Skip to content
2000
image of Mechanisms of Inflammation Chronification: Gene and Epigenetic Regulation of Intolerant Response (Trained Immunity)

Abstract

Aims

This study aims to elucidate the mechanisms contributing to the transition from acute to chronic inflammation, particularly in the context of atherosclerosis, by investigating the pro-inflammatory responses of cybrid cell lines derived from patients with coronary heart disease.

Background

Acute inflammatory reactions are essential components of the innate immune response, typically resolving within hours or days. However, disruptions in this process can lead to chronic inflammation, which is linked to significant morbidity and mortality. Atherosclerosis, characterized by chronic vascular inflammation, poses a major health threat, underscoring the need for understanding its underlying mechanisms.

Objectives

The primary objective is to analyze the pro-inflammatory cytokine responses of 14 cellular lines, including 13 cybrids and one maternal line (THP-1), to identify intolerant and tolerant responses to key cytokines associated with inflammation.

Methods

We utilized cybrid cell lines created by fusing THP-1 monocytic cells with platelets from patients diagnosed with atherosclerosis. Cytokine responses were assessed through quantitative analysis of IL-1β, IL-6, MPC-1, IL-8, and TNF-α secretion. Gene expression profiles were analyzed to correlate cytokine secretion with specific gene regulation patterns, focusing on epigenetic mechanisms influencing immune responses.

Results

Distinct intolerant and tolerant responses were observed across the cellular lines for key cytokines. Specifically, TC-HSMAM1 and TCP-521 were intolerant to IL-1β, TC-HSMAM1, TC-LSM2, and TC-522 were intolerant to IL-6, six lines exhibited intolerance to MPC-1, and eight lines were intolerant to IL-8. No intolerant responses were noted for TNF-α. Gene expression analysis revealed that at least ten genes correlated with increased cytokine secretion in intolerant reactions, while 23 genes showed higher expression during these intolerant responses, indicating significant roles for DNA modification and chromatin remodeling. An important finding emerged from the study of agents affecting histone modification. Specifically, unlike other agents, sodium butyrate not only exhibited a stronger suppression of the inflammatory response in cells but also eliminated their intolerance to inflammatory stimulation. Therefore, in the near future, sodium butyrate could be regarded as a fundamentally new anti-inflammatory preventive and therapeutic agent, with its mechanism of action rooted in the prevention and suppression of chronic inflammation.

Discussion

In chronic non-infectious diseases like atherosclerosis the intolerant response or trained immunity can worsen inflammation. This study shows that both genetic and epigenetic regulation contribute to this intolerant response. It was also found that sodium butyrate can prevent the intolerant response, suggesting it may become a new anti-inflammatory agent that suppresses chronic inflammation.

