Skip to content
2000
image of Novel PD-L1 Small-Molecule Inhibitors Advancing Cancer Immunotherapy

Abstract

Introduction

The emergence of immune checkpoint inhibitors has revolutionized the treatment of cancer. Among these, the programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) axis remains a critical target. However, resistance to current biologics necessitates the development of novel Small-Molecule Inhibitors (SMIs) with distinct mechanisms and improved pharmacological profiles. This review provides a comprehensive analysis of recent progress in PD-L1-targeting SMIs, including original compounds from our laboratory.

Methods

We conducted a structured literature review using electronic databases such as PubMed, Scopus, and Web of Science. Articles published between 2015 and 2025 were included based on relevance to small-molecule PD-L1 inhibitors in cancer immunotherapy. Key data were extracted and synthesized regarding molecular design strategies, mechanisms of action, pharmacokinetics, and therapeutic efficacy. Compounds synthesized in our laboratory (Compounds []) were evaluated using assays, including PD-L1/PD-1 binding inhibition, cancer cell viability assays, and gene expression profiling.

Results

Recent SMIs exhibit diverse functional profiles: direct blockade of PD-1/PD-L1 interaction, intracellular PD-L1 modulation, and transcriptional downregulation. Notably, Compound demonstrated significant suppression of PD-L1 mRNA expression, while Compounds and 10 () achieved nanomolar-level binding affinity. These findings reflect innovative approaches to overcoming immune resistance and enhancing antitumor responses.

Discussions

Our findings underscore a trend toward multifunctional PD-L1-targeting SMIs that operate through both extracellular and intracellular mechanisms. Compounds from our laboratory represent potential leads for further optimization and clinical translation. However, challenges remain regarding oral bioavailability, metabolic stability, and immune-related adverse events.

Conclusion

Small-molecule PD-L1 inhibitors offer a promising avenue for expanding cancer immunotherapy. Our review highlights key advances and introduces novel small-molecule PD-L1 inhibitors with strong potential for future development, particularly in combination regimens.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206393267250912114756
2025-10-03
2025-11-07
Loading full text...

Full text loading...

References

  1. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Carvajal R.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Horn L. Drake C.G. Pardoll D.M. Chen L. Sharfman W.H. Anders R.A. Taube J.M. McMiller T.L. Xu H. Korman A.J. Jure-Kunkel M. Agrawal S. McDonald D. Kollia G.D. Gupta A. Wigginton J.M. Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012 366 26 2443 2454 10.1056/NEJMoa1200690 22658127
    [Google Scholar]
  2. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  3. Zhang F. Ramar S. Wang Y. Xu H. Zhang K. Awadasseid A. Rao G. Zhang W. Advances in cancer immunotherapy using small-molecular inhibitors targeting the PD-1/PD-L1 interaction. Bioorg. Med. Chem. 2025 127 118238 10.1016/j.bmc.2025.118238 40367914
