecules29133130 38999082
    [Google Scholar]
  69. Fraker P.J. Jardieu P. Cook J. Zinc deficiency and immune function. Arch. Dermatol. 1987 123 12 1699 1701 10.1001/archderm.1987.01660360152028 3120653
    [Google Scholar]
  70. Prasad A.S. Effects of zinc deficiency on immune functions. J. Trace Elem. Exp. Med. 2000 13 1 1 20 10.1002/(SICI)1520‑670X(2000)13:1<1::AID‑JTRA3>3.0.CO;2‑2
    [Google Scholar]
  71. Prasad A.S. Beck F.W.J. Snell D.C. Kucuk O. Zinc in cancer prevention. Nutr. Cancer 2009 61 6 879 887 10.1080/01635580903285122 20155630
    [Google Scholar]
  72. Himoto T. Masaki T. Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients 2018 10 1 88 10.3390/nu10010088
    [Google Scholar]
  73. Spencer H. Norris C. Williams D. Inhibitory effects of zinc on magnesium balance and magnesium absorption in man. J. Am. Coll. Nutr. 1994 13 5 479 484 10.1080/07315724.1994.10718438 7836627
    [Google Scholar]
  74. Plum L.M. Rink L. Haase H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010 7 4 1342 1365 10.3390/ijerph7041342 20617034
    [Google Scholar]
  75. Nriagu J.O. Zinc toxicity in humans. Chem. Int. 2007 29 2 10 14
    [Google Scholar]
  76. El-Ashmony S.M.A. Morsi H.K. Abdelhafez A.M. Effect of zinc supplementation on lipid profile and body composition in patients with type 2 diabetes mellitus: A grade-assessed systematic review and dose-response meta-analysis. Biol. Trace Elem. Res. 2024 202 11 4877 4892 10.1007/s12011‑024‑04059‑x 38224402
    [Google Scholar]
  77. Kelishadi R. Hashemipour M. Adeli K. Tavakoli N. Movahedian-Attar A. Shapouri J. Poursafa P. Rouzbahani A. Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab. Syndr. Relat. Disord. 2010 8 6 505 510 10.1089/met.2010.0020 21028969
    [Google Scholar]
  78. Adulcikas J. Sonda S. Norouzi S. Sohal S.S. Myers S. Targeting the zinc transporter ZIP7 in the treatment of insulin resistance and type 2 diabetes. Nutrients 2019 11 2 408 10.3390/nu11020408
    [Google Scholar]
  79. Arvan P. Halban P.A. Sorting ourselves out: Seeking consensus on trafficking in the beta-cell. Traffic 2004 5 1 53 61 10.1111/j.1600‑0854.2004.00152.x 14675425
    [Google Scholar]
  80. Hope K.M. Tran P.O.T. Zhou H. Oseid E. Leroy E. Robertson R.P. Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: The “switch-off” hypothesis. Diabetes 2004 53 6 1488 1495 10.2337/diabetes.53.6.1488 15161753
    [Google Scholar]
  81. Davidson H.W. Wenzlau J.M. O’Brien R.M. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol. Metab. 2014 25 8 415 424 10.1016/j.tem.2014.03.008 24751356
    [Google Scholar]
  82. Fu Y. Tian W. Pratt E.B. Dirling L.B. Shyng S.L. Meshul C.K. Cohen D.M. Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS One 2009 4 5 5679 10.1371/journal.pone.0005679 19479076
    [Google Scholar]
  83. Wijesekara N. Dai F.F. Hardy A.B. Giglou P.R. Bhattacharjee A. Koshkin V. Chimienti F. Gaisano H.Y. Rutter G.A. Wheeler M.B. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 2010 53 8 1656 1668 10.1007/s00125‑010‑1733‑9 20424817
    [Google Scholar]
  84. Hardy A.B. Wijesekara N. Genkin I. Prentice K.J. Bhattacharjee A. Kong D. Chimienti F. Wheeler M.B. Effects of high-fat diet feeding on Znt8-null mice: Differences between β-cell and global knockout of Znt8. Am. J. Physiol. Endocrinol. Metab. 2012 302 9 E1084 E1096 10.1152/ajpendo.00448.2011 22338079
