Skip to content
2000
image of The Impact of IGFBP6 Knockdown on Cholesterol Metabolism in Breast Cancer Cells

Abstract

Introduction

Cholesterol plays a key role in maintaining tumor cell homeostasis. Reduced IGFBP6 expression is associated with an increased risk of breast cancer recurrence. Previous studies showed that IGFBP6 knockdown decreases cholesterol levels in the MDA-MB-231 cell line. This study aimed to investigate how IGFBP6 influences genes involved in cholesterol metabolism.

Methods

We used MDA-MB-231 breast cancer cells with IGFBP6 knockdown. Transcriptomic and proteomic analyses were performed, with selected gene expression validated by RT-PCR. Correlations between IGFBP6 and cholesterol-related genes were evaluated using public RNA-seq datasets.

Results

IGFBP6 knockdown in MDA-MB-231 cells resulted in a threefold decrease in low-density lipoprotein receptor (LDLR) expression and a twofold reduction in LDLR adaptor protein (LDLRAP1) mRNA levels, both responsible for exogenous cholesterol uptake. Meanwhile, PCSK9 expression increased 11-fold (-adj = 1.4E-93), further limiting uptake. Despite the upregulation of genes involved in endogenous cholesterol synthesis (HMGCS1, HMGCR, FDFT1, SQLE, DHCR24), total cholesterol content in knockdown cells decreased, leading to activation of the sterol-dependent transcription factor SREBF1 (OR = 6.44; -adj = 0.036). Correlation analysis revealed a significant association between IGFBP6 expression and cholesterol synthesis genes in basal-like breast cancer.

Discussion

The altered expression profile of multiple cholesterol metabolism-related genes with known prognostic value aligns with a transcriptional program typical of poor-outcome basal-like tumors. These findings support the role of IGFBP6 as a regulator of lipid metabolism and a potential biomarker for therapeutic stratification.

Conclusion

The results of this study indicate that the reduction in cholesterol levels observed in breast cancer cells following IGFBP6 knockdown is primarily due to decreased exogenous uptake. These findings highlight the role of IGFBP6 in regulating cholesterol metabolism and further explain its clinical significance in predicting breast cancer recurrence and progression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673396050250729132235
2025-09-11
2025-11-04
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Giaquinto A.N. Sung H. Miller K.D. Kramer J.L. Newman L.A. Minihan A. Jemal A. Siegel R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  3. Pan H. Gray R. Braybrooke J. Davies C. Taylor C. McGale P. Peto R. Pritchard K.I. Bergh J. Dowsett M. Hayes D.F. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 2017 377 19 1836 1846 10.1056/NEJMoa1701830 29117498
    [Google Scholar]
  4. Lafourcade A. His M. Baglietto L. Boutron-Ruault M.C. Dossus L. Rondeau V. Factors associated with breast cancer recurrences or mortality and dynamic prediction of death using history of cancer recurrences: The French E3N cohort. BMC Cancer 2018 18 1 171 10.1186/s12885‑018‑4076‑4 29426294
    [Google Scholar]
  5. Haukaas T.H. Euceda L.R. Giskeødegård G.F. Lamichhane S. Krohn M. Jernström S. Aure M.R. Lingjærde O.C. Schlichting E. Garred Ø. Due E.U. Mills G.B. Sahlberg K.K. Børresen-Dale A.L. Bathen T.F. Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes. Cancer Metab. 2016 4 1 12 10.1186/s40170‑016‑0152‑x 27350877