    [Google Scholar]
  4. He W. Xu H. Song Y. Awadasseid A. Wang J. Zhang W. Progress in the research and development of biphenyl small molecules targeting PD-1/PD-L1 as potential anti-tumor drug candidates. ChemMedChem 2025 e202500179 10.1002/cmdc.202500179
    [Google Scholar]
  5. Dong H. Strome S.E. Salomao D.R. Tamura H. Hirano F. Flies D.B. Roche P.C. Lu J. Zhu G. Tamada K. Lennon V.A. Celis E. Chen L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002 8 8 793 800 10.1038/nm730 12091876
    [Google Scholar]
  6. Liu J. Chen Z. Li Y. Zhao W. Wu J. Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front. Pharmacol. 2021 12 731798 10.3389/fphar.2021.731798 34539412
    [Google Scholar]
  7. Foiani G. Melchiotti E. Capello K. Porcellato I. Brachelente C. Iussich S. Giacobino D. Morello E. Martano M. Buracco P. Vascellari M.P.D. ‐ L1, PD ‐1, and CTLA ‐4 mRNA in situ expression by canine oral melanoma cells and immune cells of the tumour microenvironment. Vet. Comp. Oncol. 2025 23 2 141 151 10.1111/vco.13039 39789732
    [Google Scholar]
  8. Keir M.E. Butte M.J. Freeman G.J. Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008 26 1 677 704 10.1146/annurev.immunol.26.021607.090331 18173375
    [Google Scholar]
  9. Xiang Z. Advances in PD-1 and PD-L1 inhibitors targeted therapies for nsclc: mechanisms, biomarkers, combination therapies. BIO Web of Conferences, 2025 174 02013 10.1051/bioconf/202517402013
    [Google Scholar]
  10. Wu X. Zhu Z. Zhang J. Tian M. Zhao P. Progress in understanding the regulatory mechanisms of immune checkpoint proteins PD-1 and PD-L1 expression. Clin. Transl. Oncol. 2025 1 11 10.1007/s12094‑024‑03835‑4 39776397
    [Google Scholar]
  11. Lin X. Kang K. Chen P. Zeng Z. Li G. Xiong W. Yi M. Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024 23 1 108 10.1186/s12943‑024‑02023‑w 38762484
    [Google Scholar]
  12. Sharma P. Allison J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015 161 2 205 214 10.1016/j.cell.2015.03.030 25860605
    [Google Scholar]
  13. Chen L. Han X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Invest. 2015 125 9 3384 3391 10.1172/JCI80011 26325035
    [Google Scholar]
  14. Guzik K. Zak K.M. Grudnik P. Magiera K. Musielak B. Törner R. Skalniak L. Dömling A. Dubin G. Holak T.A. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J. Med. Chem. 2017 60 13 5857 5867 10.1021/acs.jmedchem.7b00293 28613862
    [Google Scholar]
  15. Ogunleye F Blankenship L Millisor V Anderson J Jaiyesimi I Programmed cell death-1/Programmed cell death ligand-1 (PD-1/PD-L1) inhibitors, heralding a new era of immunotherapy in the management of advanced non-small cell lung cancer (NSCLC) Cancer Treat Res. Commun 2017 12 6 13 10.1016/j.ctarc.2017.05.002
    [Google Scholar]
  16. Li K. Tian H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy. J. Drug Target. 2019 27 3 244 256 10.1080/1061186X.2018.1440400 29448849
    [Google Scholar]
  17. Zak K.M. Grudnik P. Guzik K. Zieba B.J. Musielak B. Dömling A. Dubin G. Holak T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016 7 21 30323 30335 10.18632/oncotarget.8730 27083005
    [Google Scholar]