    [Google Scholar]
  85. Pound L.D. Sarkar S.A. Ustione A. Dadi P.K. Shadoan M.K. Lee C.E. Walters J.A. Shiota M. McGuinness O.P. Jacobson D.A. Piston D.W. Hutton J.C. Powell D.R. O’Brien R.M. The physiological effects of deleting the mouse SLC30A8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 2012 7 7 40972 10.1371/journal.pone.0040972 22829903
    [Google Scholar]
  86. Wenzlau J.M. Juhl K. Yu L. Moua O. Sarkar S.A. Gottlieb P. Rewers M. Eisenbarth G.S. Jensen J. Davidson H.W. Hutton J.C. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc. Natl. Acad. Sci. USA 2007 104 43 17040 17045 10.1073/pnas.0705894104 17942684
    [Google Scholar]
  87. Dahl A. M S.J. Pittock S.J. Pittock S.T. Clinical utility and outcome prediction of early ZnT8-IgG testing and titer in type 1 diabetes. J. Clin. Res. Pediatr. Endocrinol. 2023 15 1 35 41 10.4274/jcrpe.galenos.2022.2022‑4‑16 35984226
    [Google Scholar]
  88. Zeggini E. Weedon M.N. Lindgren C.M. Frayling T.M. Elliott K.S. Lango H. Timpson N.J. Perry J.R.B. Rayner N.W. Freathy R.M. Barrett J.C. Shields B. Morris A.P. Ellard S. Groves C.J. Harries L.W. Marchini J.L. Owen K.R. Knight B. Cardon L.R. Walker M. Hitman G.A. Morris A.D. Doney A.S.F. McCarthy M.I. Hattersley A.T. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007 316 5829 1336 1341 10.1126/science.1142364 17463249
    [Google Scholar]
  89. Syring K.E. Bosma K.J. Goleva S.B. Singh K. Oeser J.K. Lopez C.A. Skaar E.P. McGuinness O.P. Davis L.K. Powell D.R. O’Brien R.M. Potential positive and negative consequences of ZnT8 inhibition. J. Endocrinol. 2020 246 2 189 205 10.1530/JOE‑20‑0138 32485672
    [Google Scholar]
  90. Flannick J. Thorleifsson G. Beer N.L. Jacobs S.B.R. Grarup N. Burtt N.P. Mahajan A. Fuchsberger C. Atzmon G. Benediktsson R. Blangero J. Bowden D.W. Brandslund I. Brosnan J. Burslem F. Chambers J. Cho Y.S. Christensen C. Douglas D.A. Duggirala R. Dymek Z. Farjoun Y. Fennell T. Fontanillas P. Forsén T. Gabriel S. Glaser B. Gudbjartsson D.F. Hanis C. Hansen T. Hreidarsson A.B. Hveem K. Ingelsson E. Isomaa B. Johansson S. Jørgensen T. Jørgensen M.E. Kathiresan S. Kong A. Kooner J. Kravic J. Laakso M. Lee J.Y. Lind L. Lindgren C.M. Linneberg A. Masson G. Meitinger T. Mohlke K.L. Molven A. Morris A.P. Potluri S. Rauramaa R. Ribel-Madsen R. Richard A.M. Rolph T. Salomaa V. Segrè A.V. Skärstrand H. Steinthorsdottir V. Stringham H.M. Sulem P. Tai E.S. Teo Y.Y. Teslovich T. Thorsteinsdottir U. Trimmer J.K. Tuomi T. Tuomilehto J. Vaziri-Sani F. Voight B.F. Wilson J.G. Boehnke M. McCarthy M.I. Njølstad P.R. Pedersen O. Groop L. Cox D.R. Stefansson K. Altshuler D. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 2014 46 4 357 363 10.1038/ng.2915 24584071
    [Google Scholar]
  91. Jensen J. Jebens E. Brennesvik E.O. Ruzzin J. Soos M.A. Engebretsen E.M.L. O’Rahilly S. Whitehead J.P. Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am. J. Physiol. Endocrinol. Metab. 2006 290 1 E154 E162 10.1152/ajpendo.00330.2005 16118249
    [Google Scholar]
  92. Adulcikas J. Norouzi S. Bretag L. Sohal S.S. Myers S. The zinc transporter SLC39A7 (ZIP7) harbours a highly-conserved histidine-rich N-terminal region that potentially contributes to zinc homeostasis in the endoplasmic reticulum. Comput. Biol. Med. 2018 100 196 202 10.1016/j.compbiomed.2018.07.007 30029049
