Skip to content
2000
image of PROTACs Targeting Molecular Targets in Triple-Negative Breast Cancer

Abstract

Triple-Negative Breast Cancer (TNBC) is defined as a type of breast cancer having the absence of estrogen, progesterone, and human epidermal growth factor receptors. To date, chemotherapeutic drugs and immunotherapy have faced major challenges, including treatment resistance, toxicity, and limited efficacy. Lately, PROTACs have been discovered to assist in the breakdown of difficult-to-target oncoproteins employing the ubiquitin-proteasome system. This review focuses on PROTACs used in TNBC, identifying BET proteins, SRC-1, PARP1, FAK, c-Myc, and CDKs as the primary molecular targets of PROTACs in this type of cancer. PROTACs can help overcome drug resistance, enable prolonged protein degradation, and enhance therapeutic performance of these new therapies in clinical research. BETd-246, ND1-YL2, and pal-pom PROTACs have shown promise in reducing cancer progression and spread in TNBC. Additionally, the use of PROTACs to target EZH2, AR, and TRIM24 demonstrates that this approach offers great flexibility. While these findings are promising, it remains challenging to achieve better pharmacokinetics, maintain product stability, increase bioavailability, enhance selectivity, and prevent potential toxicity. New developments in PROTAC design and clinical results suggest that the strategy could lead to improved treatments for TNBC patients, helping them live longer and better.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673384371250806104406
2025-08-28
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673384371250806104406/BMS-CMC-2025-HT148-6238-1.html?itemId=/content/journals/cmc/10.2174/0109298673384371250806104406&mimeType=html&fmt=ahah

References

  1. Gupta G. Hussain M.S. Pant K. Ali H. Thapa R. Bhat A.A. Antibody-drug conjugates (ADCs): a novel therapy for triple-negative breast cancer (TNBC). Curr. Cancer Drug Targets 2025 25 2 108 112 10.2174/0115680096343056240828190900 39248064
    [Google Scholar]
  2. Khan Y. Rizvi S. Raza A. Khan A. Hussain S. Khan N.U. Alshammari S.O. Alshammari Q.A. Alshammari A. Ellakwa D.E.S. Tailored therapies for triple-negative breast cancer: current landscape and future perceptions. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03896‑4 40029385
    [Google Scholar]
  3. So J.Y. Ohm J. Lipkowitz S. Yang L. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options. Pharmacol. Ther. 2022 237 108253 10.1016/j.pharmthera.2022.108253 35872332
    [Google Scholar]
  4. Damaskos C. Garmpi A. Nikolettos K. Vavourakis M. Diamantis E. Patsouras A. Farmaki P. Nonni A. Dimitroulis D. Mantas D. Antoniou E.A. Nikolettos N. Kontzoglou K. Garmpis N. Triple-negative breast cancer: The progress of targeted therapies and future tendencies. Anticancer Res. 2019 39 10 5285 5296 10.21873/anticanres.13722 31570423
    [Google Scholar]
  5. Lehmann B.D. Bauer J.A. Chen X. Sanders M.E. Chakravarthy A.B. Shyr Y. Pietenpol J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Invest. 2011 121 7 2750 2767 10.1172/JCI45014 21633166
    [Google Scholar]