  18. Sasikumar P.G. Ramachandra M. Small-molecule immune checkpoint inhibitors targeting PD-1/PD-L1 and other emerging checkpoint pathways. BioDrugs 2018 32 5 481 497 10.1007/s40259‑018‑0303‑4 30168070
    [Google Scholar]
  19. Skalniak L. Zak K.M. Guzik K. Magiera K. Musielak B. Pachota M. Szelazek B. Kocik J. Grudnik P. Tomala M. Krzanik S. Pyrc K. Dömling A. Dubin G. Holak T.A. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017 8 42 72167 72181 10.18632/oncotarget.20050 29069777
    [Google Scholar]
  20. Wu Q. Jiang L. Li S. He Q. Yang B. Cao J. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol. Sin. 2021 42 1 1 9 10.1038/s41401‑020‑0366‑x 32152439
    [Google Scholar]
  21. Xu Y. Du H. Guo W. Liu B. Yan W. Zhang C. Qin L. Huang J. Wang H. Wu S. Ren W. Zou Y. Wang J. Zhu Q. Xu Y. Gu H. Discovery of highly potent small-molecule PD-1/PD-L1 inhibitors with a novel scaffold for cancer immunotherapy. J. Med. Chem. 2024 67 5 4083 4099 10.1021/acs.jmedchem.3c02362 38348878
    [Google Scholar]
  22. Kopalli S.R. Kang T.B. Lee K.H. Koppula S. Novel small molecule inhibitors of programmed cell death (PD)-1, and its ligand, PD-L1 in cancer immunotherapy: A review update of patent literature. Recent Patents Anticancer Drug Discov. 2019 14 2 100 112 10.2174/1574892813666181029142812 30370857
    [Google Scholar]
  23. Sullivan K.M.C. Vilalta M. Ertl L.S. Wang Y. Dunlap C. Ebsworth K. Zhao B.N. Li S. Zeng Y. Miao Z. Fan P. Mali V. Lange C. McMurtrie D. Yang J. Lui R. Scamp R. Chhina V. Kumamoto A. Yau S. Dang T. Easterday A. Liu S. Miao S. Charo I. Schall T.J. Zhang P. CCX559 is a potent, orally-administered small molecule PD-L1 inhibitor that induces anti-tumor immunity. PLoS One 2023 18 6 e0286724 10.1371/journal.pone.0286724 37285333
    [Google Scholar]
  24. Ma X. Wu J. Wang B. Liu C. Liu L. Sun C. Epigenetic modifications: Critical participants of the PD L1 regulatory mechanism in solid tumors. Int. J. Oncol. 2022 61 5 134 10.3892/ijo.2022.5424 36129152
    [Google Scholar]
  25. Hassell K.N. Histone deacetylases and their inhibitors in cancer epigenetics. Diseases 2019 7 4 57 10.3390/diseases7040057 31683808
    [Google Scholar]
  26. Woods D.M. Sodré A.L. Villagra A. Sarnaik A. Sotomayor E.M. Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol. Res. 2015 3 12 1375 1385 10.1158/2326‑6066.CIR‑15‑0077‑T 26297712
    [Google Scholar]
  27. Zhang Y. Wu J. Zhao C. Zhang S. Zhu J. Recent advancement of PD-L1 detection technologies and clinical applications in the era of precision cancer therapy. J. Cancer 2023 14 5 850 873 10.7150/jca.81899 37056391
    [Google Scholar]
  28. Chen Y. Pei Y. Luo J. Huang Z. Yu J. Meng X. Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: A comparison in basic structure, function, and clinical practice. Front. Immunol. 2020 11 1088 10.3389/fimmu.2020.01088 32547566
    [Google Scholar]
  29. Jia Y. Liu L. Shan B. Future of immune checkpoint inhibitors: Focus on tumor immune microenvironment. Ann. Transl. Med. 2020 8 17 1095 10.21037/atm‑20‑3735 33145314
    [Google Scholar]
  30. Chyuan I.T. Chu C.L. Hsu P.N. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: Focusing on immune checkpoint inhibitors and combination therapies. Cancers 2021 13 6 1188 10.3390/cancers13061188 33801815