    [Google Scholar]
  93. Myers S.A. Nield A. Chew G.S. Myers M.A. The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. PLoS One 2013 8 11 79316 10.1371/journal.pone.0079316 24265765
    [Google Scholar]
  94. Norouzi S. Adulcikas J. Henstridge D. Sonda S. Sohal S. Myers S. The zinc transporter Zip7 is downregulated in skeletal muscle of insulin-resistant cells and in mice fed a high-fat diet. Cells 2019 8 7 663 10.3390/cells8070663 31266232
    [Google Scholar]
  95. Norouzi S. Adulcikas J. Sohal S.S. Myers S. Zinc transporters and insulin resistance: Therapeutic implications for type 2 diabetes and metabolic disease. J. Biomed. Sci. 2017 24 1 87 10.1186/s12929‑017‑0394‑0 29157234
    [Google Scholar]
  96. Pandey N.R. Vardatsikos G. Mehdi M.Z. Srivastava A.K. Cell-type-specific roles of IGF-1R and EGFR in mediating Zn2+-induced ERK1/2 and PKB phosphorylation. J. Biol. Inorg. Chem. 2010 15 3 399 407 10.1007/s00775‑009‑0612‑7 19946718
    [Google Scholar]
  97. Rutherford J.C. Bird A.J. Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot. Cell 2004 3 1 1 13 10.1128/EC.3.1.1‑13.2004 14871932
    [Google Scholar]
  98. Tang X. Shay N.F. Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J. Nutr. 2001 131 5 1414 1420 10.1093/jn/131.5.1414 11340092
    [Google Scholar]
  99. Behl T. Gupta A. Sehgal A. Albarrati A. Albratty M. Meraya A.M. Najmi A. Bhatia S. Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed. Pharmacother. 2022 153 113405 10.1016/j.biopha.2022.113405 36076528
    [Google Scholar]
  100. Norouzi S. Adulcikas J. Sohal S.S. Myers S. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One 2018 13 1 0191727 10.1371/journal.pone.0191727 29373583
    [Google Scholar]
  101. Zhang Z.Y. Dodd G.T. Tiganis T. Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol. Sci. 2015 36 10 661 674 10.1016/j.tips.2015.07.003 26435211
    [Google Scholar]
  102. Sun W. Yang J. Wang W. Hou J. Cheng Y. Fu Y. Xu Z. Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J. Trace Elem. Med. Biol. 2018 46 117 127 10.1016/j.jtemb.2017.12.005 29413101
    [Google Scholar]
  103. Cameron A.R. Anil S. Sutherland E. Harthill J. Rena G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics 2010 2 3 195 203 10.1039/B914984H 21069157
    [Google Scholar]
  104. Nakamura A. Kido T. Seki Y. Suka M. Zinc deficiency affects insulin secretion and alters insulin-regulated metabolic signaling in rats. J. Trace Elem. Med. Biol. 2024 83 127375 10.1016/j.jtemb.2023.127375 38184923
    [Google Scholar]
  105. Banaszak M. Górna I. Przysławski J. Zinc and the innovative zinc-α2-glycoprotein adipokine play an important role in lipid metabolism: A critical review. Nutrients 2021 13 6 2023 10.3390/nu13062023 34208404
    [Google Scholar]
  106. Olechnowicz J. Tinkov A. Skalny A. Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018 68 1 19 31 10.1007/s12576‑017‑0571‑7 28965330
    [Google Scholar]
  107. Gong F-Y. Zhang S-J. Deng J-Y. Zhu H-J. Pan H. Li N-S. Shi Y-F. Zinc-α2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. Int. J. Obes. 2009 33 9 1023 1030 10.1038/ijo.2009.141 19621019
    [Google Scholar]