  6. Hussain M.S. Mujwar S. Babu M.A. Goyal K. Chellappan D.K. Negi P. Singh T.G. Ali H. Singh S.K. Dua K. Gupta G. Balaraman A.K. Pharmacological, computational, and mechanistic insights into triptolide’s role in targeting drug-resistant cancers. Naunyn Schmiedebergs Arch. Pharmacol. 2025 10.1007/s00210‑025‑03809‑5
    [Google Scholar]
  7. Hussain MS. Ramalingam PS. Chellasamy G. Yun K. Bisht AS. Gupta G. Harnessing artificial intelligence for precision diagnosis and treatment of triple negative breast cancer. Clin. Breast. Cancer. 2025 25 5 406 421 10.1016/j.clbc.2025.03.006 40158912
    [Google Scholar]
  8. Schmid P. Adams S. Rugo H.S. Schneeweiss A. Barrios C.H. Iwata H. Diéras V. Hegg R. Im S.A. Shaw Wright G. Henschel V. Molinero L. Chui S.Y. Funke R. Husain A. Winer E.P. Loi S. Emens L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 2018 379 22 2108 2121 10.1056/NEJMoa1809615 30345906
    [Google Scholar]
  9. Dri A. Arpino G. Bianchini G. Curigliano G. Danesi R. De Laurentiis M. Del Mastro L. Fabi A. Generali D. Gennari A. Guarneri V. Santini D. Simoncini E. Zamagni C. Puglisi F. Breaking barriers in triple negative breast cancer (TNBC) – Unleashing the power of antibody-drug conjugates (ADCs). Cancer Treat. Rev. 2024 123 102672 10.1016/j.ctrv.2023.102672 38118302
    [Google Scholar]
  10. Pettersson M. Crews C.M. PROteolysis TArgeting Chimeras (PROTACs) — Past, present and future. Drug Discov. Today. Technol. 2019 31 15 27 10.1016/j.ddtec.2019.01.002 31200855
    [Google Scholar]
  11. Dale B. Cheng M. Park K.S. Kaniskan H.Ü. Xiong Y. Jin J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021 21 10 638 654 10.1038/s41568‑021‑00365‑x 34131295
    [Google Scholar]
  12. Omar EA. Rajesh R. Das PK. Pal R. Purawarga Matada GS. Maji L. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance. Eur. J. Med. Chem. 2025 Jan 281 117034 10.1016/j.ejmech.2024.117034 39527893
    [Google Scholar]
  13. Dogheim G.M. Amralla M.T. Proteolysis Targeting Chimera (PROTAC) as a promising novel therapeutic modality for the treatment of triple-negative breast cancer (TNBC). Drug Dev. Res. 2023 84 4 629 653 10.1002/ddr.22055 37020351
    [Google Scholar]
  14. Lyons T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol. 2019 20 11 82 10.1007/s11864‑019‑0682‑x 31754897
    [Google Scholar]
  15. Burstein M.D. Tsimelzon A. Poage G.M. Covington K.R. Contreras A. Fuqua S.A.W. Savage M.I. Osborne C.K. Hilsenbeck S.G. Chang J.C. Mills G.B. Lau C.C. Brown P.H. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin. Cancer. Res. 2015 21 7 1688 1698 10.1158/1078‑0432.CCR‑14‑0432 25208879
    [Google Scholar]
  16. Jézéquel P. Loussouarn D. Guérin-Charbonnel C. Campion L. Vanier A. Gouraud W. Lasla H. Guette C. Valo I. Verrièle V. Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res. 2015 17 1 43 10.1186/s13058‑015‑0550‑y 25887482
    [Google Scholar]
  17. Hubalek M. Czech T. Müller H. Biological Subtypes of Triple-Negative Breast Cancer. Breast Care (Basel) 2017 12 1 8 14 10.1159/000455820 28611535
    [Google Scholar]
  18. Hussain M.S. Majami A.A. Ali H. Gupta G. Almalki W.H. Alzarea S.I. Kazmi I. Syed R.U. Khalifa N.E. Bin Break M.K. Khan R. Altwaijry N. Sharma R. The complex role of MEG3: An emerging long non-coding RNA in breast cancer. Pathol. Res. Pract. 2023 251 154850 10.1016/j.prp.2023.154850 37839358