    [Google Scholar]
  31. Davis J.S. Ferreira D. Paige E. Gedye C. Boyle M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin. Microbiol. Rev. 2020 33 3 e00035 e19 10.1128/CMR.00035‑19 32522746
    [Google Scholar]
  32. Gatzka M. Targeted tumor therapy remixed—an update on the use of small-molecule drugs in combination therapies. Cancers (Basel) 2018 10 6 155 10.3390/cancers10060155 29794999
    [Google Scholar]
  33. Guzik K. Tomala M. Muszak D. Konieczny M. Hec A. Błaszkiewicz U. Pustuła M. Butera R. Dömling A. Holak T.A. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Molecules 2019 24 11 2071 10.3390/molecules24112071 31151293
    [Google Scholar]
  34. Javed S.A. Najmi A. Ahsan W. Zoghebi K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: Success and challenges. Front. Immunol. 2024 15 1383456 10.3389/fimmu.2024.1383456 38660299
    [Google Scholar]
  35. Strati A. Adamopoulos C. Kotsantis I. Psyrri A. Lianidou E. Papavassiliou A.G. Targeting the PD-1/PD-L1 signaling pathway for cancer therapy: Focus on biomarkers. Int. J. Mol. Sci. 2025 26 3 1235 10.3390/ijms26031235 39941003
    [Google Scholar]
  36. Hashemi M. Mohandesi Khosroshahi E. Tanha M. Khoushab S. Bizhanpour A. Azizi F. Mohammadzadeh M. Matinahmadi A. Khazaei Koohpar Z. Asadi S. Taheri H. Khorrami R. Ramezani Farani M. Rashidi M. Rezaei M. Fattah E. Taheriazam A. Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024 10 18 e37376 10.1016/j.heliyon.2024.e37376 39309904
    [Google Scholar]
  37. Larkin J. Chiarion-Sileni V. Gonzalez R. Grob J.J. Cowey C.L. Lao C.D. Schadendorf D. Dummer R. Smylie M. Rutkowski P. Ferrucci P.F. Hill A. Wagstaff J. Carlino M.S. Haanen J.B. Maio M. Marquez-Rodas I. McArthur G.A. Ascierto P.A. Long G.V. Callahan M.K. Postow M.A. Grossmann K. Sznol M. Dreno B. Bastholt L. Yang A. Rollin L.M. Horak C. Hodi F.S. Wolchok J.D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015 373 1 23 34 10.1056/NEJMoa1504030 26027431
    [Google Scholar]
  38. Li X. Shao C. Shi Y. Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J. Hematol. Oncol. 2018 11 1 31 10.1186/s13045‑018‑0578‑4 29482595
    [Google Scholar]
  39. Garg P. Pareek S. Kulkarni P. Horne D. Salgia R. Singhal S.S. Next-Generation immunotherapy: Advancing clinical applications in cancer treatment. J. Clin. Med. 2024 13 21 6537 10.3390/jcm13216537 39518676
    [Google Scholar]
  40. Ghosalkar J. Sonawane V. Joshi K. Mechanisms of cancer cell rescue against pancreatic cancer therapeutics: Intrinsic and acquired resistance. J. Cancer Biol. 2025 6 1 10 22 10.46439/cancerbiology.6.070
    [Google Scholar]
  41. Zhang C. Xiong J. Lan Y. Wu J. Wang C. Huang Z. Lin J. Xie J. Novel cucurmosin‐based immunotoxin targeting programmed cell death 1‐ligand 1 with high potency against human tumor in vitro and in vivo. Cancer Sci. 2020 111 9 3184 3194 10.1111/cas.14549 32589330
    [Google Scholar]
  42. Tan S. Liu K. Chai Y. Zhang C.W.H. Gao S. Gao G.F. Qi J. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell 2018 9 1 135 139 10.1007/s13238‑017‑0412‑8 28488247
    [Google Scholar]
  43. Lee H.T. Lee J.Y. Lim H. Lee S.H. Moon Y.J. Pyo H.J. Ryu S.E. Shin W. Heo Y.S. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 2017 7 1 5532 10.1038/s41598‑017‑06002‑8 28717238