Conclusion

Our findings have suggested that the interplay between pro-inflammatory cytokine responses and epigenetic regulation mechanisms is critical in determining whether a cell exhibits a normal or intolerant immune response. Understanding these dynamics may provide insights into the chronic inflammatory processes associated with atherosclerosis and other related conditions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673431092250819054506
2025-08-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Varela M.L. Mogildea M. Moreno I. Lopes A. Acute inflammation and metabolism. Inflammation 2018 41 4 1115 1127 10.1007/s10753‑018‑0739‑1 29404872
    [Google Scholar]
  2. Franceschi C. Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014 69 Suppl. 1 S4 S9 10.1093/gerona/glu057 24833586
    [Google Scholar]
  3. Preissner K.T. Fischer S. Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. Biochim. Biophys. Acta Mol. Cell Res. 2023 1870 2 119408 10.1016/j.bbamcr.2022.119408 36503009
    [Google Scholar]
  4. Summerhill V. Orekhov A. Pericytes in atherosclerosis. Adv. Exp. Med. Biol. 2019 1147 279 297 10.1007/978‑3‑030‑16908‑4_13 31147883
    [Google Scholar]
  5. Orekhov A.N. Andreeva E.R. Intimal macrovascular pericytes: Their role in vascular biology and atherogenesis. Curr. Med. Chem. 2025 32 23 4657 4670 10.2174/0109298673295675240826070754 39225212
    [Google Scholar]
  6. Sobenin I.A. Sazonova M.A. Postnov A.Y. Bobryshev Y.V. Orekhov A.N. Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clin. Dev. Immunol. 2012 2012 1 5 10.1155/2012/832464 22997526
    [Google Scholar]
  7. Sobenin I.A. Sazonova M.A. Postnov A.Y. Salonen J.T. Bobryshev Y.V. Orekhov A.N. Association of mitochondrial genetic variation with carotid atherosclerosis. PLoS One 2013 8 7 68070 10.1371/journal.pone.0068070 23874496
    [Google Scholar]
  8. Sobenin I. Zhelankin A. Mitrofanov K. Sinyov V. Sazonova M. Postnov A. Orekhov A. Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases. Curr. Pharm. Des. 2015 21 9 1158 1163 10.2174/1381612820666141013133000 25312735
    [Google Scholar]
  9. Sobenin I.A. Zhelankin A.V. Khasanova Z.B. Sinyov V.V. Medvedeva L.V. Sagaidak M.O. Makeev V.J. Kolmychkova K.I. Smirnova A.S. Sukhorukov V.N. Postnov A.Y. Grechko A.V. Orekhov A.N. Heteroplasmic variants of mitochondrial dna in atherosclerotic lesions of human aortic intima. Biomolecules 2019 9 9 455 10.3390/biom9090455 31500189
    [Google Scholar]
  10. Orekhov A.N. Zhuravlev A.D. Vinokurov A.Y. Nikiforov N.G. Omelchenko A.V. Sukhorukov V.N. Sinyov V.V. Sobenin I.A. Defective mitophagy impairs response to inflammatory activation of macrophage-like cells. Curr. Med. Chem. 2025 32 1 111 122 10.2174/0109298673294643240228105957 38441018
    [Google Scholar]
  11. Orekhov A.N. Ivanova E.A. Markin A.M. Nikiforov N.G. Sobenin I.A. Genetics of arterial-wall-specific mechanisms in atherosclerosis: Focus on mitochondrial mutations. Curr. Atheroscler. Rep. 2020 22 10 54 10.1007/s11883‑020‑00873‑5 32772280
    [Google Scholar]
  12. Sazonova M.A. Sinyov V.V. Ryzhkova A.I. Sazonova M.D. Khasanova Z.B. Shkurat T.P. Karagodin V.P. Orekhov A.N. Sobenin I.A. Creation of cybrid cultures containing mtdna mutations m.12315g>a and m.1555g>a, associated with atherosclerosis. Biomolecules 2019 9 9 499 10.3390/biom9090499 31540444
    [Google Scholar]