    [Google Scholar]
  19. Ershaid N. Sharon Y. Doron H. Raz Y. Shani O. Cohen N. Monteran L. Leider-Trejo L. Ben-Shmuel A. Yassin M. Gerlic M. Ben-Baruch A. Pasmanik-Chor M. Apte R. Erez N. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nat. Commun. 2019 10 1 4375 10.1038/s41467‑019‑12370‑8 31558756
    [Google Scholar]
  20. Hussain M.S. Gupta G. Goyal A. Thapa R. almalki W.H. Kazmi I. Alzarea S.I. Fuloria S. Meenakshi D.U. Jakhmola V. Pandey M. Singh S.K. Dua K. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders. J. Biochem. Mol. Toxicol. 2023 37 11 e23482 10.1002/jbt.23482 37530602
    [Google Scholar]
  21. George M.A. Lustberg M.B. Orchard T.S. Psychoneurological symptom cluster in breast cancer: the role of inflammation and diet. Breast Cancer Res. Treat. 2020 184 1 1 9 10.1007/s10549‑020‑05808‑x 32803635
    [Google Scholar]
  22. Sonnessa M. Cioffi A. Brunetti O. Silvestris N. Zito F.A. Saponaro C. Mangia A. NLRP3 inflammasome from bench to bedside: New perspectives for triple negative breast cancer. Front. Oncol. 2020 10 1587 10.3389/fonc.2020.01587 33014808
    [Google Scholar]
  23. Medina M.A. Oza G. Sharma A. Arriaga L.G. Hernández Hernández J.M. Rotello V.M. Ramirez J.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health 2020 17 6 2078 10.3390/ijerph17062078 32245065
    [Google Scholar]
  24. Pauls M. Chia S. LeVasseur N. Current and new novel combination treatments for metastatic triple-negative breast cancer. Curr. Oncol. 2022 29 7 4748 4767 10.3390/curroncol29070377 35877237
    [Google Scholar]
  25. Gu S. Cui D. Chen X. Xiong X. Zhao Y. PROTACs: An emerging targeting technique for protein degradation in drug discovery. BioEssays 2018 40 4 1700247 10.1002/bies.201700247 29473971
    [Google Scholar]
  26. An S. Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018 36 553 562 10.1016/j.ebiom.2018.09.005 30224312
    [Google Scholar]
  27. Smith B.E. Wang S.L. Jaime-Figueroa S. Harbin A. Wang J. Hamman B.D. Crews C.M. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 2019 10 1 131 10.1038/s41467‑018‑08027‑7 30631068
    [Google Scholar]
  28. Gadd M.S. Testa A. Lucas X. Chan K.H. Chen W. Lamont D.J. Zengerle M. Ciulli A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017 13 5 514 521 10.1038/nchembio.2329 28288108
    [Google Scholar]
  29. Chirnomas D. Hornberger K.R. Crews C.M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 2023 20 4 265 278 10.1038/s41571‑023‑00736‑3 36781982
    [Google Scholar]
  30. Crunkhorn S. Developing antibody-based PROTACs. Nat. Rev. Drug Discov. 2022 21 11 795 10.1038/d41573‑022‑00159‑2 36171334
    [Google Scholar]
  31. Marei H. Tsai W.T.K. Kee Y.S. Ruiz K. He J. Cox C. Sun T. Penikalapati S. Dwivedi P. Choi M. Kan D. Saenz-Lopez P. Dorighi K. Zhang P. Kschonsak Y.T. Kljavin N. Amin D. Kim I. Mancini A.G. Nguyen T. Wang C. Janezic E. Doan A. Mai E. Xi H. Gu C. Heinlein M. Biehs B. Wu J. Lehoux I. Harris S. Comps-Agrar L. Seshasayee D. de Sauvage F.J. Grimmer M. Li J. Agard N.J. de Sousa e Melo F. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 2022 610 7930 182 189 10.1038/s41586‑022‑05235‑6 36131013
    [Google Scholar]
  32. Ou L. Setegne M.T. Elliot J. Shen F. Dassama L.M.K. Protein-based degraders: From chemical biology tools to neo-therapeutics. Chem. Rev. 2025 125 4 2120 2183 10.1021/acs.chemrev.4c00595 39818743
    [Google Scholar]
  33. Bannas P. Hambach J. Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol. 2017 8 1603 10.3389/fimmu.2017.01603 29213270
    [Google Scholar]
  34. Hu Y. Liu C. Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front. Immunol. 2017 8 1442 10.3389/fimmu.2017.01442 29163515
    [Google Scholar]
  35. Deng C. Ma J. Liu Y. Tong X. Wang L. Dong J. Shi P. Wang M. Zheng W. Ma X. Targeting intracellular cancer proteins with tumor-microenvironment-responsive bispecific nanobody-PROTACs for enhanced therapeutic efficacy. MedComm 2025 6 2 e70068 10.1002/mco2.70068 39830023
    [Google Scholar]
  36. Tomoshige S. Ishikawa M. PROTACs and other chemical protein degradation technologies for the treatment of neurodegenerative disorders. 2021 New Jersey, USA Wiley online library
    [Google Scholar]
  37. Raina K. Lu J. Qian Y. Altieri M. Gordon D. Rossi A.M.K. Wang J. Chen X. Dong H. Siu K. Winkler J.D. Crew A.P. Crews C.M. Coleman K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA 2016 113 26 7124 7129 10.1073/pnas.1521738113 27274052
    [Google Scholar]
  38. Qi S.M. Dong J. Xu Z.Y. Cheng X.D. Zhang W.D. Qin J.J. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front. Pharmacol. 2021 12 692574 10.3389/fphar.2021.692574 34025443
    [Google Scholar]
  39. Liu J. Ma J. Liu Y. Xia J. Li Y. Wang Z.P. Wei W. PROTACs: A novel strategy for cancer therapy. Semin. Cancer Biol. 2020 67 Pt 2 171 179 10.1016/j.semcancer.2020.02.006 32058059
    [Google Scholar]
  40. Cordani N. Nova D. Sala L. Abbate M.I. Colonese F. Cortinovis D.L. Canova S. Proteolysis targeting chimera agents (PROTACs): New hope for overcoming the resistance mechanisms in oncogene-addicted non-small cell lung cancer. Int. J. Mol. Sci. 2024 25 20 11214 10.3390/ijms252011214 39456995
    [Google Scholar]
  41. Ye L. Wang W. Li H. Ji Y. Le X. Xu X. Targeting the MET gene: unveiling therapeutic opportunities in immunotherapy within the tumor immune microenvironment of non-small cell lung cancer. Ther. Adv. Med. Oncol. 2024 16 17588359241290733 10.1177/17588359241290733 39483139
    [Google Scholar]
  42. Salama A.K.A.A. Trkulja M.V. Casanova E. Uras I.Z. Targeted protein degradation: Clinical advances in the field of oncology. Int. J. Mol. Sci. 2022 23 23 15440 10.3390/ijms232315440 36499765
    [Google Scholar]
  43. Kanbar K. El Darzi R. Jaalouk D.E. Precision oncology revolution: CRISPR-Cas9 and PROTAC technologies unleashed. Front. Genet. 2024 15 1434002 10.3389/fgene.2024.1434002 39144725
    [Google Scholar]
  44. Tamatam R. Shin D. Emerging strategies in proteolysis- targeting chimeras (PROTACs): Highlights from 2022. Int. J. Mol. Sci. 2023 24 6 5190 10.3390/ijms24065190 36982263
    [Google Scholar]
  45. Zhong G. Kong R. Feng S. Wang C. Hao Q. Xie W. Zhou X. Targeted protein degradation in hematologic malignancies: latest updates from the 2023 ASH annual meeting. J. Hematol. Oncol. 2024 17 1 14 10.1186/s13045‑024‑01533‑w 38520028
    [Google Scholar]