    [Google Scholar]
  44. Sun J.Y. Zhang D. Wu S. Xu M. Zhou X. Lu X.J. Ji J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives. Biomark. Res. 2020 8 1 35 10.1186/s40364‑020‑00212‑5 32864132
    [Google Scholar]
  45. Feig C. Jones J.O. Kraman M. Wells R.J.B. Deonarine A. Chan D.S. Connell C.M. Roberts E.W. Zhao Q. Caballero O.L. Teichmann S.A. Janowitz T. Jodrell D.I. Tuveson D.A. Fearon D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013 110 50 20212 20217 10.1073/pnas.1320318110 24277834
    [Google Scholar]
  46. Tang T. Huang X. Zhang G. Hong Z. Bai X. Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 72 10.1038/s41392‑020‑00449‑4 33608497
    [Google Scholar]
  47. Cheng B. Wang W. Liu T. Cao H. Pan W. Xiao Y. Liu S. Chen J. Bifunctional small molecules targeting PD-L1/CXCL12 as dual immunotherapy for cancer treatment. Signal Transduct. Target. Ther. 2023 8 1 91 10.1038/s41392‑022‑01292‑5 36854661
    [Google Scholar]
  48. Sun C. Yin M. Cheng Y. Kuang Z. Liu X. Wang G. Wang X. Yuan K. Min W. Dong J. Hou Y. Hu L. Zhang G. Pei W. Wang L. Sun Y. Yu X. Xiao Y. Deng H. Yang P. Novel small-molecule PD-L1 inhibitor induces PD-L1 internalization and optimizes the immune microenvironment. J. Med. Chem. 2023 66 3 2064 2083 10.1021/acs.jmedchem.2c01801 36579489
    [Google Scholar]
  49. Zhang H. Xia Y. Yu C. Du H. Liu J. Li H. Huang S. Zhu Q. Xu Y. Zou Y. Discovery of novel small-molecule inhibitors of PD-1/PD-L1 interaction via structural simplification strategy. Molecules 2021 26 11 3347 10.3390/molecules26113347 34199417
    [Google Scholar]
  50. Hopkins A.L. Groom C.R. Alex A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today 2004 9 10 430 431 10.1016/S1359‑6446(04)03069‑7 15109945
    [Google Scholar]
  51. Liu L. Zhang H. Hou J. Zhang Y. Wang L. Wang S. Yao Z. Xie T. Wen X. Xu Q. Dai L. Feng Z. Zhang P. Wu Y. Sun H. Liu J. Yuan H. Discovery of novel PD-L1 small-molecular inhibitors with potent in vivo anti-tumor immune activity. J. Med. Chem. 2024 67 6 4977 4997 10.1021/acs.jmedchem.4c00102 38465588
    [Google Scholar]
  52. Vaddepally R.K. Kharel P. Pandey R. Garje R. Chandra A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 2020 12 3 738 10.3390/cancers12030738 32245016
    [Google Scholar]
  53. Zhang S-J. Li Z. Cao L-M. Wang G-R. Xiao Y. Wu Q. Pioneering immunotherapy agents and their synergy with radiotherapy. the fine blueprint of integrating immunotherapy and radiotherapy: From molecular mechanisms to clinical strategies. The Fine Blueprint of Integrating Immunotherapy and Radiotherapy. Springer 2025 191 231 10.1007/978‑981‑96‑3659‑4_9
    [Google Scholar]
  54. Liang Y. Wang L. Ma P. Ju D. Zhao M. Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front. Immunol. 2023 14 1308264 10.3389/fimmu.2023.1308264 38077327
    [Google Scholar]
  55. Awadasseid A. Wu Y. Zhang W. Advance investigation on synthetic small-molecule inhibitors targeting PD-1/PD-L1 signaling pathway. Life Sci. 2021 282 119813 10.1016/j.lfs.2021.119813 34256042
    [Google Scholar]
  56. Narva S. Xiong X. Ma X. Tanaka Y. Wu Y. Zhang W. Synthesis and evaluation of biphenyl-1, 2, 3-triazol-benzonitrile derivatives as PD-1/PD-L1 inhibitors. ACS Omega 2020 5 33 21181 21190 10.1021/acsomega.0c02916 32875254