  13. Liu Q. Peng F. Liu H. Sun Q. Chen H. Xu X. Hu Z. Zhou X. Jin K. Xie J. Huang Y. Huang W. Yang Y. Overactivated MX1 positive natural killer cells promote the progression of sepsis-induced acute respiratory distress syndrome. J. Inflamm. Res. 2024 17 3187 3200 10.2147/JIR.S460259 38779429
    [Google Scholar]
  14. Wang J. Gao J. Huang C. Jeong S. Ko R. Shen X. Chen C. Zhong W. Zou Y. Yu B. Shen C. Roles of AIM2 gene and AIM2 inflammasome in the pathogenesis and treatment of psoriasis. Front. Genet. 2022 13 929162 10.3389/fgene.2022.929162 36118867
    [Google Scholar]
  15. Hornung V. Hartmann R. Ablasser A. Hopfner K.P. OAS proteins and cGAS: Unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 2014 14 8 521 528 10.1038/nri3719 25033909
    [Google Scholar]
  16. Streichert T. Ebrahimnejad A. Ganzer S. Flayeh R. Wagener C. Brümmer J. The microbial receptor CEACAM3 is linked to the calprotectin complex in granulocytes. Biochem. Biophys. Res. Commun. 2001 289 1 191 197 10.1006/bbrc.2001.5955 11708798
    [Google Scholar]
  17. Liu L. Liu H. Luo S. Patz E.F. Jr Glass C. Su L. Lin L. Christiani D.C. Wei Q. Genetic variants of CLEC4E and BIRC3 in damage-associated molecular patterns-related pathway genes predict non-small cell lung cancer survival. Front. Oncol. 2021 11 717109 10.3389/fonc.2021.717109 34692492
    [Google Scholar]
  18. Tsai C.M. Riestra A.M. Ali S.R. Fong J.J. Liu J.Z. Hughes G. Varki A. Nizet V. Siglec-14 enhances NLRP3-inflammasome activation in macrophages. J. Innate Immun. 2020 12 4 333 343 10.1159/000504323 31805552
    [Google Scholar]
  19. Gudgeon J. Marín-Rubio J.L. Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front. Immunol. 2022 13 1012002 10.3389/fimmu.2022.1012002 36325338
    [Google Scholar]
  20. Campbell G.R. Rawat P. Spector S.A. Pacritinib inhibition of IRAK1 blocks aberrant TLR8 signalling by SARS- CoV-2 and HIV-1-derived RNA. J. Innate Immun. 2023 15 1 96 106 10.1159/000525292 35785771
    [Google Scholar]
  21. Ben-Ali M. Corre B. Manry J. Barreiro L.B. Quach H. Boniotto M. Pellegrini S. Quintana-Murci L. Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum. Mutat. 2011 32 6 643 652 10.1002/humu.21486 21618349
    [Google Scholar]
  22. Kim H.J. Kim H. Lee J.H. Toll-like receptor 4 (TLR4): New insight immune and aging. Immun Ageing. 2023 20 1 67 10.1186/s12979‑023‑00383‑3
    [Google Scholar]
  23. Cavalli G. Tengesdal I.W. Gresnigt M. Nemkov T. Arts R.J.W. Domínguez-Andrés J. Molteni R. Stefanoni D. Cantoni E. Cassina L. Giugliano S. Schraa K. Mills T.S. Pietras E.M. Eisenmensser E.Z. Dagna L. Boletta A. D’Alessandro A. Joosten L.A.B. Netea M.G. Dinarello C.A. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Rep. 2021 35 1 108955 10.1016/j.celrep.2021.108955 33826894
    [Google Scholar]
  24. Jacobs M.M.E. Maas R.J.F. Jonkman I. Negishi Y. Tielemans Zamora W. Yanginlar C. van Heck J. Matzaraki V. Martens J.H.A. Baltissen M. Vermeulen M. Morla-Folch J. Ranzenigo A. Wang W. Umali M. Ochando J. van der Vlag J. Hilbrands L.B. Joosten L.A.B. Netea M.G. Mulder W.J.M. van Leent M.M.T. Mhlanga M.M. Teunissen A.J.P. Rother N. Duivenvoorden R. Trained immunity is regulated by T cell-induced CD40-TRAF6 signaling. Cell Rep. 2024 43 9 114664 10.1016/j.celrep.2024.114664 39178113
    [Google Scholar]
  25. Liu J. Tian H. Ju J. Nie F. Yin Q. Zhao J. Wang S. Guo H. Yang P. Porphyromonas gingivalis -Lipopolysaccharide induced gingival fibroblasts trained immunity sustains inflammation in periodontitis. J. Periodontal Res. 2024 jre.13372 10.1111/jre.13372 39665166
    [Google Scholar]
  26. Garduno A. Martín-Loeches I. Targeting sepsis: Disease tolerance, immune resilience, and compartmentalized immunity. Biomedicines 2024 12 11 2420 10.3390/biomedicines12112420 39594987
    [Google Scholar]
  27. Shrestha S. Lee Y.B. Lee H. Diabetes primes neutrophils for neutrophil extracellular trap formation through trained immunity. Research 2024 7 0365 10.34133/research.0365
    [Google Scholar]
  28. Kerdivel G. Amrouche F. Calmejane M.A. Carallis F. Hamroune J. Hantel C. Bertherat J. Assié G. Boeva V. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin. Epigenetics 2023 15 1 121 10.1186/s13148‑023‑01534‑5 37528470
    [Google Scholar]
  29. Cai L. Zhan M. Li Q. Li D. Xu Q. DNA methyltransferase DNMT1 inhibits lipopolysaccharide-induced inflammatory response in human dental pulp cells involving the methylation changes of IL-6 and TRAF6. Mol. Med. Rep. 2019 21 2 959 968 10.3892/mmr.2019.10860 31974603
    [Google Scholar]
  30. Yu Q. Zhou B. Zhang Y. Nguyen E.T. Du J. Glosson N.L. Kaplan M.H. DNA methyltransferase 3a limits the expression of interleukin-13 in T helper 2 cells and allergic airway inflammation. Proc. Natl. Acad. Sci. USA 2012 109 2 541 546 10.1073/pnas.1103803109 22190484
    [Google Scholar]
  31. Tulstrup M. Soerensen M. Hansen J.W. Gillberg L. Needhamsen M. Kaastrup K. Helin K. Christensen K. Weischenfeldt J. Grønbæk K. TET2 mutations are associated with hypermethylation at key regulatory enhancers in normal and malignant hematopoiesis. Nat. Commun. 2021 12 1 6061 10.1038/s41467‑021‑26093‑2 34663818
    [Google Scholar]
  32. Gagliardi M. Strazzullo M. Matarazzo M.R. DNMT3B functions: Novel insights from human disease. Front. Cell Dev. Biol. 2018 6 140 10.3389/fcell.2018.00140 30406101
    [Google Scholar]
  33. Zhang X. Zhang Y. Wang C. Wang X. TET (Ten-eleven translocation) family proteins: Structure, biological functions and applications. Signal Transduct. Target. Ther. 2023 8 1 297 10.1038/s41392‑023‑01537‑x 37563110
    [Google Scholar]
  34. Tsiouplis N.J. Bailey D.W. Chiou L.F. Wissink F.J. Tsagaratou A. TET-mediated epigenetic regulation in immune cell development and disease. Front. Cell Dev. Biol. 2021 8 623948 10.3389/fcell.2020.623948 33520997
    [Google Scholar]
  35. Wang L. Ozark P.A. Smith E.R. Zhao Z. Marshall S.A. Rendleman E.J. Piunti A. Ryan C. Whelan A.L. Helmin K.A. Morgan M.A. Zou L. Singer B.D. Shilatifard A. TET2 coactivates gene expression through demethylation of enhancers. Sci. Adv. 2018 4 11 eaau6986 10.1126/sciadv.aau6986 30417100
    [Google Scholar]
  36. Jiang S. Tet2 at the interface between cancer and immunity. Commun. Biol. 2020 3 1 667 10.1038/s42003‑020‑01391‑5 33184433
    [Google Scholar]
  37. Cosentino L. Witt S.H. Dukal H. Zidda F. Siehl S. Flor H. De Filippis B. Methyl-CpG binding protein 2 expression is associated with symptom severity in patients with PTSD in a sex-dependent manner. Transl. Psychiatry 2023 13 1 249 10.1038/s41398‑023‑02529‑9 37419878
    [Google Scholar]
  38. Li C. Jiang S. Liu S.Q. Lykken E. Zhao L. Sevilla J. Zhu B. Li Q.J. MeCP2 enforces Foxp3 expression to promote regulatory T cells’ resilience to inflammation. Proc. Natl. Acad. Sci. USA 2014 111 27 E2807 E2816 10.1073/pnas.1401505111 24958888
    [Google Scholar]