  46. Burslem G.M. Crews C.M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 2020 181 1 102 114 10.1016/j.cell.2019.11.031 31955850
    [Google Scholar]
  47. Bai L. Zhou B. Yang C.Y. Ji J. McEachern D. Przybranowski S. Jiang H. Hu J. Xu F. Zhao Y. Liu L. Fernandez-Salas E. Xu J. Dou Y. Wen B. Sun D. Meagher J. Stuckey J. Hayes D.F. Li S. Ellis M.J. Wang S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res. 2017 77 9 2476 2487 10.1158/0008‑5472.CAN‑16‑2622 28209615
    [Google Scholar]
  48. Lee Y. Heo J. Jeong H. Hong K.T. Kwon D.H. Shin M.H. Oh M. Sable G.A. Ahn G.O. Lee J.S. Song H.K. Lim H.S. Targeted degradation of transcription coactivator SRC-1 through the N-degron pathway. Angew. Chem. Int. Ed. 2020 59 40 17548 17555 10.1002/anie.202005004 33026161
    [Google Scholar]
  49. Zhao Q. Lan T. Su S. Rao Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chemical communications 2019 55 3 369 372 10.1039/C8CC07813K
    [Google Scholar]
  50. Cromm P.M. Samarasinghe K.T.G. Hines J. Crews C.M. Addressing kinase-independent functions of fak via PROTAC-mediated degradation. J. Am. Chem. Soc. 2018 140 49 17019 17026 10.1021/jacs.8b08008 30444612
    [Google Scholar]
  51. Zhao B. Burgess K. PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chemical communications 2019 55 18 2704 2707 10.1039/C9CC00163H
    [Google Scholar]
  52. Steinebach C. Ng Y.L.D. Sosič I. Lee C.S. Chen S. Lindner S. Vu L.P. Bricelj A. Haschemi R. Monschke M. Steinwarz E. Wagner K.G. Bendas G. Luo J. Gütschow M. Krönke J. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem. Sci. (Camb.) 2020 11 13 3474 3486 10.1039/D0SC00167H 33133483
    [Google Scholar]
  53. Pu C. Liu Y. Deng R. Xu Q. Wang S. Zhang H. Luo D. Ma X. Tong Y. Li R. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg. Chem. 2023 138 106637 10.1016/j.bioorg.2023.106637 37276679
    [Google Scholar]
  54. Kumarasamy V. Gao Z. Zhao B. Jiang B. Rubin S.M. Burgess K. Witkiewicz A.K. Knudsen E.S. PROTAC-mediated CDK degradation differentially impacts cancer cell cycles due to heterogeneity in kinase dependencies. Br. J. Cancer 2023 129 8 1238 1250 10.1038/s41416‑023‑02399‑4 37626264
    [Google Scholar]
  55. Niu T. Li K. Jiang L. Zhou Z. Hong J. Chen X. Dong X. He Q. Cao J. Yang B. Zhu C.L. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur. J. Med. Chem. 2022 228 114012 10.1016/j.ejmech.2021.114012 34864331
    [Google Scholar]
  56. Yang J. Chang Y. Tien J.C.Y. Wang Z. Zhou Y. Zhang P. Huang W. Vo J. Apel I.J. Wang C. Zeng V.Z. Cheng Y. Li S. Wang G.X. Chinnaiyan A.M. Ding K. Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. J. Med. Chem. 2022 65 16 11066 11083 10.1021/acs.jmedchem.2c00384 35938508
    [Google Scholar]
  57. Wei D. Wang H. Zeng Q. Wang W. Hao B. Feng X. Wang P. Song N. Kan W. Huang G. Zhou X. Tan M. Zhou Y. Huang R. Li J. Chen X.H. Discovery of potent and selective CDK9 degraders for targeting transcription regulation in triple-negative breast cancer. J. Med. Chem. 2021 64 19 14822 14847 10.1021/acs.jmedchem.1c01350 34538051
    [Google Scholar]
  58. Li X. Zhang Z. Gao F. Ma Y. Wei D. Lu Z. Chen S. Wang M. Wang Y. Xu K. Wang R. Xu F. Chen J.Y. Zhu C. Li Z. Yu H. Guan X. c-Myc-targeting PROTAC based on a TNA-DNA bivalent binder for combination therapy of triple-negative breast cancer. J. Am. Chem. Soc. 2023 145 16 9334 9342 10.1021/jacs.3c02619 37068218
    [Google Scholar]
  59. Zhou L. Yu C.W. Epigenetic modulations in triple-negative breast cancer: Therapeutic implications for tumor microenvironment. Pharmacol. Res. 2024 204 107205 10.1016/j.phrs.2024.107205 38719195
    [Google Scholar]
  60. Andrikopoulou A. Liontos M. Koutsoukos K. Dimopoulos M.A. Zagouri F. The emerging role of BET inhibitors in breast cancer. Breast 2020 53 152 163 10.1016/j.breast.2020.08.005 32827765
    [Google Scholar]
  61. Sarnik J. Popławski T. Tokarz P. BET proteins as attractive targets for cancer therapeutics. Int. J. Mol. Sci. 2021 22 20 11102 10.3390/ijms222011102 34681760
    [Google Scholar]
  62. Qin L. Liu Z. Chen H. Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009 69 9 3819 3827 10.1158/0008‑5472.CAN‑08‑4389 19383905
    [Google Scholar]
  63. Zhang J. Zhang J. Li H. Chen L. Yao D. Dual-target inhibitors of PARP1 in cancer therapy: A drug discovery perspective. Drug Discov. Today 2023 28 7 103607 10.1016/j.drudis.2023.103607 37146962
    [Google Scholar]
  64. Li X. Wang C. Li S. Yin F. Luo H. Zhang Y. Luo Z. Chen Y. Wan S. Kong L. Wang X. Dual target PARP1/EZH2 inhibitors inducing excessive autophagy and producing synthetic lethality for triple-negative breast cancer therapy. Eur. J. Med. Chem. 2024 265 116054 10.1016/j.ejmech.2023.116054 38134746
    [Google Scholar]
  65. Wang C. Chen X. Liu X. Lu D. Li S. Qu L. Yin F. Luo H. Zhang Y. Luo Z. Cui N. Kong L. Wang X. Discovery of precision targeting EZH2 degraders for triple-negative breast cancer. Eur. J. Med. Chem. 2022 238 114462 10.1016/j.ejmech.2022.114462 35623249
    [Google Scholar]
  66. Kleer C.G. Cao Q. Varambally S. Shen R. Ota I. Tomlins S.A. Ghosh D. Sewalt R.G.A.B. Otte A.P. Hayes D.F. Sabel M.S. Livant D. Weiss S.J. Rubin M.A. Chinnaiyan A.M. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 2003 100 20 11606 11611 10.1073/pnas.1933744100 14500907
    [Google Scholar]
  67. Dale B. Anderson C. Park K.S. Kaniskan H.Ü. Ma A. Shen Y. Zhang C. Xie L. Chen X. Yu X. Jin J. Targeting triple-negative breast cancer by a novel proteolysis targeting chimera Degrader of enhancer of zeste homolog 2. ACS Pharmacol. Transl. Sci. 2022 5 7 491 507 10.1021/acsptsci.2c00100 35837138
    [Google Scholar]
  68. Wu Y. Xue J. Li J. Chemical degrader enhances the treatment of androgen receptor-positive triple-negative breast cancer. Arch. Biochem. Biophys. 2022 721 109194 10.1016/j.abb.2022.109194 35337811
    [Google Scholar]
  69. Lv D. Li Y. Zhang W. Alvarez A.A. Song L. Tang J. Gao W.Q. Hu B. Cheng S.Y. Feng H. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma. Nat. Commun. 2017 8 1 1454 10.1038/s41467‑017‑01731‑w 29129908
    [Google Scholar]
  70. Shah V.V. Duncan A.D. Jiang S. Stratton S.A. Allton K.L. Yam C. Jain A. Krause P.M. Lu Y. Cai S. Tu Y. Zhou X. Zhang X. Jiang Y. Carroll C.L. Kang Z. Liu B. Shen J. Gagea M. Manu S.M. Huo L. Gilcrease M. Powell R.T. Guo L. Stephan C. Davies P.J. Parker-Thornburg J. Lozano G. Behringer R.R. Piwnica-Worms H. Chang J.T. Moulder S.L. Barton M.C. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat. Commun. 2021 12 1 5389 10.1038/s41467‑021‑25650‑z 34508101
    [Google Scholar]
  71. Neklesa T. Snyder L.B. Willard R.R. Vitale N. Raina K. Pizzano J. Gordon D. Bookbinder M. Macaluso J. Dong H. Liu Z. Ferraro C. Wang G. Wang J. Crews C.M. Houston J. Crew A.P. Taylor I. Abstract 5236: ARV-110: An androgen receptor PROTAC degrader for prostate cancer. Cancer Res. 2018 78 13_Supplement 5236 5236 10.1158/1538‑7445.AM2018‑5236
    [Google Scholar]
  72. Flanagan J. Qian Y. Gough S. Andreoli M. Bookbinder M. Cadelina G. Bradley J. Rousseau E. Willard R. Pizzano J. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer research 2019 79 4_Supplement P5-04-18 10.1158/1538‑7445.SABCS18‑P5‑04‑18
    [Google Scholar]
  73. Jia X. Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed Pharmacother 2023 158 114112 10.1016/j.biopha.2022.114112
    [Google Scholar]
  74. Li X. Song Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol. 2020 13 1 50 10.1186/s13045‑020‑00885‑3 32404196
    [Google Scholar]
  75. Petrylak D.P. Gao X. Vogelzang N.J. Garfield M.H. Taylor I. Dougan Moore M. Peck R.A. Burris H.A. III First-in-human phase I study of ARV-110, an androgen receptor (AR) PROTAC degrader in patients (pts) with metastatic castrate-resistant prostate cancer (mCRPC) following enzalutamide (ENZ) and/or abiraterone (ABI). J. Clin. Oncol. 2020 38 15_suppl 3500 10.1200/JCO.2020.38.15_suppl.3500
    [Google Scholar]
  76. Xi J.Y. Zhang R.Y. Chen K. Yao L. Li M.Q. Jiang R. Li X.Y. Fan L. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg. Chem. 2022 125 105848 10.1016/j.bioorg.2022.105848 35533582
    [Google Scholar]
  77. Snyder L.B. Flanagan J.J. Qian Y. Gough S.M. Andreoli M. Bookbinder M. Cadelina G. Bradley J. Rousseau E. Chandler J. Willard R. Pizzano J. Crews C.M. Crew A.P. Houston J. Moore M.D. Peck R. Taylor I. Abstract 44: The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Res. 2021 81 13_Supplement 44 10.1158/1538‑7445.AM2021‑44
    [Google Scholar]
  78. Schott A.F. Hurvitz S. Ma C. Hamilton E. Nanda R. Zahrah G. Hunter N. Tan A.R. Telli M. Mesias J.A. Abstract GS3-03: GS3-03 ARV-471, a PROTAC® estrogen receptor (ER) degrader in advanced ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer: phase 2 expansion (VERITAC) of a phase 1/2 study. Cancer Res. 2023 83 5_Supplement GS3-03 10.1158/1538‑7445.SABCS22‑GS3‑03
    [Google Scholar]
  79. Gough S.M. Flanagan J.J. Teh J. Andreoli M. Rousseau E. Pannone M. Bookbinder M. Willard R. Davenport K. Bortolon E. Cadelina G. Gordon D. Pizzano J. Macaluso J. Soto L. Corradi J. Digianantonio K. Drulyte I. Morgan A. Quinn C. Békés M. Ferraro C. Chen X. Wang G. Dong H. Wang J. Langley D.R. Houston J. Gedrich R. Taylor I.C. Oral estrogen receptor protac vepdegestrant (ARV-471) Is highly efficacious as monotherapy and in combination with cdk4/6 or pi3k/mtor pathway inhibitors in preclinical ER+ breast cancer models. Clin. Cancer Res. 2024 30 16 3549 3563 10.1158/1078‑0432.CCR‑23‑3465 38819400
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673384371250806104406
Loading
/content/journals/cmc/10.2174/0109298673384371250806104406
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test