    [Google Scholar]
  57. Cheng B. Yuan W.E. Su J. Liu Y. Chen J. Recent advances in small molecule based cancer immunotherapy. Eur. J. Med. Chem. 2018 157 582 598 10.1016/j.ejmech.2018.08.028 30125720
    [Google Scholar]
  58. Chen A. Wu D.L. Shi J. Narva S. Zhao X.Y. Wu Y.L. Zhang W. Design, synthesis and biological evaluation of 2-methyl-(1,1′-biphenyl)-pyrimidine conjugates. Bioorg. Med. Chem. Lett. 2020 30 16 127328 10.1016/j.bmcl.2020.127328 32631533
    [Google Scholar]
  59. Wang M. Ma X. Zhou K. Mao H. Liu J. Xiong X. Zhao X. Narva S. Tanaka Y. Wu Y. Guo C. Sugiyama H. Zhang W. Discovery of pyrrole-imidazole polyamides as PD-L1 expression inhibitors and their anticancer activity via immune and nonimmune pathways. J. Med. Chem. 2021 64 9 6021 6036 10.1021/acs.jmedchem.1c00120 33949196
    [Google Scholar]
  60. Chen L. Zhao X. Liu X. Ouyang Y. Xu C. Shi Y. Development of small molecule drugs targeting immune checkpoints. Cancer Biol. Med. 2024 21 5 1 18 10.20892/j.issn.2095‑3941.2024.0034 38727005
    [Google Scholar]
  61. Zhang H. Zhou S.J. Shen C.F. Zhou Y.N. Wu C.Y. Zhu M.Y. Yu Q.M. Awadasseid A. Wu Y.L. Zhang W. PD-L1 dimerisation induced by biphenyl derivatives mediates anti-breast cancer activity via the non-immune PD-L1–AKT–mTOR/Bcl2 pathway. J. Enzyme Inhib. Med. Chem. 2023 38 1 2230388 10.1080/14756366.2023.2230388 37439326
    [Google Scholar]
  62. Zhang F. Zhang H. Zhou S. Plewka J. Wang M. Sun S. Wu C. Yu Q. Zhu M. Awadasseid A. Wu Y. Magiera-Mularz K. Zhang W. Design, synthesis, and evaluation of antitumor activity of 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives as PD-1/PD-l1 inhibitors. Eur. J. Med. Chem. 2024 276 116683 10.1016/j.ejmech.2024.116683 39032403
    [Google Scholar]
  63. Zhang H. Zhou S. Plewka J. Wu C. Zhu M. Yu Q. Musielak B. Wang X. Awadasseid A. Magiera-Mularz K. Wu Y. Zhang W. Design, synthesis, and antitumor activity evaluation of 2-arylmethoxy-4-(2,2′-dihalogen-substituted biphenyl-3-ylmethoxy) benzylamine derivatives as potent PD-1/PD-L1 inhibitors. J. Med. Chem. 2023 66 15 10579 10603 10.1021/acs.jmedchem.3c00731 37496104
    [Google Scholar]
  64. Li Z. Yu X. Yuan Z. Li L. Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim. Biophys. Acta Rev. Cancer 2024 1879 5 189152 10.1016/j.bbcan.2024.189152 38992509
    [Google Scholar]
  65. Ruengsatra T. Soponpong J. Nalinratana N. Jirapongwattana N. Dunkoksung W. Rattanangkool E. Deesiri S. Srisa J. Songthammanuphap S. Udomnilobol U. Prueksaritanont T. Design, synthesis, and optimization of novel PD-L1 inhibitors and the identification of a highly potent and orally bioavailable PD-L1 inhibitor. Eur. J. Med. Chem. 2024 277 116730 10.1016/j.ejmech.2024.116730 39111015
    [Google Scholar]
  66. Wang Z. Yuan L. Liao X. Guo X. Chen J. Reducing PD-L1 expression by degraders and downregulators as a novel strategy to target the PD-1/PD-L1 pathway. J. Med. Chem. 2024 67 8 6027 6043 10.1021/acs.jmedchem.3c02143 38598179
    [Google Scholar]
  67. Zeng Z. Yang Z. Li C. Liu S. Wei W. Zhou Y. Wang S. Sui M. Li M. Lin S. Cheng Y. Hou P. Advancing cancer immunotherapy through engineering new PD-L1 degraders: A comprehensive study from small molecules to PD-L1-Specific Peptide–Drug Conjugates. J. Med. Chem. 2024 67 21 19216 19233 10.1021/acs.jmedchem.4c01652 39420825
    [Google Scholar]
  68. Koblish H.K. Wu L. Wang L.C.S. Liu P.C.C. Wynn R. Rios-Doria J. Spitz S. Liu H. Volgina A. Zolotarjova N. Kapilashrami K. Behshad E. Covington M. Yang Y. Li J. Diamond S. Soloviev M. O’Hayer K. Rubin S. Kanellopoulou C. Yang G. Rupar M. DiMatteo D. Lin L. Stevens C. Zhang Y. Thekkat P. Geschwindt R. Marando C. Yeleswaram S. Jackson J. Scherle P. Huber R. Yao W. Hollis G. Characterization of INCB086550: A potent and novel small-molecule PD-L1 inhibitor. Cancer Discov. 2022 12 6 1482 1499 10.1158/2159‑8290.CD‑21‑1156 35254416
    [Google Scholar]
  69. Xiang H. Tu B. Feng X. Chen L. Huang Y. Dual inhibition of TYK2 and PD-L1 boosts immune response in triple negative breast cancer. Anticancer Drugs 2025 36 4 280 289 10.1097/CAD.0000000000001685 39774369
    [Google Scholar]
  70. Geng Q. Xu J. Du C. Zhang D. Jin Y. Song J. Qu W. Zhang C. Su G. Jiao P. Small molecules targeting immune checkpoint proteins for cancer immunotherapy: A patent and literature review (2020–2024). Expert Opin. Ther. Pat. 2025 35 4 409 440 10.1080/13543776.2025.2462849 39907457
    [Google Scholar]
  71. Elgundi Z. Reslan M. Cruz E. Sifniotis V. Kayser V. The state-of-play and future of antibody therapeutics. Adv. Drug Deliv. Rev. 2017 122 2 19 10.1016/j.addr.2016.11.004 27916504
    [Google Scholar]
  72. Mishra A.K. Ali A. Dutta S. Banday S. Malonia S.K. Emerging trends in immunotherapy for cancer. Diseases 2022 10 3 60 10.3390/diseases10030060 36135216
    [Google Scholar]
  73. Dhas N. Kudarha R. Kulkarni S. Soman S. Navti P.D. Kulkarni J. Roy A.A. Colaco V. Raychaudhuri R. Gupta A. Pardeshi C. Bari D. Tiwari R. Patel J. Moorkoth S. Mutalik S. Nanoengineered Platform-Based Microenvironment-Triggered Immunotherapy in Cancer Treatment. Front. Biosci. 2024 29 10 349 10.31083/j.fbl2910349 39473401
    [Google Scholar]
  74. Lai F. Ji M. Huang L. Wang Y. Xue N. Du T. Dong K. Yao X. Jin J. Feng Z. Chen X. YPD-30, a prodrug of YPD-29B, is an oral small-molecule inhibitor targeting PD-L1 for the treatment of human cancer. Acta Pharm. Sin. B 2022 12 6 2845 2858 10.1016/j.apsb.2022.02.031 35755282
    [Google Scholar]
  75. Cai S. Wang K. Qi Z. Ye K. Zhou X. Jiang S. Zhang K. Zhang X. Wang T. Design, synthesis, and evaluation of PD-1/PD-L1 small-molecule inhibitors bearing a rigid indane scaffold. Eur. J. Med. Chem. 2023 256 115468 10.1016/j.ejmech.2023.115468 37207535
    [Google Scholar]
  76. Wang R. Yu Q. Wang X. Zhu D. Li G. Li Z. Jiang W. Li W. Dang Y. Bis(benzonitrile) dichloroplatinum (II) interrupts PD-1/PD-L1 interaction by binding to PD-1. Acta Pharmacol. Sin. 2023 44 10 2103 2112 10.1038/s41401‑023‑01092‑9 37193754
    [Google Scholar]
  77. Wang F. Ye W. He Y. Zhong H. Zhu Y. Han J. Gong X. Tian Y. Wang Y. Wang S. Ji S. Liu H. Yao X. Identification of cbpa as a new inhibitor of PD-1/PD-L1 interaction. Int. J. Mol. Sci. 2023 24 4 3971 10.3390/ijms24043971 36835382
    [Google Scholar]
  78. Rosen C. Mayes T. Overholt C. Lucke-Wold B. Treatment of melanoma metastasis: Surgical, chemotherapy, and innovation. Med. Discov 2023 2 1032
    [Google Scholar]
  79. Shen C. Li M. Duan Y. Jiang X. Hou X. Xue F. Zhang Y. Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front. Immunol. 2023 14 1170207 10.3389/fimmu.2023.1170207 37304265
    [Google Scholar]
  80. Gu Z. Yin J. Da Silva C.G. Liu Q. Cruz L.J. Ossendorp F. Snaar-Jagalska E. Therapeutic liposomal combination to enhance chemotherapy response and immune activation of tumor microenvironment. J. Control. Release 2024 373 38 54 10.1016/j.jconrel.2024.07.015 38986909
    [Google Scholar]
  81. Liu C. Seeram N.P. Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: A review. Cancer Cell Int. 2021 21 1 239 10.1186/s12935‑021‑01946‑4 33906641
    [Google Scholar]
  82. Xu C. Sun Z. Zhang X. Zang Q. Yang Z. Li L. Yang X. He Y. Ma Z. Chen J. Discovery of 4-phenyl-1H-indazole derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction. Bioorg. Chem. 2024 147 107376 10.1016/j.bioorg.2024.107376 38640722
    [Google Scholar]
  83. Qin M. Cao Q. Wu X. Liu C. Zheng S. Xie H. Tian Y. Xie J. Zhao Y. Hou Y. Zhang X. Xu B. Zhang H. Wang X. Discovery of the programmed cell death-1/programmed cell death-ligand 1 interaction inhibitors bearing an indoline scaffold. Eur. J. Med. Chem. 2020 186 111856 10.1016/j.ejmech.2019.111856 31734021
    [Google Scholar]
  84. Davis A.A. Patel V.G. The role of PD-L1 expression as a predictive biomarker: An analysis of all US food and drug administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 2019 7 1 278 10.1186/s40425‑019‑0768‑9 31655605
    [Google Scholar]
  85. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Drilon A. Wolchok J.D. Carvajal R.D. McHenry M.B. Hosein F. Harbison C.T. Grosso J.F. Sznol M. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non–small cell lung cancer treated with nivolumab. JAMA Oncol. 2019 5 10 1411 1420 10.1001/jamaoncol.2019.2187 31343665
    [Google Scholar]
  86. Roma-Rodrigues C. Mendes R. Baptista P.V. Fernandes A.R. Targeting tumor microenvironment for cancer therapy. Int. J. Mol. Sci. 2019 20 4 840 10.3390/ijms20040840 30781344
    [Google Scholar]
  87. Bejarano L. Jordāo M.J.C. Joyce J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021 11 4 933 959 10.1158/2159‑8290.CD‑20‑1808 33811125
    [Google Scholar]
  88. Yin S. Chen Z. Chen D. Yan D. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy. Theranostics 2023 13 5 1520 1544 10.7150/thno.80091 37056572
    [Google Scholar]
  89. Toker A. Ohashi P.S. Expression of costimulatory and inhibitory receptors in FoxP3+ regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Adv. Cancer Res. 2019 144 193 261 10.1016/bs.acr.2019.05.001 31349899
    [Google Scholar]
  90. Ma L. Deng L. Peng J. Yu J. Meng X. Chemotherapy-free radiotherapy combined with immune checkpoint inhibitors: A new regimen for locally advanced non-small cell lung cancer? Cancer Biol. Med. 2024 20 12 1035 1046 10.20892/j.issn.2095‑3941.2023.0402 38318930
    [Google Scholar]
  91. Wang Z. Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD‐L1 immune checkpoint blocker. Cancer Med. 2020 9 21 8086 8121 10.1002/cam4.3410 32875727
    [Google Scholar]
  92. Ge Y. