Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) - Online First
Description text for Online First listing goes here...
1 - 20 of 46 results
-
-
Evaluation of Anticancer Potential in Human Colorectal Carcinoma HCT-116 Cells by Fungal-Mediated Zinc Oxide Nanoparticles
Available online: 27 August 2025More LessIntroductionChemotherapy faces limitations such as toxicity and resistance, necessitating novel cancer treatments. Green-synthesized zinc oxide nanoparticles (ZnO-NPs) have attracted attention for their safety, biocompatibility, and therapeutic potential. This study investigates the anticancer efficacy of ZnO-NPs synthesized using the extracellular matrix of Aspergillus biplanus against colorectal cancer cell lines (HCT-116).
MethodsZnO-NPs were synthesized extracellularly using A. biplanus fungal extract. The nanoparticles were characterized through UV-Vis spectrophotometry, showing an absorbance peak at 375 nm, and scanning electron microscopy (SEM), which determined their morphology and size. The anticancer activity was evaluated in vitro using HCT-116 cells. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were assessed to understand the mechanism of cytotoxicity. In vivo studies were proposed for further validation.
ResultsThe synthesized ZnO-NPs appeared pale white and exhibited a characteristic absorbance at 375 nm. SEM revealed spherical particles ranging from 35–150 nm. The ZnO-NPs showed strong anticancer activity with an IC50 value of 40.6 µg/mL. ROS levels increased significantly in treated cells, while the MMP decreased to 77.25% compared to 100% in controls.
DiscussionZnO-NPs exerted cytotoxic effects via ROS generation and mitochondrial dysfunction. These results underscore the nanoparticles’ ability to induce apoptosis in cancer cells through oxidative stress pathways.
ConclusionBiogenically synthesized ZnO-NPs from A. biplanus show promise as eco-friendly anticancer agents. Further in vivo studies are recommended to confirm their therapeutic potential.
-
-
-
The Hematological Variations and Effect of Cadmium Induced Toxicity on Mammary Tumors Development in Albino Mice. A Comparative Model Study on the Effect of Heavy Metals in Human Breast Cancer
Authors: Saba Munir, Yasir Nawaz, Fouzia Tanvir and Khalid Mahmood AnjumAvailable online: 08 August 2025More LessIntroductionBreast cancer develops in breast tissues, in ducts and lobules. It affects both genders, though it is uncommon in men. Hematological variations are important considerations and deficiencies in metals can negatively impact human health. Cadmium is highly toxic and plays role in breast cancer progression. This study was designed for hematological variations and cadmium induced toxicity in mice and humans causing breast cancer.
MethodsMice, obtained from local supplier, housed at university laboratory for 11 weeks, exposed to cadmium. Following dissection, blood and organs were harvested for examination. Histological analysis of liver and mammary gland tissues was conducted.
ResultsAffected mice had higher Hb, RBC, HCT, MCV, and MCH, while humans showed lower Hb, HCT, and MCV but similar RBC and MCH. Other blood values also show changes. Histopathology revealed changes in mammary glands (higher cadmium led to increased fat deposition, degeneration of alveolar epithelial cells, and a reduction in alveolar milk lumen size, indicating compromised glandular function) and Liver damage (vacuolation, lipid accumulation, fibrosis, and collagen deposition, was noticeable with prolonged cadmium). These changes causes liver fibrosis and impaired mammary gland function.
DiscussionThe cadmium exposure induces distinct hematological alterations and severe tissues damage, reflecting species-specific responses. The observed liver fibrosis and mammary gland dysfunction emphasize cadmium’s potential to compromise critical organ functions over time.
ConclusionSignificant effects of cadmium exposure in mice were observed. Histological damage was seen in mammary glands and liver. Further research on protective measures and dose-response relationships for cadmium exposure is needed.
-
-
-
Anticancer Efficacy and Metabolomic Profiling of Punica granatum Leaf Extracts:
Available online: 06 August 2025More LessIntroductionCurrent research focuses on identifying and analyzing bioactive metabolites with significant therapeutic properties derived from Punic granatum L. (Pomegranate) leaves. Methods: The biological potential of these metabolites was evaluated through anticancer activity. In contrast, LC-QTOF-MS and GC-QTOF-MS methods were used to profile the metabolites. In silico molecular docking was performed using various online and offline tools to validate the active metabolites.
ResultsPAC exhibited significant anticancer activity. The identified metabolites were screened, and 40 compounds from different categories were chosen for further in silico interaction studies.
DiscussionThe molecular docking analysis discovered lead molecules that exhibited promising binding energy scores, efficiency, and stable modulation with specific protein domains. However, clinical trials are required for the applications of the lead molecules in the design of anticancer drugs.
ConclusionThe findings from both in vitro and in silico analyses support the notion that the P. granatum Acetone Extract (PAC) is an excellent source of potential metabolites with therapeutic properties. According to the findings, this research enhances the treatment of human breast cancer and validates several plant traditions for their numerous benefits.
-
-
-
Bioinformatics And Experimental Insights Into Sotorasib Resistance Mechanisms in Non-small-cell Lung Cancer
Authors: Dongbing Li and Guizhen LyuAvailable online: 06 August 2025More LessIntroductionThis study aims to identify the key genes and pathways associated with sotorasib resistance in Non-Small Cell Lung Cancer (NSCLC) using bioinformatics analyses and experimental validation, with a focus on uncovering the potential mechanisms underlying resistance.
MethodsWe compared gene expression profiles between sotorasib-resistant (SR) and non-resistant NSCLC cell lines using the GSE229070 dataset and between NSCLC tissues and adjacent normal tissues using the GSE18842 dataset. Differentially expressed genes (DEGs) were identified and intersected across datasets using the Venn diagram package. Functional enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The transcriptional activity and prognostic impact of key genes were evaluated using the UALCAN portal and Kaplan-Meier Plotter, respectively. The correlation between gene expression and immune cell infiltration was analyzed using the TIMER database, and co-expressed genes were explored using LinkedOmics. qRT-PCR and Western blot were used to validate the expression of AREG in parental and SR cell lines.
ResultsWe identified 33 overlapping DEGs, including TENM2, COL12A1, COL5A2, and LRRC15 (upregulated) and AREG (downregulated). AREG expression was significantly lower in NSCLC patients and associated with worse survival outcomes. AREG expression was also correlated with the levels of immune cell infiltration. Functional enrichment analysis revealed that AREG was associated with pathways including the NOD-like receptor signaling pathway, focal adhesion, DNA replication, and homologous recombination. Experimental validation confirmed that AREG mRNA and protein levels were significantly reduced in HCC78-SR cells compared to parental HCC78 cells.
DiscussionThe downregulation of AREG is closely associated with sotorasib resistance in NSCLC, potentially contributing to resistance through alterations in signaling pathways and the tumor immune microenvironment. This finding aligns with previous studies on AREG's role in drug resistance, highlighting its potential as a therapeutic target. However, limitations include reliance on publicly available datasets and the need for further validation in clinical cohorts.
ConclusionThe study identifies AREG as a key gene associated with sotorasib resistance in NSCLC, suggesting its potential as a biomarker and therapeutic target. Further research is needed to elucidate the mechanisms underlying AREG's role in resistance and to explore its clinical significance.
-
-
-
dHG-5 Exhibits Dual Efficacy of Anti-Metastatic and Anti-hypercoagulability in Mice by Inhibiting Heparanase and Intrinsic Coagulation Pathway
Authors: Ziheng Tong, Zhipeng Xu, Wen Yang, Huaizheng Song, Shuguo Zheng and Lutan ZhouAvailable online: 06 August 2025More LessIntroductionCancer metastasis and associated thrombosis are significant contributors to cancer-related mortality, necessitating therapeutic strategies that simultaneously address both issues. This study aimed to evaluate the dual anti-metastatic and anti-hypercoagulability properties of dHG-5, a low-molecular-weight fucosylated glycosaminoglycan derived from the sea cucumber Holothuria fuscopunctata.
MethodsThe heparanase-inhibitory and anticoagulant effects of dHG-5 were assessed in vitro using biochemical assays. The impact of dHG-5 on 4T1 cell migration and invasion was evaluated using Transwell assays. The anti-metastatic and anti-hypercoagulability efficacy of dHG-5 was further tested in a 4T1 mammary carcinoma mouse model, with enoxaparin (LMWH) used as a control.
ResultsdHG-5 exhibited potent heparanase inhibition (IC50 = 91.0 nM) and significantly reduced 4T1 cell migration and invasion at 4.0 µmol/L. In vivo, dHG-5 reduced lung metastasis without affecting tumor growth or proliferation. At a dose of 20 mg/kg, dHG-5 prolonged activated partial thromboplastin time (APTT) from 23.5 ± 1.85 s to 30.4 ± 3.36 s, effectively reversing hypercoagulability in tumor-bearing mice. Compared to low-molecular-weight heparin, dHG-5 selectively prolonged APTT with negligible effects on prothrombin time and thrombin time.
DiscussionThe findings highlighted the dual-action mechanism of dHG-5, namely inhibiting heparanase and selectively targeting the intrinsic coagulation pathway. This selective action minimized bleeding risk, a common issue with traditional anticoagulants. However, this study focused on a single cancer type and the use of a mouse model, which may not fully represent human pathophysiology. We would explore dHG-5's effects across different cancer types and investigate its potential synergistic effects with existing cancer therapies in the future.
ConclusiondHG-5 suppressed metastasis and hypercoagulability through heparanase inhibition and selective action on the intrinsic coagulation pathway. These findings highlight dHG-5 as a promising dual-action therapeutic candidate for managing metastasis and cancer-associated thrombosis, offering a safer alternative to traditional anticoagulants.
-
-
-
The Potential of Next-generation Multi-functional Nanoplatforms for Breast Cancer
Authors: Shreya Gupta, Tanmay J Urs, Navya Aggarwal, Shinjini Sen and Banashree BondhopadhyayAvailable online: 24 July 2025More LessThe next-generation nanoparticles overcome the drawbacks of early nanoplatforms by integrating multiple functions, such as drug delivery, controlled drug release, and combination therapy, into a single system. This study examines the biomedical applications of quantum dots, carbon nanotubes, superparamagnetic iron oxide nanoparticles, and layered double hydroxides for the delivery of breast cancer drugs. They are termed as “next-generation” nanoparticles, as they are advanced nanocarriers that offer a comprehensive and alternative approach towards breast cancer treatment, providing enhanced specificity and efficacy compared to their predecessors. The development of these nanoplatforms has significantly enhanced drug bioavailability and reduced toxicity. A comprehensive analysis of a nanotechnology-based drug delivery system was conducted. The keywords used for this review were “Breast Cancer”, “Targeted Drug Delivery”, “Quantum Dots”, “Carbon Nanotubes”, “Layer Double Hydroxides”, and “Superparamagnetic Iron Oxide Nanoparticles”. The inclusion criteria consisted of studies focusing on breast cancer, targeted drug delivery, and therapeutic applications of these nanocarriers. In contrast, exclusion criteria included studies focusing on the synthesis of nanocarriers and the diagnostic applications of these nanostructures. The study underscores their mechanisms, limitations, and future development directions. Additionally, the study tracks the evolution of the nanocarriers since their early discovery. Next-generation nanocarriers (QDs, CNTs, SPIONs, and LDHs) have strong therapeutic potential owing to their precisely engineered properties, such as size, shape, morphology, and surface modifications. Their trigger-initiated drug release mechanisms enable targeted delivery with a better rate of tumor penetration, while their ability to co-deliver multiple therapeutic agents addresses drug resistance issues and provides synergistic effects. Comparative analyses have revealed that these advanced nanoplatforms significantly outperform early-generation carriers in terms of bioavailability, reduced toxicity, and treatment efficacy across various breast cancer types. Next-generation nanoplatforms offer unprecedented opportunities for targeted and efficient cancer treatment. Continued research and innovation are necessary to address existing challenges and to optimize their therapeutic potential for clinical applications.
-
-
-
The Role of Kinase Inhibitors in Cancer Neuroscience: Mechanisms, Therapeutic Potential, and Future Directions
Available online: 21 July 2025More LessIntroductionCancer progression is increasingly understood to be influenced by neural mechanisms, including neurotransmitter signaling, neurotrophic factor activity, neuroinflammation, and neurogenic inflammation. These neurobiological interactions contribute to tumor proliferation, angiogenesis, and metastasis. Kinase inhibitors, a class of targeted therapies that block dysregulated kinase activity, have demonstrated promise not only in direct tumor suppression but also in modulating neural pathways associated with cancer progression.
MethodsThis review examines the role of kinase inhibitors in modulating cancer-associated neural mechanisms. A comprehensive literature search was conducted to identify studies exploring the effects of kinase inhibition on: (1) neurotransmitter signaling pathways; (2) neurotrophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF); (3) neuroinflammation through glial cell modulation; and (4) neurogenic inflammation. Additionally, we assessed the impact of kinase inhibitors on tumor-induced axonogenesis and stress-related signaling. Clinical relevance was evaluated through analysis of preclinical models, human case studies, and outcomes from relevant clinical trials.
ResultsKinase inhibitors were found to significantly modulate neural factors that facilitate tumor growth. Specifically, they can suppress neurotrophic signaling (e.g., NGF/TrkA, BDNF/TrkB), inhibit glial activation, reduce pro-inflammatory cytokine production, and block neurotransmitter-induced proliferation. Inhibition of stress-responsive kinases such as p38 MAPK and JNK also disrupted tumor-associated axonogenesis and inflammation. Clinical trials demonstrate improved outcomes in cancers such as glioblastoma, breast cancer, and pancreatic cancer when kinase inhibitors are employed with consideration of neural mechanisms.
DiscussionThese findings support the emerging concept of targeting the neural tumor microenvironment as a therapeutic strategy. Kinase inhibitors represent a dual-action approach, suppressing both cancer cell intrinsic growth pathways and the neural factors that sustain them. However, several challenges persist, including resistance mechanisms, variability in patient neural profiles, and off-target effects. Future research should focus on the development of neural-specific kinase inhibitors, the use of neural biomarkers for therapy selection, and the integration of neuro-oncology into personalized treatment plans.
ConclusionKinase inhibitors offer a promising frontier in cancer treatment by targeting neural mechanisms that contribute to tumor progression. While current evidence is encouraging, further investigation is required to optimize their use within neuro-oncology. Personalized approaches and novel targets within the neural-cancer axis will be essential for translating this strategy into clinical practice and improving long-term patient outcomes.
-
-
-
Innovative Nanocarriers: Magnetosomes in the Fight against Cancer
Authors: Shivani Yadav and Manoj Kumar MishraAvailable online: 17 July 2025More LessRecent advancements in medication formulations and drug delivery systems over the past two decades have improved patient adherence and pharmacological responses. Efficient, target-specific medication delivery remains challenging, with many current systems designed to minimize drug loss and degradation. Magnetosomes, as nanocarriers, show promise for delivering antibodies, vaccine DNA, and siRNA, enhancing the stability of chemotherapeutics, and enabling targeted delivery to malignant tumors. Targeted drug delivery is crucial in cancer treatment, as anticancer drugs often cannot differentiate between healthy and malignant cells, causing side effects and systemic toxicity. Magnetosome-based drug delivery offers a potential solution, minimizing adverse effects and promoting drug accumulation at the target site. This review covers the design, development, and advancements in magnetosome-based drug delivery for cancer therapy.
-
-
-
Polyamines in Cancer: Mechanisms, Metabolic Targets, and Therapeutic Opportunities
Available online: 17 July 2025More LessIntroductionPolyamine metabolism is essential for cancer cell growth, with enzymes like ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) playing key roles in polyamine (PA) biosynthesis. These polyamines (putrescine, spermidine, and spermine) regulate vital cellular processes, including DNA replication, protein synthesis, and cell cycle progression. Dysregulated polyamine metabolism is common in cancer, making ODC and AdoMetDC attractive therapeutic targets. This review highlights polyamines’ role in cancer and explores combination therapies targeting polyamine metabolism and critical signaling pathways for improved clinical outcomes.
MethodsA comprehensive analysis of both historical and recent literature on polyamine metabolism in cancer was performed using PubMed, which provides access to over 37 million citations from biomedical literature. Expression data for key polyamine biosynthetic enzymes, ODC and AdoMetDC, were obtained from the UALCAN portal - an interactive web resource for the analysis of cancer OMICS data. The IUPAC names of drugs and inhibitors targeting the polyamine pathway were retrieved from the PubChem database and used to generate molecular structures using the BIOVIA Draw 2025 program. Additionally, the ClinicalTrials.gov database was explored to identify ongoing and completed clinical research studies, as well as to gather detailed information on therapeutic agents targeting polyamine metabolism.
ResultsAberrant polyamine metabolism in cancer is driven by oncogenic pathways like MYC, Akt, and mTOR. MYC upregulates ODC1, promoting polyamine dysregulation. Defects in enzymes such as MTA phosphorylase (MTAP) enhance cancer cell sensitivity to inhibitors of purine/pyrimidine synthesis and the ubiquitin-proteasome pathway, suggesting alternative therapeutic strategies.
DiscussionTherapeutic strategies combining polyamine biosynthesis inhibition with targeting nucleotide synthesis or proteasome function have shown synergistic potential. However, the dual nature of polyamines - supporting both, tumor growth and ferroptotic cell death - poses a therapeutic challenge. Balancing these effects is key to designing effective interventions. Advancing this field requires not only selective inhibitors but also a deeper understanding of context-dependent polyamine functions in tumor biology.
ConclusionDeveloping more potent inhibitors with improved drug-like properties is crucial for advancing polyamine-targeted therapies and positioning this field at the forefront of cancer research.
-
-
-
Design, Synthesis and Biological Evaluation of New 4-(4-(Methylsulfonyl)Phenyl)-6-Phenylpyrimidin-2-Amine Derivatives as Selective Cyclooxygenase (COX-2) Inhibitors
Available online: 16 July 2025More LessIntroductionCyclooxygenase, an enzyme that occurs in at least two distinct variants (COX-1 and COX-2), is the target of classical inhibitors, which lack selectivity and inhibit both types of COX. However, a recent approach focuses explicitly on inhibiting COX-2, commonly found in inflamed tissue, resulting in fewer adverse effects than COX-1 inhibitors.
MethodsA series of 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine derivatives were synthesized through a two-step process. First, 4-substituted acetophenones underwent base-catalyzed Claisen-Schmidt condensation with 4-(methylsulfonyl)benzaldehyde to yield chalcones, which were then cyclized with guanidine hydrochloride under basic reflux conditions. Molecular docking was performed using AutoDock Vina software. The inhibitory activities of COX-1 and COX-2 were evaluated using enzymatic assays. Antiplatelet aggregation was measured via a turbidimetric method, and antiproliferative activity was assessed using the MTT assay.
ResultsThe in vitro experiments on COX inhibition revealed that a substantial number of the synthesized compounds presented a strong suppressive effect against COX-2. The assessment of antiplatelet aggregation activity indicated that most of the derivatives effectively inhibited ADP-induced platelet aggregation. Compound 4i exhibited the most potent antiproliferative activity, comparable to cisplatin. The docking studies and molecular modeling results demonstrated that the designed compounds, except for 4b, exhibited a binding behavior comparable to that of celecoxib. In addition, the insertion of the SO2Me moiety within the secondary binding site of COX-2 was observed.
DiscussionThese findings suggest that the structural modifications introduced in the synthesized derivatives contribute significantly to their selective COX-2 inhibition and antiplatelet properties. The correlation between docking results and biological assays supports the rationale behind the design of the compound.
ConclusionThe 4-(4-(methylsulfonyl)phenyl)-6-phenylpyrimidin-2-amine exhibits unique properties as a COX-2 inhibitor, displaying effective inhibition of COX-2 while showing minimal interaction with the COX-1 enzyme. Furthermore, our study revealed that most of these compounds exhibited inhibitory effects on ADP-induced platelet aggregation.
-
-
-
Investigating the Therapeutic Potential of Cisplatin- and Rutin-Loaded Nanoliposomes against Colorectal Cancer Cells
Available online: 16 July 2025More LessIntroductionColorectal cancer is an important cause of cancer-related mortality, necessitating innovative therapies to improve efficacy and reduce side effects. This study explores the potential of Cisplatin and Rutin-loaded nanoliposomes (Cis-NLs and Rut-NLs) for anti-colorectal cancer activity.
MethodsCis-NLs and Rut-NLs were prepared using thin-film hydration, achieving encapsulation efficiencies of 95.5% and 62.5%, respectively. Drug release studies revealed controlled profiles, with Cis-NLs showing a complete release (100%) and Rut-NLs reaching 23.48% over 48 hours. Stability assessments demonstrated minimal changes in size, polydispersity index (PDI), and zeta potential over three months. Encapsulation efficiency decreased slightly for Cis-NLs (92.87%) and significantly for Rut-NLs (26.55%). Several tests were performed to evaluate the biological activity of this combination on colorectal cancer cells and HDF cells to check its selectivity.
ResultsIn vitro cytotoxicity studies on HT29 colorectal cancer cells revealed IC50 values of 1.72 µg/mL for free Cisplatin, 2.35 µg/mL for Cis-NLs, >100 µg/mL for free Rutin, and 63.33 µg/mL for Rut-NLs. A combination of Cis-NLs and Rut-NLs reduced the IC50 to 2.2 µg/mL. Selective toxicity evaluation using human dermal fibroblasts showed an IC50 of 79.24 µM for cisplatin, reduced to 63.3 µM in Cis-NLs, with Rut-NLs demonstrating negligible toxicity.
DiscussionWound healing assays confirmed significant inhibition of cell migration, with wound closure reduced from 62.41% in controls to 34.35% in treated groups. Utilizing nanotechnology, liposomal formulations were synthesized to enhance drug delivery and therapeutic synergy.
ConclusionThese results highlight the potential of Cisplatin and Rutin-loaded nanoliposomes as a combination therapy for colorectal cancer.
-
-
-
The Safety and Efficacy of Anti-LAG-3 for Patients with Melanoma: A Systematic Review and Meta-analysis Study
Available online: 11 July 2025More LessIntroductionMelanoma, an aggressive skin cancer, has seen treatment advancements with immune checkpoint inhibitors (ICIs) like ipilimumab and nivolumab. Despite improved survival rates, resistance remains a challenge. The recent focus on lymphocyte activation gene-3 (LAG-3) inhibitors, such as relatlimab, shows promise in combination therapies, potentially improving outcomes with fewer adverse effects. This review evaluates the safety and efficacy of anti-LAG-3 antibodies in melanoma treatment.
MethodsThis systematic review and meta-analysis, following the PRISMA guidelines and registered in PROSPERO (CRD42024565756), assessed anti-LAG-3 antibodies in melanoma treatment. A thorough search across PubMed, Embase, Scopus, and Web of Science up to January 2024 yielded relevant studies. Data on study characteristics, patient demographics, disease characteristics, treatment details, and clinical outcomes were extracted. Quality assessment was performed using the MINOR criteria. The meta-analysis, using STATA and random-effects models, addressed heterogeneity to determine safety and efficacy outcomes.
ResultsWe examined the clinical benefit of this combination therapeutic approach by measuring several primary endpoints and running a meta-analysis to determine the pooled estimate of 6-month progression-free survival (PFS), 1-year PFS, 6-month duration of response (DoR), 1-year DoR, 1-year overall survival (OS), 2-year OS, partial response (PR), complete response (CR), objective response rate (ORR), disease control rate (DCR), stable disease (SD), and progressive disease (PD) for patients diagnosed with melanoma. Our analysis showed 66% of any grade treatment-related adverse events (trAEs) (95% CI: 51%-81%), 19% of grade ≥ 3 trAEs (95% CI: 11%-27%), 12% of any grade AEs leading to discontinuation (95% CI: 9%-14%), and 8% of grade ≥ 3 AEs leading to discontinuation (95% CI: 6%-10%). 76% of any grade overall AEs (95% CI: 34%-100%), and 33% of grade ≥ 3 overall AEs (95% CI: 15%-50%). The most common AEs were fatigue, pneumonitis, rash, pruritus, colitis, hepatitis, diarrhea, hypothyroidism, thyroiditis, and adrenal insufficiency.
DiscussionThis systematic review and meta-analysis provide comprehensive evidence regarding the safety and efficacy of anti-LAG-3 antibodies in melanoma therapy. Pooled data reveals encouraging outcomes across several key endpoints, including PFS, OS, and ORR. While trAEs were common (66% for any grade and 19% for grade ≥3), most were manageable.
ConclusionAnti-LAG-3 therapy is an active and safe treatment that shows promising results in melanoma treatment.
-
-
-
Lifileucel Therapy for Metastatic Melanoma: Advancements in Tumor-infiltrating Lymphocyte-based Immunotherapy
Available online: 04 July 2025More LessMetastatic melanoma is an aggressive malignancy with limited treatment options at advanced stages. Lifileucel, an FDA-approved autologous Tumor-Infiltrating Lymphocyte (TIL) therapy, marks a major advancement in immunotherapy, particularly for patients who fail conventional treatments like immune checkpoint inhibitors and targeted therapies. The mechanism of lifileucel involves the ex vivo expansion of patient-derived TILs to boost immune responses against melanoma cells. These expanded TILs are re-infused into patients, enhancing tumor-specific cytotoxicity and modulating the tumor microenvironment for sustained immune activation. Clinical trials have demonstrated its efficacy, with the overall response rate (ORR) reaching up to 36% in heavily pretreated populations, offering durable responses and improved progression-free survival compared to traditional therapies. The personalized approach of lifileucel, leveraging the patient’s own T-cell repertoire, highlights its potential for precision oncology by targeting individual tumor profiles. Its integration with combination therapies, particularly immune checkpoint inhibitors, shows promising synergistic effects, broadening its clinical applicability. In addition to clinical success, the role of lifileucel in influencing the melanogenesis pathway offers insights into optimizing therapeutic strategies for melanoma. Ongoing research focuses on enhancing TIL functionality, overcoming challenges like tumor-induced immune suppression, and extending the applicability of lifileucel to other solid tumors. This breakthrough therapy not only addresses a critical unmet need in melanoma treatment but also represents a paradigm shift toward personalized medicine in oncology. Lifileucel underscores the potential of TIL-based approaches to revolutionize cancer care, setting the stage for future advancements in immunotherapy.
-
-
-
Anticancer Compounds from Myxobacteria: Current Scenario and Future Perspectives
Authors: Swati Sihag, Shweta Sinha and Ramandeep KaurAvailable online: 04 July 2025More LessNatural products and their derivatives have played a dominant role in the development of therapeutic agents. Traditionally, most of the natural products developed for the effective treatment of different diseases have been sourced from plants. Natural product discovery has seen a shift of focus towards microorganisms due to the chemical diversity of bioactive products they synthesize. Myxobacteria produce a large variety of novel chemical entities with diverse structures and varied bioactivities. In the last few decades, secondary metabolites from different genera of myxobacteria have been recognized as harbouring potent anticancer activity. Several analogs of these anticancer compounds have been prepared to address the limitations such as, poor solubility, high toxicity and low production yield, in order to obtain the compounds in higher quantities with better pharmacological properties and target selectivity. For example, a semi-synthetic derivative of epothilone obtained from a strain of myxobacterium has been approved for clinical use against taxane-resistant breast cancer. The anticancer compounds from myxobacteria target microtubules, the cytoskeleton, vacuolar ATPase, methionine aminopeptidase, exportin, the proteasome or translation elongation factor to exert anticancer activity. The focus of this review is on the promising anticancer compounds produced by myxobacteria, their targets and their mechanisms of action in cancer cells.
-
-
-
CD98 Light Chain LAT1 Tracers in PET-CT Diagnosis of Cancer Patients
By Pu XiaAvailable online: 02 July 2025More LessAmino acid-based PET tracers have become vital tools for non-invasive tumor imaging, offering greater specificity and sensitivity than conventional 18F-FDG. These tracers target amino acid transporters, particularly L-type Amino Acid Transporter 1 (LAT1), which is overexpressed in rapidly proliferating tumor cells. Various
18F-labeled amino acid tracers have been explored for imaging different malignancies, including gliomas, neuroendocrine tumors, and lung cancers. This review summarizes the performance of LAT1-specific radiotracers, comparing their uptake ratios, sensitivity, and specificity in cancer diagnosis. These tracers have led to significant advancements in tumor imaging, providing better diagnostic accuracy, enhanced tumor delineation, and reduced interference from inflammatory tissue. Although promising, the clinical utility of these tracers requires further research and clinical trials to refine their applications and optimize their role in routine clinical practice. Continued development will be crucial in making these tracers more effective and widely applicable for cancer diagnosis and treatment planning.
-
-
-
Secondary Malignancies of Chimeric Antigen Receptor T-cell Therapy: A Multidimensional Analysis of Mechanisms, Risk Factors, and Treatment Strategies
Authors: Ye Kang, Da-Sheng Dang, Xue Sun and Xiao ZhangAvailable online: 26 June 2025More LessChimeric Antigen Receptor T-cell (CAR-T) therapy represents a pioneering advancement in immunotherapy, demonstrating substantial clinical success in the treatment of hematologic malignancies, particularly in B-cell hematologic malignancies. This therapeutic approach involves the genetic modification of a patient's T-cells to express receptors specific to tumor antigens, thereby enabling the CAR T-cells to identify and eradicate tumor cells, which significantly enhances the patient's treatment prognosis. Despite the remarkable efficacy of CAR-T therapy, concerns regarding its safety have emerged during clinical implementation. Notably, research has indicated that CAR T-cell therapy may be associated with the development of secondary primary malignancies, prompting considerable apprehension within the clinical community regarding the long-term adverse effects of this treatment modality. This article aims to investigate the potential mechanisms responsible for the induction of secondary primary malignancies by CAR T-cells, evaluate the associated risk factors, and discuss therapeutic strategies to mitigate this issue. Furthermore, the article will explore future research directions focused on optimizing the safety profile of CAR-T therapy, thereby providing a theoretical foundation for the development of safer and more effective therapeutic interventions.
-
-
-
Screening of Bioactive Fractions from Balanites aegyptiaca and Pterocarpus marsupium for Anticancer Effects in HepG2 and U87MG Cells
Authors: Divya Vashishth, Mansi Yadav, Ajay Kumar, Gulshan Rohilla, Minakshi Vashist and Sudhir Kumar KatariaAvailable online: 23 June 2025More LessIntroductionCancer is a group of diseases caused by uncontrollable cell growth. Herbal medicines, derived from plants, have been used for centuries across cultures for their therapeutic benefits, effectively treating conditions like cancer. This study represents the anticancer effects of fractions of some medicinal plant extracts along with their apoptotic studies and their induction through p53-mediated Bax and Bcl-2 mRNA expression in HepG2 and U87MG cells.
MethodsThe fractionation of crude methanolic extracts was done using Column Chromatography and Thin Layer Chromatography. The fractions were analysed for cytotoxicity against both the cell lines by MTT assay. Cancer cells were treated with 2 most active fractions and their mechanism of apoptosis induction was assessed by Flow Cytometry studies and the mRNA expression levels of p53, Bax, and Bcl-2 were determined by Reverse Transcriptase PCR. The presence of phytoconstituents in the active fractions was analysed by GC-MS.
ResultsThe active fractions revealed the apoptosis induction in both the cell lines and the RT-PCR studies suggested the mechanism of apoptosis induction through upregulation of p53 and Bax and downregulation of Bcl-2 mRNA. The GC-MS analysis of active fractions from Balanites aegyptiaca and Pterocarpus marsupium revealed the presence of phytochemicals such as 4-O-Methylmannose, Oleic acid, Erucic acid, etc. which might have contributed to the anti-proliferative and apoptotic effects of these fractions.
Discussion4-O-Methylmannose was the major component identified with the highest peak area of 59%. The fractions from all the 4 plant extracts demonstrated significant cytotoxic effects on the liver (HepG2) and brain (U87MG) cancer cell lines, with particular emphasis on the active fractions BA FII, PM FII, and PM FIII. Additionally, the mechanisms of apoptosis induction through the modulation of p53, Bax, and Bcl-2 pathways, along with the presence of bioactive compounds further support the anticancer efficacy of these plant extracts. Also, to the best of our knowledge, this is the first study on fractions of Balanites aegyptiaca and Pterocarpus marsupium against U87MG cells.
ConclusionThe results highlight the promising potential of plant-derived natural products as anticancer agents. These findings provide valuable insight into the potential of herbal medicines and encourage further exploration of plant-based therapies for cancer treatment.
-
-
-
Advances in Metal-based Nanotechnology-based Optical Therapy for the Targeted Treatment of Colorectal Cancer
Authors: Huiling Zuo, Yuhang Jiao, Fengyu Wang, Junzi Wu and Wenling ChenAvailable online: 19 June 2025More LessColorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies in the world. To overcome clinical challenges, such as high postoperative recurrence rates and prominent resistance to chemotherapy, new therapeutic strategies are urgently needed. Phototherapy, particularly Photodynamic Therapy (PDT) and Photothermal Therapy (PTT), has unique advantages in selectively killing tumor cells. However, traditional Photosensitizers (PSs) and Photothermal Agents (PTAs) have inherent defects, such as limited tissue penetration depth, poor optical stability, and insufficient targeting ability, which severely restrict phototherapy in clinical applications. Significant advancements have been made in enhancing the phototherapeutic effects of metal nanomaterials in recent years. This progress can be attributed to their tunable optical properties, exceptional Photothermal Conversion Efficiency (PCE), and unique Surface Plasmon Resonance (SPR) effects. In this review, we systematically summarized the latest progress in research on the use of metal nanomaterials for the optical diagnosis and treatment of colorectal cancer. We focused on the mechanism by which typical nanomaterials such as gold, silver, and platinum enhance the therapeutic effect of PDT/PTT. Additionally, a comprehensive analysis was conducted to evaluate the application and potential of nano-optical sensitizers incorporating metallic cores such as gold, silver, iridium, platinum, iron, zinc, copper, ruthenium, and titanium for the diagnosis and treatment of Colorectal Cancer (CRC). This review may provide theoretical guidance for developing new-generation optical diagnostic and therapeutic strategies for treating colorectal cancer.
-
-
-
Unveiling the Vital Role of ACTA2-AS1 in Human Cancers: Molecular Mechanisms and Clinical Applications
Authors: Haodong He, Lumei Xiang, Baoqin Pi, Jingjie Yang, Wenjin Peng, Moyu Li, Haoran Liu, Xinyan Zheng, Haoyi Liu, Yuxiang Peng, Pengbo Zhang, Jiahe Zhang, Xin Chen, Yanlin Zhang, Meiyan Shuai, Feng Xu, Yan Cai and Chengfu YuanAvailable online: 19 June 2025More LessBackgroundThe smooth muscle α-actin 2-antisense 1 (ACTA2-AS1), also known as ZXF1, is an emerging cancer-associated long non-coding RNA (lncRNA) that has garnered significant attention in recent years. ACTA2-AS1 is situated on human chromosome 10 at location 10q23.31, comprising five exons and a single transcript. The aberrant expression of ACTA2-AS1 has been noted in 10 malignant tumors, correlating significantly with unfavorable clinicopathological characteristics and poor patient prognosis.
ObjectiveThis review encapsulates recent progress in ACTA2-AS1 research, examining its expression profile, biological functions, molecular mechanisms, and anticipated influence on cancer diagnosis, treatment, and prognosis, emphasizing its potential as a novel therapeutic target based on lncRNA and its prognostic utility as a biomarker.
MethodsBased on a comprehensive search of the PubMed database for the biological function of lncRNA ACTA2-AS1 in malignant tumors, the current research is systematically summarized and critically analyzed.
ResultsACTA2-AS1 plays a complex role in various biological processes in tumor cells, encompassing proliferation, apoptosis, and cell cycle arrest. It also contributes to migration, invasion, epithelial-mesenchymal transition (EMT), and drug resistance. Mechanistically, ACTA2-AS1 influences oncogenic or tumor-suppressive effects via a complex regulatory network. It can adsorb specific 5 miRNAs as competitive endogenous RNAs (ceRNAs), thereby mitigating the suppression of downstream mRNA targets implicated in tumorigenesis (e.g., SOX7, KLF9, CXCL2, BCL2L11, etc.) and modulating their downstream signaling pathways (e.g., Wnt5a/PKC, SMAD3, mTOR, etc.), demonstrating a broad spectrum of dual roles in carcinogenesis and tumor suppression.
ConclusionACTA2-AS1 is a promising biomarker and molecular target for the treatment of cancer.
-
-
-
Exploring Natural Coumarins: Breakthroughs in Anticancer Therapeutics
Authors: Emine Terzi, Beyza Ecem Oz-Bedir and Jean-Yves WinumAvailable online: 19 June 2025More LessNatural coumarins, a class of compounds found abundantly in various plants, are emerging as promising candidates in fight against cancer. Their ability to target multiple cancer-related processes has drawn significant interest from researchers. Natural coumarins exhibit anticancer effects through mechanisms such as inducing apoptosis, which is the programmed death of cancer cells, inhibiting cell proliferation, and disrupting angiogenesis, the process by which tumors develop their own blood supply to sustain growth. What makes coumarins particularly intriguing is their broad-spectrum activity against various types of cancer cells, from breast to lung to colon cancers. They interact with key molecular pathways that drive tumor progression, making them versatile agents in cancer therapy. Additionally, unlike many conventional chemotherapy drugs, natural coumarins generally have lower toxicity, which could translate to fewer side effects for patients. This characteristic makes them attractive as potential standalone treatments or as complementary therapies that enhance the efficacy of existing drugs while minimizing harm to normal cells. Ongoing research continues to explore the therapeutic potential of natural coumarins to better understand their full therapeutic potential and how they might work in combination with other anticancer agents. As the body of evidence grows, these natural compounds could become integral components of more effective and less harmful cancer treatment regimens, offering new hope for patients facing this challenging disease. This review was conducted by systematically analyzing the existing literature on natural coumarins and their anticancer potential.
-