  39. Antebi Y.E. Linton J.M. Klumpe H. Bintu B. Gong M. Su C. McCardell R. Elowitz M.B. Combinatorial signal perception in the BMP pathway. Cell 2017 170 6 1184 1196.e24 10.1016/j.cell.2017.08.015 28886385
    [Google Scholar]
  40. Overacre-Delgoffe A.E. Chikina M. Dadey R.E. Yano H. Brunazzi E.A. Shayan G. Horne W. Moskovitz J.M. Kolls J.K. Sander C. Shuai Y. Normolle D.P. Kirkwood J.M. Ferris R.L. Delgoffe G.M. Bruno T.C. Workman C.J. Vignali D.A.A. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 2017 169 6 1130 1141.e11 10.1016/j.cell.2017.05.005 28552348
    [Google Scholar]
  41. Zhong C. Zhu J. Tet2: Breaking down barriers to T cell cytokine expression. Immunity 2015 42 4 593 595 10.1016/j.immuni.2015.04.003 25902474
    [Google Scholar]
  42. Gioulbasani M. Galaras A. Grammenoudi S. Moulos P. Dent A.L. Sigvardsson M. Hatzis P. Kee B.L. Verykokakis M. The transcription factor BCL-6 controls early development of innate-like T cells. Nat. Immunol. 2020 21 9 1058 1069 10.1038/s41590‑020‑0737‑y 32719520
    [Google Scholar]
  43. Traczyk A. Liew C.W. Gill D.J. Rhodes D. Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res. 2020 48 8 4562 4571 10.1093/nar/gkaa171 32187364
    [Google Scholar]
  44. Park J.E. Heo I. Tian Y. Simanshu D.K. Chang H. Jee D. Patel D.J. Kim V.N. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 2011 475 7355 201 205 10.1038/nature10198 21753850
    [Google Scholar]
  45. Geiss B. J. Wilusz J. Ring around the Ro-sie: RNA-mediated alterations of PNPase activity. Cell. 2013 153 1 12 14 10.1016/j.cell.2013.03.005
    [Google Scholar]
  46. Melino G. Benedetti B. Bazan N. On rita levi-montalcini. Mol Neurobiol. 2013 47 443 445 10.1007/s12035‑013‑8407‑9
    [Google Scholar]
  47. Ibis B. Aliazis K. Cao C. Yenyuwadee S. Boussiotis V.A. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front. Immunol. 2023 14 1197364 10.3389/fimmu.2023.1197364 37342323
    [Google Scholar]
  48. Kim E.J. Kim J.Y. Kim S.O. Hong N. Choi S.H. Park M.G. Jang J. Ham S.W. Seo S. Lee S.Y. Lee K. Jeong H.J. Kim S.J. Jeong S. Min K. Kim S.C. Jin X. Kim S.H. Kim S.H. Kim H. The oncogenic JAG1 intracellular domain is a transcriptional cofactor that acts in concert with DDX17/SMAD3/TGIF2. Cell Rep. 2022 41 8 111626 10.1016/j.celrep.2022.111626 36417870
    [Google Scholar]
  49. Ondracek C.R. Frappier V. Ringel A.E. Wolberger C. Guarente L. Mutations that allow SIR2 orthologs to function in a NAD + -Depleted environment. Cell Rep. 2017 18 10 2310 2319 10.1016/j.celrep.2017.02.031 28273448
    [Google Scholar]
  50. Malard O. Karakachoff M. Ferron C. Hans S. Vergez S. Garrel R. Gorphe P. Ramin L. Santini L. Villeneuve A. Lasne-Cardon A. Espitalier F. Hounkpatin A. Oncological and functional outcomes for transoral robotic surgery following previous radiation treatment for upper aerodigestive tract head and neck cancers. A French multicenter GETTEC group study. Cancer Med. 2024 13 7 7031 10.1002/cam4.7031 38545809
    [Google Scholar]
  51. Guo Y. Ohki S. Kawano Y. Kong W.S. Ohno Y. Honda H. Kanno M. Yasuda T. Eed-dependent histone modification orchestrates the iNKT cell developmental program alleviating liver injury. Front. Immunol. 2024 15 1467774 10.3389/fimmu.2024.1467774 39372408
    [Google Scholar]
  52. Plikus M.V. Wang X. Sinha S. Forte E. Thompson S.M. Herzog E.L. Driskell R.R. Rosenthal N. Biernaskie J. Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021 184 15 3852 3872 10.1016/j.cell.2021.06.024 34297930
    [Google Scholar]
  53. Qiao Y. Giannopoulou E.G. Chan C.H. Park S. Gong S. Chen J. Hu X. Elemento O. Ivashkiv L.B. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 2013 39 3 454 469 10.1016/j.immuni.2013.08.009 24012417
    [Google Scholar]
  54. Nalapareddy K. Nattamai K.J. Kumar R.S. Karns R. Wikenheiser-Brokamp K.A. Sampson L.L. Mahe M.M. Sundaram N. Yacyshyn M.B. Yacyshyn B. Helmrath M.A. Zheng Y. Geiger H. Canonical Wnt signaling ameliorates aging of intestinal stem cells. Cell Rep. 2017 18 11 2608 2621 10.1016/j.celrep.2017.02.056 28297666
    [Google Scholar]
  55. Potter S.J. Zhang L. Kotliar M. Wu Y. Schafer C. Stefan K. Boukas L. Qu’d D. Bodamer O. Simpson B.N. Barski A. Lindsley A.W. Bjornsson H.T. KMT2D regulates activation, localization, and integrin expression by T-cells. Front. Immunol. 2024 15 1341745 10.3389/fimmu.2024.1341745 38765012
    [Google Scholar]
  56. Cleophas, M.C.P.; Ratter, J.M.; Bekkering, S.; Quintin, J.; Schraa, K.; Stroes, E.S.; Netea, M.G.; Joosten, L.A.B. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Scientific Reports 2019 9 1 775 10.1038/s41598‑018‑37246‑7 6349871
    [Google Scholar]
  57. Chude C.F. Uzonna J.E. Arsenio J. Tissue resident memory cells: Friend or foe? Immunology 2025 imm.70024 10.1111/imm.70024 40754695
    [Google Scholar]
  58. Wang J. Tang B. You X. Cai X. Jia W. Liu X. Liu M. Jin X. Ding J. Trichinella spiralis excretory/secretory products from adult worms inhibit NETosis and regulate the production of cytokines from neutrophils. Parasit. Vectors 2023 16 1 374 10.1186/s13071‑023‑05979‑8 37864246
    [Google Scholar]
  59. Martín-Cruz L. Sevilla-Ortega C. Angelina A. Domínguez-Andrés J. Netea M.G. Subiza J.L. Palomares O. From trained immunity in allergy to trained immunity-based allergen vaccines. Clin. Exp. Allergy 2023 53 2 145 155 10.1111/cea.14261 36494877
    [Google Scholar]
  60. Orekhov A.N. Nikiforov N.G. Zhuravlev A.D. Verkhova S.S. Omelchenko A.V. Borodko D.D. Sukhorukov V.N. Sinyov V.V. Sobenin I.A. Features of gene regulation in violation of the inflammatory response of monocyte-like cells bearing mitochondrial mutations associated with atherosclerosis. Curr. Med. Chem. 2025 32 15 2992 3005 10.2174/0109298673303008240829075444 39279121
    [Google Scholar]
  61. Orekhov A.N. Gerasimova E.V. Sukhorukov V.N. Poznyak A.V. Nikiforov N.G. Do mitochondrial DNA mutations play a key role in the chronification of sterile inflammation? special focus on atherosclerosis. Curr. Pharm. Des. 2021 27 2 276 292 10.2174/1381612826666201012164330 33045961
    [Google Scholar]
  62. Orekhov A. Nikiforov N. Ivanova E. Sobenin I. Possible role of mitochondrial dna mutations in chronification of inflammation: Focus on atherosclerosis. J. Clin. Med. 2020 9 4 978 10.3390/jcm9040978 32244740
    [Google Scholar]
  63. Ya J. Bayraktutan U. Vascular ageing: Mechanisms, risk factors, and treatment strategies. Int. J. Mol. Sci. 2023 24 14 11538 10.3390/ijms241411538 37511296
    [Google Scholar]
  64. Natarajan R. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: The 2020 edwin bierman award lecture. Diabetes 2021 70 2 328 337 10.2337/dbi20‑0030 33472942
    [Google Scholar]
  65. Shao C. Wang J. Tian J. Tang Y. Coronary artery disease: From mechanism to clinical practice. Adv. Exp. Med. Biol. 2020 1177 1 36 10.1007/978‑981‑15‑2517‑9_1 32246442
    [Google Scholar]
  66. Fan B.E. Milla K. McAlister S. Sustainable anticoagulation for climate resilient care. Lancet Haematol. 2025 S2352-3026 25 00204-2 10.1016/S2352‑3026(25)00204‑2
    [Google Scholar]
  67. Imbesi A. Greco A. Capodanno D. Anti-inflammatory strategies for patients with atherosclerotic coronary disease. Expert Rev. Cardiovasc. Ther. 2025 1 19 10.1080/14779072.2025.2564137 40968010
    [Google Scholar]
  68. Dzaye O. Razavi A.C. Jelwan Y.A. Peng A.W. Grant J.K. Blaha M.J. Coronary artery calcium scoring on dedicated cardiac CT and noncardiac CT scans. Radiol. Cardiothorac. Imaging 2025 7 5 240548 10.1148/ryct.240548 40965299
    [Google Scholar]
  69. Liu W. Lin C. Luo C. Yang W. Yang C. Cheng M.L. Tsai M. Lin W. Shui H. Chuang Y. Intracellular galectin-3 as a crucial regulator of foam cell formation and apoptosis progression through the modulation of membrane lipid rafts. Arch. Med. Res. 2026 57 2 103300 10.1016/j.arcmed.2025.103300 40929743
    [Google Scholar]
  70. Shen T. Wang X. Zhang J. FSP1 reduces exogenous coenzyme Q10 and inhibits ferroptosis to alleviate intestinal ischemia-reperfusion injury. J. Adv. Res. 2025 S2090-1232 25 00680-0 10.1016/j.jare.2025.08.065
    [Google Scholar]
  71. Bezsonov E. Chernyi N. Saruhanyan M. Shimchenko D. Bondar N. Gavrilova D. Baig M.S. Malogolovkin A. Gene therapy approaches for atherosclerosis focusing on targeting lipid metabolism and inflammation. Int. J. Mol. Sci. 2025 26 14 6950 10.3390/ijms26146950 40725196
    [Google Scholar]
  72. Unal G. Xie Y.Q. Fussenegger M. A closed-loop cholesterol shunt controlling experimental dyslipidemia. Cell Metab. 2025 S1550-4131 25 00384-5 10.1016/j.cmet.2025.08.011
    [Google Scholar]
  73. Zheng Y. Li Q. Yang Y. Yang J. Liu Z. Ma X. Wang Z. Rationale and design of the episode trial: A randomized controlled trial on the effect of PCSK9 inhibitors in calcific aortic valve stenosis. J. Am. Heart Assoc. 2025 e042112 042112 10.1161/JAHA.125.042112 40970544
    [Google Scholar]
  74. Gao Y. Zhang J. Jiang N. Wang L. Cao T. Xie Y. He H. Li L. PCSK9 in peripheral arterial disease: Mechanisms and therapeutic perspectives. Sci. Prog. 2025 108 3 00368504251370679 10.1177/00368504251370679 40956907
    [Google Scholar]
  75. Pan W. Huang D. Lin C. Huang H. Chen Q. Wang L. Li M. Yu H. Potential therapeutic drug targets for hypertension identified using proteomics and mendelian randomization. Am. J. Hypertens. 2025 38 10 841 851 10.1093/ajh/hpaf011 39844355
    [Google Scholar]
  76. Khan S.S. Page C. Wojdyla D.M. Schwartz Y.Y. Greenland P. Pencina M.J. Predictive utility of a validated polygenic risk score for long-term risk of coronary heart disease in young and middle-aged adults. Circulation 2022 146 8 587 596 10.1161/CIRCULATIONAHA.121.058426 35880530
    [Google Scholar]
  77. Kessler T. Schunkert H. Genomic strategies toward identification of novel therapeutic targets. Handb. Exp. Pharmacol. 2020 270 429 462 10.1007/164_2020_360 32399778
    [Google Scholar]
  78. Parthiban N.K. Nassif N.T. Simpson A.M. Functions and mechanisms of diabetes-linked transcription factors. Front. Biosci. 2025 30 8 36544 10.31083/FBL36544 40917049
    [Google Scholar]
  79. Jomova K. Alomar S.Y. Valko R. Fresser L. Nepovimova E. Kuca K. Valko M. Interplay of oxidative stress and antioxidant mechanisms in cancer development and progression. Arch. Toxicol. 2025 10.1007/s00204‑025‑04146‑5 40906205
    [Google Scholar]
  80. Hughes E. Wang X.X. Sabol L. Barton K. Hegde S. Myakala K. Krawczyk E. Rosenberg A. Levi M. Role of nuclear receptors, lipid metabolism, and mitochondrial function in the pathogenesis of diabetic kidney disease. Am. J. Physiol. Renal Physiol. 2025 329 4 F510 F547 10.1152/ajprenal.00110.2025 40828784
    [Google Scholar]
  81. Lisek M. Bochenska N. Tomczak J. Duraj J. Boczek T. Epigenetic regulation in ischemic neuroprotection: The dual role of HDACS and hats in neuroinflammation and recovery. Antioxidants 2025 14 8 1015 10.3390/antiox14081015 40867911
    [Google Scholar]
  82. Yonglin C. Ling O. Lingling M. Electroacupuncture ameliorates blood-brain barrier disruption after ischemic stroke through histone acetylation regulation at the matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 2 genes. J. Tradit. Chin. Med. 2024 44 4 734 744 10.19852/j.cnki.jtcm.20240610.004
    [Google Scholar]
  83. Shu J. Li L. Zhou L.B. Qian J. Fan Z.D. Zhuang L.L. Wang L.L. Jin R. Yu H.G. Zhou G.P. IRF5 is elevated in childhood-onset SLE and regulated by histone acetyltransferase and histone deacetylase inhibitors. Oncotarget 2017 8 29 47184 47194 10.18632/oncotarget.17586 28525378
    [Google Scholar]
  84. Wei Y. Zhang B. Bie Q. He B. Metabolic regulation in the senescence process of stem cells. Stem Cells Transl. Med. 2025 14 9 szaf041 10.1093/stcltm/szaf041 40973919
    [Google Scholar]
  85. Iwasaki Y. Bastepe M. Imprinting and skeletal disorders: Lessons from pseudohypoparathyroidism and related disorders. J. Bone Miner Res. 2025 10.1093/jbmr/zjaf122
    [Google Scholar]
  86. Ferrari L.F. Taylor N.E. Modeling pain without injury: Inherited rodent models as mechanistic windows into chronic pain. Function 2025 zqaf043 10.1093/function/zqaf043 40972013
    [Google Scholar]
  87. Kilpinen S. Virtanen L. Celma S.B. Bonsdorff A. Heliölä H. Achim K. Partanen J. Gene regulatory mechanisms guiding bifurcation of inhibitory and excitatory neuron lineages in the mouse anterior brainstem. eLife 2025 14 RP105867 10.7554/eLife.105867.3 40938188
    [Google Scholar]
  88. Voigt O. Wilde M.V. Fröhlich T. Fradusco B. Vargas S. Wörheide G. Genetic parallels in biomineralization of the calcareous sponge Sycon ciliatum and stony corals. eLife 2025 14 RP106239 10.7554/eLife.106239.3 40922549
    [Google Scholar]
  89. Jouni R. Henry C. Bélanger S. Baldrich P. Meyers B.C. Distinct classes of 21- and 24-nt phasiRNAs suggests diverse mechanisms of biogenesis and function in rice anther development. Plant Genome 2025 18 3 70107 10.1002/tpg2.70107 40904062
    [Google Scholar]
  90. Spinelli M. Spallotta F. Cencioni C. Natale F. Re A. Dellaria A. Farsetti A. Fusco S. Grassi C. High fat diet affects the hippocampal expression of miRNAs targeting brain plasticity-related genes. Sci. Rep. 2024 14 1 19651 10.1038/s41598‑024‑69707‑7 39179650
    [Google Scholar]
  91. Saha G. Ghosh S. Dubey V.K. Saudagar P. Gene alterations induced by glutamine (Q) encoding CAG repeats associated with neurodegeneration. Methods Mol. Biol. 2023 2575 3 23 10.1007/978‑1‑0716‑2716‑7_1 36301468
    [Google Scholar]
  92. Nemoda Z. Szyf M. Epigenetic alterations and prenatal maternal depression. Birth Defects Res. 2017 109 12 888 897 10.1002/bdr2.1081 28714605
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673431092250819054506
Loading
/content/journals/cmc/10.2174/0109298673431092250819054506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test