    [Google Scholar]
  6. Monaco M.E. Fatty acid metabolism in breast cancer subtypes. Oncotarget 2017 8 17 29487 29500 10.18632/oncotarget.15494 28412757
    [Google Scholar]
  7. Derakhshan F. Reis-Filho J.S. Pathogenesis of triple-negative breast cancer. Annu. Rev. Pathol. 2022 17 1 181 204 10.1146/annurev‑pathol‑042420‑093238 35073169
    [Google Scholar]
  8. Zagami P. Carey L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022 8 1 95 10.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  9. Rodrigues dos Santos C. Domingues G. Matias I. Matos J. Fonseca I. de Almeida J.M. Dias S. LDL-cholesterol signaling induces breast cancer proliferation and invasion. Lipids Health Dis. 2014 13 1 16 10.1186/1476‑511X‑13‑16 24428917
    [Google Scholar]
  10. Antalis C.J. Uchida A. Buhman K.K. Siddiqui R.A. Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clin. Exp. Metastasis 2011 28 8 733 741 10.1007/s10585‑011‑9405‑9 21744083
    [Google Scholar]
  11. Guan X. Liu Z. Zhao Z. Zhang X. Tao S. Yuan B. Zhang J. Wang D. Liu Q. Ding Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis. 2019 18 1 137 10.1186/s12944‑019‑1075‑7 31182104
    [Google Scholar]
  12. Lu C.W. Lo Y.H. Chen C.H. Lin C.Y. Tsai C.H. Chen P.J. Yang Y.F. Wang C.H. Tan C.H. Hou M.F. Yuan S.S.F. VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer Lett. 2017 388 130 138 10.1016/j.canlet.2016.11.033 27940127
    [Google Scholar]
  13. Greife A. Tukova J. Steinhoff C. Scott S.D. Schulz W.A. Hatina J. Establishment and characterization of a bladder cancer cell line with enhanced doxorubicin resistance by mevalonate pathway activation. Tumour Biol. 2015 36 5 3293 3300 10.1007/s13277‑014‑2959‑9 25566959
    [Google Scholar]
  14. Hultsch S. Kankainen M. Paavolainen L. Kovanen R.M. Ikonen E. Kangaspeska S. Pietiäinen V. Kallioniemi O. Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer 2018 18 1 850 10.1186/s12885‑018‑4757‑z 30143015
    [Google Scholar]
  15. Weber P. Wagner M. Schneckenburger H. Cholesterol dependent uptake and interaction of doxorubicin in mcf-7 breast cancer cells. Int. J. Mol. Sci. 2013 14 4 8358 8366 10.3390/ijms14048358 23591847
    [Google Scholar]
  16. Henriques Palma G.B. Kaur M. Cholesterol depletion modulates drug resistance pathways to sensitize resistant breast cancer cells to tamoxifen. Anticancer Res. 2022 42 1 565 579 10.21873/anticanres.15514 34969766
    [Google Scholar]
  17. Wang Y. Cai L. Li H. Chen H. Yang T. Tan Y. Guo Z. Wang X. Overcoming cancer resistance to platinum drugs by inhibiting cholesterol metabolism. Angew. Chem. Int. Ed. 2023 62 42 e202309043 10.1002/anie.202309043 37612842
    [Google Scholar]
  18. Garcia-Bermudez J. Baudrier L. Bayraktar E.C. Shen Y. La K. Guarecuco R. Yucel B. Fiore D. Tavora B. Freinkman E. Chan S.H. Lewis C. Min W. Inghirami G. Sabatini D.M. Birsoy K. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 2019 567 7746 118 122 10.1038/s41586‑019‑0945‑5 30760928
    [Google Scholar]
  19. Mady E.A. Association between estradiol, estrogen receptors, total lipids, triglycerides, and cholesterol in patients with benign and malignant breast tumors. J. Steroid Biochem. Mol. Biol. 2000 75 4-5 323 328 10.1016/S0960‑0760(00)00183‑7 11282289
    [Google Scholar]
  20. Kuzu O.F. Noory M.A. Robertson G.P. The role of cholesterol in cancer. Cancer Res. 2016 76 8 2063 2070 10.1158/0008‑5472.CAN‑15‑2613 27197250
    [Google Scholar]
  21. Aylon Y. Oren M. The Hippo pathway, p53 and cholesterol. Cell Cycle 2016 15 17 2248 2255 10.1080/15384101.2016.1207840 27419353
    [Google Scholar]
  22. Pereira M. Matuszewska K. Glogova A. Petrik J. Mutant p53, the mevalonate pathway and the tumor microenvironment regulate tumor response to statin therapy. Cancers 2022 14 14 3500 10.3390/cancers14143500 35884561
    [Google Scholar]
  23. Menendez J.A. Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007 7 10 763 777 10.1038/nrc2222 17882277
    [Google Scholar]
  24. Luo J. Yang H. Song B.L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020 21 4 225 245 10.1038/s41580‑019‑0190‑7 31848472
    [Google Scholar]
  25. Islam M.M. Hlushchenko I. Pfisterer S.G. Low-density lipoprotein internalization, degradation and receptor recycling along membrane contact sites. Front. Cell Dev. Biol. 2022 10 826379 10.3389/fcell.2022.826379 35141225
    [Google Scholar]
  26. Koppenol W.H. Bounds P.L. Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011 11 5 325 337 10.1038/nrc3038 21508971
    [Google Scholar]
  27. Fendt S.M. 100 years of the Warburg effect: A cancer metabolism endeavor. Cell 2024 187 15 3824 3828 10.1016/j.cell.2024.06.026 39059359
    [Google Scholar]
  28. LeRoith D. Holly J.M.P. Forbes B.E. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol. Metab. 2021 52 101245 10.1016/j.molmet.2021.101245 33962049
    [Google Scholar]
  29. Chen Q. Qin S. Liu Y. Hong M. Qian C.N. Keller E.T. Zhang J. Lu Y. IGFBP6 is a novel nasopharyngeal carcinoma prognostic biomarker. Oncotarget 2016 7 42 68140 68150 10.18632/oncotarget.11886 27623076
    [Google Scholar]
  30. Zhao C. Zhu X. Wang G. Wang W. Ju S. Wang X. Decreased expression of IGFBP6 correlates with poor survival in colorectal cancer patients. Pathol. Res. Pract. 2020 216 5 152909 10.1016/j.prp.2020.152909 32156471
    [Google Scholar]
  31. Bach L.A. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm. IGF Res. 2016 30-31 81 86 10.1016/j.ghir.2016.09.004 27681092
    [Google Scholar]
  32. Liu Y. Shen S. Yan Z. Yan L. Ding H. Wang A. Xu Q. Sun L. Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023 23 1 371 10.1186/s12885‑023‑10832‑3 37088808
    [Google Scholar]
  33. Tu M. Liu X. Han B. Ge Q. Li Z. Lu Z. Wei J. Song G. Cai B. Lv N. Jiang K. Wang S. Miao Y. Gao W. Vasohibin-2 promotes proliferation in human breast cancer cells via upregulation of fibroblast growth factor-2 and growth/differentiation factor-15 expression. Mol. Med. Rep. 2014 10 2 663 669 10.3892/mmr.2014.2317 24920244
    [Google Scholar]
  34. Galatenko V.V. Shkurnikov M.Y. Samatov T.R. Galatenko A.V. Mityakina I.A. Kaprin A.D. Schumacher U. Tonevitsky A.G. Highly informative marker sets consisting of genes with low individual degree of differential expression. Sci. Rep. 2015 5 1 14967 10.1038/srep14967 26446398
    [Google Scholar]
  35. Nikulin S. Zakharova G. Poloznikov A. Raigorodskaya M. Wicklein D. Schumacher U. Nersisyan S. Bergquist J. Bakalkin G. Astakhova L. Tonevitsky A. Effect of the expression of ELOVL5 and IGFBP6 genes on the metastatic potential of breast cancer cells. Front. Genet. 2021 12 662843 10.3389/fgene.2021.662843 34149804
    [Google Scholar]
  36. Lu H. Yu X. Xu Z. Deng J. Zhang M.J. Zhang Y. Sun S. Prognostic value of IGFBP6 in breast cancer: Focus on glucometabolism. Technol. Cancer Res. Treat. 2024 23 15330338241271998 10.1177/15330338241271998 39275851
    [Google Scholar]
  37. Longhitano L. Forte S. Orlando L. Grasso S. Barbato A. Vicario N. Parenti R. Fontana P. Amorini A.M. Lazzarino G. Li Volti G. Di Rosa M. Liso A. Tavazzi B. Lazzarino G. Tibullo D. The crosstalk between GPR81/IGFBP6 promotes breast cancer progression by modulating lactate metabolism and oxidative stress. Antioxidants 2022 11 2 275 10.3390/antiox11020275 35204157
    [Google Scholar]
  38. Shkurnikov M. Averinskaya D. Stekolshchikova E. Serkina A. Razumovskaya A. Silkina M. Antipenko I. Makarova J. Evtushenko E. Nikulin S. Tonevitsky A. IGFBP6 regulates extracellular vesicles formation via cholesterol abundance in MDA-MB-231 cells. Biochimie 2024 227 Pt A 77 85 10.1016/j.biochi.2024.06.011 38942135
    [Google Scholar]
  39. Nikulin SV. In vitro model for studying of the role of IGFBP6 gene in breast cancer metastasizing. Bull Exp Biol Med 2018 164 5 688 692 10.1007/s10517‑018‑4060‑7 29582205
    [Google Scholar]
  40. Abràmoff M.D. Magalhães P.J. Ram S.J. Image processing with ImageJ. Biophoton. Int. 2004 11 7 36 42
    [Google Scholar]
  41. Karolchik D. Baertsch R. Diekhans M. Furey T.S. Hinrichs A. Lu Y.T. Roskin K.M. Schwartz M. Sugnet C.W. Thomas D.J. Weber R.J. Haussler D. Kent W.J. The UCSC genome browser database. Nucleic Acids Res. 2003 31 1 51 54 10.1093/nar/gkg129 12519945
    [Google Scholar]
  42. Ye J. Coulouris G. Zaretskaya I. Cutcutache I. Rozen S. Madden T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012 13 1 134 10.1186/1471‑2105‑13‑134 22708584
    [Google Scholar]
  43. Maltseva D.V. Khaustova N.A. Fedotov N.N. Matveeva E.O. Lebedev A.E. Shkurnikov M.U. Galatenko V.V. Schumacher U. Tonevitsky A.G. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinforma. 2013 3 1 13 10.1186/2043‑9113‑3‑13 23876162
    [Google Scholar]
  44. Kolodeeva O.E. Kolodeeva O.E. Antipenko I.D. Fatkulin A.A. Yakhina M.R. Makarova J.A. IGFBP6 modulates proteostasis by activating ATF4 targets and reducing ER retrotranslocon expression. Dokl Biochem Biophys 2024 519 1 486 492 10.1134/S1607672924600714 39480639
    [Google Scholar]
  45. Han H. Cho J.W. Lee S. Yun A. Kim H. Bae D. Yang S. Kim C.Y. Lee M. Kim E. Lee S. Kang B. Jeong D. Kim Y. Jeon H.N. Jung H. Nam S. Chung M. Kim J.H. Lee I. TRRUST v2: An expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018 46 D1 D380 D386 10.1093/nar/gkx1013 29087512
    [Google Scholar]
  46. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  47. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  48. Tomczak K. Czerwińska P. Wiznerowicz M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp Oncol 2015 19 1A A68 A77 10.5114/wo.2014.47136
    [Google Scholar]
  49. Chin Lynda Park Peter J Kucherlapati R. Comprehensive molecular portraits of human breast tumours. Nature 2012 490 7418 61 70 10.1038/nature11412 23000897
    [Google Scholar]
  50. Calandra S. Tarugi P. Speedy H.E. Dean A.F. Bertolini S. Shoulders C.C. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: Implications for classification and disease risk. J. Lipid Res. 2011 52 11 1885 1926 10.1194/jlr.R017855 21862702
    [Google Scholar]
  51. Guan Y. Liu X. Yang Z. Zhu X. Liu M. Du M. Pan X. Wang Y. PCSK9 promotes LDLR degradation by preventing SNX17-mediated LDLR recycling. Circulation 2025 151 21 1512 1526 10.1161/CIRCULATIONAHA.124.072336 40071387
    [Google Scholar]
  52. Ikonen E. Zhou X. Cholesterol transport between cellular membranes: A balancing act between interconnected lipid fluxes. Dev. Cell 2021 56 10 1430 1436 10.1016/j.devcel.2021.04.025 34004151
    [Google Scholar]
  53. Chua N.K. Coates H.W. Brown A.J. Squalene monooxygenase: A journey to the heart of cholesterol synthesis. Prog. Lipid Res. 2020 79 101033 10.1016/j.plipres.2020.101033 32360125
    [Google Scholar]
  54. Bhattacharjee P. Rutland N. Iyer M.R. Targeting sterol O-Acyltransferase/Acyl-CoA: cholesterol acyltransferase (ACAT): A perspective on small-molecule inhibitors and their therapeutic potential. J. Med. Chem. 2022 65 24 16062 16098 10.1021/acs.jmedchem.2c01265 36473091
    [Google Scholar]
  55. Nikulin S. Razumovskaya A. Poloznikov A. Zakharova G. Alekseev B. Tonevitsky A. ELOVL5and IGFBP6 genes modulate sensitivity of breast cancer cells to ferroptosis. Front. Mol. Biosci. 2023 10 1075704 10.3389/fmolb.2023.1075704 36714261
    [Google Scholar]
  56. Ikonen E. Mechanisms of cellular cholesterol compartmentalization: Recent insights. Curr. Opin. Cell Biol. 2018 53 77 83 10.1016/j.ceb.2018.06.002 29960186
    [Google Scholar]
  57. Nishida-Aoki N. Izumi Y. Takeda H. Takahashi M. Ochiya T. Bamba T. Lipidomic analysis of cells and extracellular vesicles from high-and low-metastatic triple-negative breast cancer. Metabolites 2020 10 2 67 10.3390/metabo10020067 32069969
    [Google Scholar]
  58. Belfiore A. Rapicavoli R.V. Le Moli R. Lappano R. Morrione A. De Francesco E.M. Vella V. IGF2: A role in metastasis and tumor evasion from immune surveillance? Biomedicines 2023 11 1 229 10.3390/biomedicines11010229 36672737
    [Google Scholar]
  59. Kasprzak A. Autophagy and the insulin-like growth factor (IGF) system in colonic cells: Implications for colorectal neoplasia. Int. J. Mol. Sci. 2023 24 4 3665 10.3390/ijms24043665 36835075
    [Google Scholar]
  60. Hosios A.M. Wilkinson M.E. McNamara M.C. Kalafut K.C. Torrence M.E. Asara J.M. Manning B.D. mTORC1 regulates a lysosome-dependent adaptive shift in intracellular lipid species. Nat. Metab. 2022 4 12 1792 1811 10.1038/s42255‑022‑00706‑6 36536136
    [Google Scholar]
  61. Shimano H. Sato R. SREBP-regulated lipid metabolism: Convergent physiology — divergent pathophysiology. Nat. Rev. Endocrinol. 2017 13 12 710 730 10.1038/nrendo.2017.91 28849786
    [Google Scholar]
  62. Zhao Q. Lin X. Wang G. Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Front. Oncol. 2022 12 952371 10.3389/fonc.2022.952371 35912181
    [Google Scholar]
  63. Kessler S.M. Laggai S. Van Wonterg E. Gemperlein K. Müller R. Haybaeck J. Vandenbroucke R.E. Ogris M. Libert C. Kiemer A.K. Transient hepatic overexpression of insulin-like growth factor 2 induces free cholesterol and lipid droplet formation. Front. Physiol. 2016 7 147 10.3389/fphys.2016.00147 27199763
    [Google Scholar]
  64. Ndoj K. Meurs A. Papaioannou D. Bjune K. Zelcer N. The low-density lipoprotein receptor: Emerging post- transcriptional regulatory mechanisms. Atherosclerosis 2025 401 119082 10.1016/j.atherosclerosis.2024.119082 39700747
    [Google Scholar]
  65. Alvarez M.L. Khosroheidari M. Eddy E. Done S.C. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis 2015 242 2 595 604 10.1016/j.atherosclerosis.2015.08.023 26318398
    [Google Scholar]
  66. Jiang H. Zhang J. Du Y. Jia X. Yang F. Si S. Wang L. Hong B. microRNA-185 modulates low density lipoprotein receptor expression as a key posttranscriptional regulator. Atherosclerosis 2015 243 2 523 532 10.1016/j.atherosclerosis.2015.10.026 26523989
    [Google Scholar]
  67. Goedeke L. Rotllan N. Canfrán-Duque A. Aranda J.F. Ramírez C.M. Araldi E. Lin C.S. Anderson N.N. Wagschal A. de Cabo R. Horton J.D. Lasunción M.A. Näär A.M. Suárez Y. Fernández-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat. Med. 2015 21 11 1280 1289 10.1038/nm.3949 26437365
    [Google Scholar]
  68. Scully T. Kase N. Gallagher E.J. LeRoith D. Regulation of low-density lipoprotein receptor expression in triple negative breast cancer by EGFR-MAPK signaling. Sci. Rep. 2021 11 1 17927 10.1038/s41598‑021‑97327‑y 34504181
    [Google Scholar]
  69. Su M. Endothelial IGFBP6 suppresses vascular inflammation and atherosclerosis. Nat Cardiovasc Res 2025 4 2 145 162 10.1038/s44161‑024‑00591‑0 39794479
    [Google Scholar]
  70. Park C. Baek K.I. Jo H. Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis. Nat Cardiovasc Res 2024 3 9 1021 1023 10.1038/s44161‑024‑00523‑y 39232137
    [Google Scholar]
  71. Santos A.B. Carona A. Ettcheto M. Camins A. Falcão A. Fortuna A. Bicker J. Krüppel-like factors: Potential roles in blood-brain barrier dysfunction and epileptogenesis. Acta Pharmacol. Sin. 2024 45 9 1765 1776 10.1038/s41401‑024‑01285‑w 38684799
    [Google Scholar]
  72. Lee J. Roh J.L. Cholesterol-ferroptosis nexus: Unveiling novel cancer therapeutic avenues. Cancer Lett. 2024 597 217046 10.1016/j.canlet.2024.217046 38852702
    [Google Scholar]
  73. Antipenko I.D. Olkhovik D.M. Solopova O.N. Khayretdinova G.A. Kalacheva O.S. Makarova J.A. Shkurnikov M.Y. The Expression of the LDLR, LDLRAP1, and PCSK9 Genes has Prognostic Significance in Triple-negative Breast Cancer. Curr. Med. Chem. 2025 32 10.2174/0109298673291217241219055416 39838687
    [Google Scholar]
  74. Ehmsen S. Pedersen M.H. Wang G. Terp M.G. Arslanagic A. Hood B.L. Conrads T.P. Leth-Larsen R. Ditzel H.J. Increased cholesterol biosynthesis is a key characteristic of breast cancer stem cells influencing patient outcome. Cell Rep. 2019 27 13 3927 3938.e6 10.1016/j.celrep.2019.05.104 31242424
    [Google Scholar]
  75. Scott O.W. TinTin S. Harborg S. Kuper-Hommel M.J.J. Lawrenson R. Elwood J.M. Post-diagnostic statin use and breast cancer-specific mortality: A population-based cohort study. Breast Cancer Res. Treat. 2023 199 1 195 206 10.1007/s10549‑022‑06815‑w 36930345
    [Google Scholar]
  76. Borgquist S. Giobbie-Hurder A. Ahern T.P. Garber J.E. Colleoni M. Láng I. Debled M. Ejlertsen B. von Moos R. Smith I. Coates A.S. Goldhirsch A. Rabaglio M. Price K.N. Gelber R.D. Regan M.M. Thürlimann B. Cholesterol, cholesterol-lowering medication use, and breast cancer outcome in the BIG 1-98 study. J. Clin. Oncol. 2017 35 11 1179 1188 10.1200/JCO.2016.70.3116 28380313
    [Google Scholar]
  77. Jaiswal V. Agrawal V. Ang S.P. Saleeb M. Ishak A. Hameed M. Rajak K. Kalra K. Jaiswal A. Post-diagnostic statin use and its association with cancer recurrence and mortality in breast cancer patients: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2023 9 8 731 740 10.1093/ehjcvp/pvad057 37562940
    [Google Scholar]
  78. Maja M. Verfaillie M. Van Der Smissen P. Henriet P. Pierreux C.E. Sounni N.E. Tyteca D. Targeting cholesterol impairs cell invasion of all breast cancer types. Cancer Cell Int. 2024 24 1 27 10.1186/s12935‑023‑03206‑z 38200575
    [Google Scholar]
  79. Bianchini G. De Angelis C. Licata L. Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022 19 2 91 113 10.1038/s41571‑021‑00565‑2 34754128
    [Google Scholar]
  80. Hillis A.L. Martin T.D. Manchester H.E. Högström J. Zhang N. Lecky E. Kozlova N. Lee J. Persky N.S. Root D.E. Brown M. Cichowski K. Elledge S.J. Muranen T. Fruman D.A. Barry S.T. Clohessy J.G. Madsen R.R. Toker A. Targeting cholesterol biosynthesis with statins synergizes with AKT inhibitors in triple-negative breast cancer. Cancer Res. 2024 84 19 3250 3266 10.1158/0008‑5472.CAN‑24‑0970 39024548
    [Google Scholar]
  81. Zhang H. Jiang R. Zhu J. Sun K. Huang Y. Zhou H. Zheng Y. Wang X. PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer 2024 31 4 539 551 10.1007/s12282‑024‑01567‑5 38630392
    [Google Scholar]
  82. Basho R.K. Gilcrease M. Murthy R.K. Helgason T. Karp D.D. Meric-Bernstam F. Hess K.R. Herbrich S.M. Valero V. Albarracin C. Litton J.K. Chavez-MacGregor M. Ibrahim N.K. Murray J.L. III Koenig K.B. Hong D. Subbiah V. Kurzrock R. Janku F. Moulder S.L. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer: Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab. JAMA Oncol. 2017 3 4 509 515 10.1001/jamaoncol.2016.5281 27893038
    [Google Scholar]
  83. Kumar S. Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol. Res. Pract. 2024 263 155620 10.1016/j.prp.2024.155620 39357179
    [Google Scholar]
  84. Gradishar W.J. Yardley D.A. Layman R. Sparano J.A. Chuang E. Northfelt D.W. Schwartz G.N. Youssoufian H. Tang S. Novosiadly R. Forest A. Nguyen T.S. Cosaert J. Grebennik D. Haluska P. Clinical and translational results of a phase II, randomized trial of an anti–IGF-1R (cixutumumab) in women with breast cancer that progressed on endocrine therapy. Clin. Cancer Res. 2016 22 2 301 309 10.1158/1078‑0432.CCR‑15‑0588 26324738
    [Google Scholar]
  85. Lero M.W. Shaw L.M. Diversity of insulin and IGF signaling in breast cancer: Implications for therapy. Mol. Cell. Endocrinol. 2021 527 111213 10.1016/j.mce.2021.111213 33607269
    [Google Scholar]
  86. Green A.R. Powe D.G. Rakha E.A. Soria D. Lemetre C. Nolan C.C. Barros F F T. Macmillan R.D. Garibaldi J.M. Ball G.R. Ellis I.O. Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers. Br. J. Cancer 2013 109 7 1886 1894 10.1038/bjc.2013.528 24008658
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673396050250729132235
Loading
/content/journals/cmc/10.2174/0109298673396050250729132235
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: IGFBP6 ; recurrence ; PCSK9 ; Breast cancer ; cholesterol ; low-density lipoproteins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test