  108. Alenad A.M. Alkaltham L.F. Sabico S. Khattak M.N.K. Wani K. Al-Daghri N.M. Alokail M.S. Associations of zinc-α-2-glycoprotein with metabolic syndrome and its components among adult Arabs. Sci. Rep. 2022 12 1 4908 10.1038/s41598‑022‑09022‑1 35318405
    [Google Scholar]
  109. Balaz M. Vician M. Janakova Z. Kurdiova T. Surova M. Imrich R. Majercikova Z. Penesova A. Vlcek M. Kiss A. Belan V. Klimes I. Olejnik J. Gasperikova D. Wolfrum C. Ukropcova B. Ukropec J. Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity 2014 22 8 1821 1829 10.1002/oby.20764 24753506
    [Google Scholar]
  110. Xu Y.C. Zheng H. Hogstrand C. Tan X.Y. Zhao T. Song Y.F. Wei X.L. Wu L.X. Luo Z. Novel mechanism for zinc inducing hepatic lipolysis via the HDAC3- mediated deacetylation of β-catenin at lysine 311. J. Nutr. Biochem. 2023 121 109429 10.1016/j.jnutbio.2023.109429 37591442
    [Google Scholar]
  111. Huang X. Jiang D. Zhu Y. Fang Z. Che L. Lin Y. Xu S. Li J. Huang C. Zou Y. Li L. Wu D. Feng B. Chronic high dose zinc supplementation induces visceral adipose tissue hypertrophy without altering body weight in mice. Nutrients 2017 9 10 1138 10.3390/nu9101138 29057818
    [Google Scholar]
  112. Ghosh C. Yang S.H. Kim J.G. Jeon T.I. Yoon B.H. Lee J.Y. Lee E.Y. Choi S.G. Hwang S.G. Zinc-chelated vitamin C stimulates adipogenesis of 3T3-L1 cells. Asian-Australas. J. Anim. Sci. 2013 26 8 1189 1196 10.5713/ajas.2013.13179 25049900
    [Google Scholar]
  113. Meruvu S. Hugendubler L. Mueller E. Regulation of adipocyte differentiation by the zinc finger protein ZNF638. J. Biol. Chem. 2011 286 30 26516 26523 10.1074/jbc.M110.212506 21602272
    [Google Scholar]
  114. Troche C. Beker Aydemir T. Cousins R.J. Zinc transporter Slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. Am. J. Physiol. Endocrinol. Metab. 2016 310 4 E258 E268 10.1152/ajpendo.00421.2015 26646099
    [Google Scholar]
  115. Maxel T. Smidt K. Larsen A. Bennetzen M. Cullberg K. Fjeldborg K. Lund S. Pedersen S.B. Rungby J. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes. 2015 2 1 46 10.1186/s40608‑015‑0076‑y 26623077
    [Google Scholar]
  116. Roberts C.K. Sindhu K.K. Oxidative stress and metabolic syndrome. Life Sci. 2009 84 21-22 705 712 10.1016/j.lfs.2009.02.026 19281826
    [Google Scholar]
  117. Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010 59 4 459 469 10.33549/physiolres.931844 19929132
    [Google Scholar]
  118. Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000 130 5S Suppl 1447S 1454S 10.1093/jn/130.5.1447S
    [Google Scholar]
  119. Mariani E. Mangialasche F. Feliziani F.T. Cecchetti R. Malavolta M. Bastiani P. Baglioni M. Dedoussis G. Fulop T. Herbein G. Jajte J. Monti D. Rink L. Mocchegiani E. Mecocci P. Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp. Gerontol. 2008 43 5 445 451 10.1016/j.exger.2007.10.012 18078731
    [Google Scholar]
  120. Jarosz M. Olbert M. Wyszogrodzka G. Młyniec K. Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 2017 25 1 11 24 10.1007/s10787‑017‑0309‑4 28083748
    [Google Scholar]
  121. Pinton R. Cakmak I. Marschner H. Zinc deficiency enhanced NAD(P)H-dependent superoxider radical production in plasma membrane vesicles isolated from roots of bean plants. J. Exp. Bot. 1994 45 1 45 50 10.1093/jxb/45.1.45
    [Google Scholar]
  122. Yu L. Liu Y. Jin Y. Liu T. Wang W. Lu X. Zhang C. Zinc supplementation prevented type 2 diabetes-induced liver injury mediated by the Nrf2-MT antioxidative pathway. J. Diabetes Res. 2021 2021 1 14 10.1155/2021/6662418 34307690
    [Google Scholar]
  123. Yang F. Smith M.J. Siow R.C.M. Aarsland D. Maret W. Mann G.E. Interactions between zinc and NRF2 in vascular redox signalling. Biochem. Soc. Trans. 2024 52 1 269 278 10.1042/BST20230490 38372426
    [Google Scholar]
  124. Jung K.A. Kwak M.K. The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 2010 15 10 7266 7291 10.3390/molecules15107266 20966874
    [Google Scholar]
  125. Hardie D.G. Schaffer B.E. Brunet A. AMPK: An energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016 26 3 190 201 10.1016/j.tcb.2015.10.013 26616193
    [Google Scholar]
  126. Hardie D.G. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 2014 20 6 939 952 10.1016/j.cmet.2014.09.013 25448702
    [Google Scholar]
  127. Mihaylova M.M. Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011 13 9 1016 1023 10.1038/ncb2329 21892142
    [Google Scholar]
  128. Hardie D.G. Ross F.A. Hawley S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012 13 4 251 262 10.1038/nrm3311 22436748
    [Google Scholar]
  129. Hong D.K. Eom J.W. Kho A.R. Lee S.H. Kang B.S. Lee S.H. Koh J.Y. Kim Y.H. Choi B.Y. Suh S.W. The inhibition of zinc excitotoxicity and AMPK phosphorylation by a novel zinc chelator, 2G11, ameliorates neuronal death induced by global cerebral ischemia. Antioxidants 2022 11 11 2192 10.3390/antiox11112192 36358564
    [Google Scholar]
  130. Choi B.Y. Jeong J.H. Eom J.W. Koh J.Y. Kim Y.H. Suh S.W. A novel zinc chelator, 1H10, ameliorates experimental autoimmune encephalomyelitis by modulating zinc toxicity and AMPK activation. Int. J. Mol. Sci. 2020 21 9 3375 10.3390/ijms21093375 32397660
    [Google Scholar]
  131. Hu H. Xia N. Lin J. Li D. Zhang C. Ge M. Tian H. Mei X. Zinc regulates glucose metabolism of the spinal cord and neurons and promotes functional recovery after spinal cord injury through the AMPK signaling pathway. Oxid. Med. Cell. Longev. 2021 2021 1 4331625 10.1155/2021/4331625 34373765
    [Google Scholar]
  132. Wei C.C. Luo Z. Hogstrand C. Xu Y.H. Wu L.X. Chen G.H. Pan Y.X. Song Y.F. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn 2+ /MTF-1/PPARα and Ca 2+ /CaMKKβ/AMPK pathways. FASEB J. 2018 32 12 6666 6680 10.1096/fj.201800463 29912588
    [Google Scholar]
  133. Mackeh R. Marr A.K. Fadda A. Kino T. C2H2-type zinc finger proteins: Evolutionarily old and new partners of the nuclear hormone receptors. Nucl. Recept. Signal. 2018 15 1550762918801071 10.1177/1550762918801071 30718982
    [Google Scholar]
  134. Seong H.A. Manoharan R. Ha H. Zinc finger protein ZPR9 functions as an activator of AMPK-related serine/threonine kinase MPK38/MELK involved in ASK1/TGF-β/p53 signaling pathways. Sci. Rep. 2017 7 1 42502 10.1038/srep42502 28195154
    [Google Scholar]
  135. Liu G.Y. Sabatini D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020 21 4 183 203 10.1038/s41580‑019‑0199‑y 31937935
    [Google Scholar]
  136. Bhaskar P.T. Hay N. The two TORCs and Akt. Dev. Cell 2007 12 4 487 502 10.1016/j.devcel.2007.03.020 17419990
    [Google Scholar]
  137. Lian J. Yan X.H. Peng J. Jiang S.W. The mammalian target of rapamycin pathway and its role in molecular nutrition regulation. Mol. Nutr. Food Res. 2008 52 4 393 399 10.1002/mnfr.200700005 18306429
    [Google Scholar]
  138. Mahalingam D. Sankhala K. Mita A. Giles F.J. Mita M.M. Targeting the mTOR pathway using deforolimus in cancer therapy. Future Oncol. 2009 5 3 291 303 10.2217/fon.09.9 19374536
    [Google Scholar]
  139. Uchinaka A. Yoneda M. Yamada Y. Murohara T. Nagata K. Effects of mTOR inhibition on cardiac and adipose tissue pathology and glucose metabolism in rats with metabolic syndrome. Pharmacol. Res. Perspect. 2017 5 4 00331 10.1002/prp2.331 28805979
    [Google Scholar]
  140. Tuttle R.L. Gill N.S. Pugh W. Lee J.P. Koeberlein B. Furth E.E. Polonsky K.S. Naji A. Birnbaum M.J. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med. 2001 7 10 1133 1137 10.1038/nm1001‑1133 11590437
    [Google Scholar]
  141. Ruz M. Carrasco F. Rojas P. Basfi-fer K. Hernández M.C. Pérez A. Nutritional effects of zinc on metabolic syndrome and type 2 diabetes: Mechanisms and main findings in human studies. Biol. Trace Elem. Res. 2019 188 1 177 188 10.1007/s12011‑018‑1611‑8 30600497
    [Google Scholar]
  142. Szewczyk B. Pochwat B. Rafało A. Palucha-Poniewiera A. Domin H. Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015 99 517 526 10.1016/j.neuropharm.2015.08.026 26297535
    [Google Scholar]
  143. McClung J.P. Tarr T.N. Barnes B.R. Scrimgeour A.G. Young A.J. Effect of supplemental dietary zinc on the mammalian target of rapamycin (mTOR) signaling pathway in skeletal muscle and liver from post-absorptive mice. Biol. Trace Elem. Res. 2007 118 1 65 76 10.1007/s12011‑007‑0018‑8 17848732
    [Google Scholar]
  144. Pullen N. Thomas G. The modular phosphorylation and activation of p70 s6k. FEBS Lett. 1997 410 1 78 82 10.1016/S0014‑5793(97)00323‑2 9247127
    [Google Scholar]
  145. Weng Q.P. Kozlowski M. Belham C. Zhang A. Comb M.J. Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J. Biol. Chem. 1998 273 26 16621 16629 10.1074/jbc.273.26.16621 9632736
    [Google Scholar]
  146. Lynch C.J. Patson B.J. Goodman S.A. Trapolsi D. Kimball S.R. Zinc stimulates the activity of the insulin- and nutrient-regulated protein kinase mTOR. Am. J. Physiol. Endocrinol. Metab. 2001 281 1 E25 E34 10.1152/ajpendo.2001.281.1.E25 11404220
    [Google Scholar]
  147. Siddique K.U. Ashfaq F. Ali W. Reddy H.D. Mishra A. Khan M.I. Effect of high-dose zinc supplementation with oral hypoglycemic agents on glycemic control and inflammation in type-2 diabetic nephropathy patients. J. Nat. Sci. Biol. Med. 2013 4 2 336 340 10.4103/0976‑9668.117002 24082728
    [Google Scholar]
  148. Partida-Hernández G. Arreola F. Fenton B. Cabeza M. Román-Ramos R. Revilla-Monsalve M.C. Effect of zinc replacement on lipids and lipoproteins in type 2-diabetic patients. Biomed. Pharmacother. 2006 60 4 161 168 10.1016/j.biopha.2006.02.004 16632297
    [Google Scholar]
  149. Afkhami - M. Karimi M. Mohammad M S. Nourani F. Effect of zinc sulfate supplementation on lipid and glucose in type 2 diabetic patients. Pak. J. Nutr. 2008 7 4 550 553 10.3923/pjn.2008.550.553
    [Google Scholar]
  150. El-Ashmony S.M.A. Morsi H.K. Abdelhafez A.M. Effect of zinc supplementation on glycemic control, lipid profile, and renal functions in patients with type II diabetes: A single-blinded, randomized, placebo-controlled trial. J. Biol. Agric. Healthc. 2012 2 6 33 41
    [Google Scholar]
  151. Parham M. Amini M. Aminorroaya A. Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: A double blind, randomized, placebo-controlled, cross-over trial. Rev. Diabet. Stud. 2008 5 2 102 109 10.1900/RDS.2008.5.102 18795212
    [Google Scholar]
  152. Sharifi F. Shajari Z. Feizy A. Effect of zinc supplementation on renal and sexual function of men with diabetic nephropathy and impotence, a randomized double-blind cross over clinical trial. Research Square 2021 1 6 10.21203/rs.3.rs‑502882/v1
    [Google Scholar]
  153. Gunasekara P. Hettiarachchi M. Liyanage C. Lekamwasam S. Abrams S.A. Effects of zinc and multimineral vitamin supplementation on glycemic and lipid control in adult diabetes. Diabetes Metab. Syndr. Obes. 2011 4 53 60 10.2147/DMSO.S15797 21448322
    [Google Scholar]
  154. Asghari S. Hosseinzadeh-Attar M.J. Alipoor E. Sehat M. Mohajeri-Tehrani M.R. Effects of zinc supplementation on serum adiponectin concentration and glycemic control in patients with type 2 diabetes. J. Trace Elem. Med. Biol. 2019 55 20 25 10.1016/j.jtemb.2019.05.007 31345359
    [Google Scholar]
  155. Nazem M.R. Asadi M. Jabbari N. Allameh A. Effects of zinc supplementation on superoxide dismutase activity and gene expression, and metabolic parameters in overweight type 2 diabetes patients: A randomized, double-blind, controlled trial. Clin. Biochem. 2019 69 15 20 10.1016/j.clinbiochem.2019.05.008 31129183
    [Google Scholar]
  156. Foster M. Petocz P. Samman S. Inflammation markers predict zinc transporter gene expression in women with type 2 diabetes mellitus. J. Nutr. Biochem. 2013 24 9 1655 1661 10.1016/j.jnutbio.2013.02.006 23643522
    [Google Scholar]
  157. Freitas E. Cunha A. Aquino S. Pedrosa L. Lima S. Lima J. Almeida M. Sena-Evangelista K. Zinc status biomarkers and cardiometabolic risk factors in metabolic syndrome: A case control study. Nutrients 2017 9 2 175 10.3390/nu9020175 28241426
    [Google Scholar]
  158. Seo J.A. Song S.W. Han K. Lee K.J. Kim H.N. The associations between serum zinc levels and metabolic syndrome in the Korean population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS One 2014 9 8 105990 10.1371/journal.pone.0105990 25153887
    [Google Scholar]
  159. Rotter I. Kosik-Bogacka D. Dołęgowska B. Safranow K. Lubkowska A. Laszczyńska M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int. J. Environ. Res. Public Health 2015 12 4 3944 3961 10.3390/ijerph120403944 25867198
    [Google Scholar]
  160. Ghasemi A. Zahediasl S. Hosseini-Esfahani F. Azizi F. Gender differences in the relationship between serum zinc concentration and metabolic syndrome. Ann. Hum. Biol. 2014 41 5 436 442 10.3109/03014460.2013.870228 24588511
    [Google Scholar]
  161. Lu C.W. Lee Y.C. Kuo C.S. Chiang C.H. Chang H.H. Huang K.C. Association of serum levels of zinc, copper, and iron with risk of metabolic syndrome. nutrients 2021 13 2 548 10.3390/nu13020548 33562398
    [Google Scholar]
  162. Ennes Dourado Ferro F. de Sousa Lima V.B. Mello Soares N.R. Franciscato Cozzolino S.M. do Nascimento Marreiro D. Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women. Nutr. Hosp. 2011 26 3 650 654 10.1590/S0212‑16112011000300025 21892588
    [Google Scholar]
  163. Xu Y. Wei Y. Long T. Wang R. Li Z. Yu C. Wu T. He M. Association between urinary metals levels and metabolic phenotypes in overweight and obese individuals. Chemosphere 2020 254 126763 10.1016/j.chemosphere.2020.126763 32957263
    [Google Scholar]
  164. EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for zinc. EFSA J. 2014 12 10 3844 10.2903/j.efsa.2014.3844
    [Google Scholar]
  165. Trumbo P. Yates A.A. Schlicker S. Poos M. Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001 101 3 294 301 10.1016/S0002‑8223(01)00078‑5 11269606
    [Google Scholar]
  166. Fosmire G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990 51 2 225 227 10.1093/ajcn/51.2.225 2407097
    [Google Scholar]
  167. Wiernicka A. Jańczyk W. Dądalski M. Avsar Y. Schmidt H. Socha P. Gastrointestinal side effects in children with Wilson’s disease treated with zinc sulphate. World J. Gastroenterol. 2013 19 27 4356 4362 10.3748/wjg.v19.i27.4356 23885147
    [Google Scholar]
  168. Duncan A. Yacoubian C. Watson N. Morrison I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015 68 9 723 725 10.1136/jclinpath‑2014‑202837 26085547
    [Google Scholar]
  169. Baltaci A.K. Yuce K. Mogulkoc R. Zinc metabolism and metallothioneins. Biol. Trace Elem. Res. 2018 183 1 22 31 10.1007/s12011‑017‑1119‑7 28812260
    [Google Scholar]
  170. Hein M.S. Copper deficiency anemia and nephrosis in zinc-toxicity: A case report. S. D. J. Med. 2003 56 4 143 147 12728841
    [Google Scholar]
  171. Kondaiah P. Yaduvanshi P.S. Sharp P.A. Pullakhandam R. Iron and zinc homeostasis and interactions: Does enteric zinc excretion cross-talk with intestinal iron absorption? Nutrients 2019 11 8 1885 10.3390/nu11081885 31412634
    [Google Scholar]
  172. Kim Y.H. Kim E.Y. Gwag B.J. Sohn S. Koh J.Y. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 1999 89 1 175 182 10.1016/S0306‑4522(98)00313‑3 10051227
    [Google Scholar]
  173. Hu J.Y. Zhang D.L. Liu X.L. Li X.S. Cheng X.Q. Chen J. Du H.N. Liang Y. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 2 414 427 10.1016/j.bbadis.2016.11.022 27890528
    [Google Scholar]
  174. Sikora J. Ouagazzal A.M. Synaptic zinc: An emerging player in Parkinson’s disease. Int. J. Mol. Sci. 2021 22 9 4724 10.3390/ijms22094724 33946908
    [Google Scholar]
  175. Castro Á.S. Albuquerque L.S. Melo M.L.P. D’Almeida J.A.C. Braga R.A.M. Assis R.C. Marreiro D.N. Matos W.O. Maia C.S.C. Relationship between zinc-related nutritional status and the progression of multiple sclerosis. Mult. Scler. Relat. Disord. 2022 66 104063 10.1016/j.msard.2022.104063 35872505
    [Google Scholar]
  176. Taneja S.K. Mandal R. Girhotra S. Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J. Exp. Biol. 2006 44 9 705 718 16999025
    [Google Scholar]
  177. Avan A. Członkowska A. Gaskin S. Granzotto A. Sensi S.L. Hoogenraad T.U. The role of zinc in the treatment of Wilson’s disease. Int. J. Mol. Sci. 2022 23 16 9316 10.3390/ijms23169316 36012580
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673370733250807110441
Loading
/content/journals/cmc/10.2174/0109298673370733250807110441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: oxidative stress ; microelement ; metabolic syndrome ; zinc ; scopus ; Insulin resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test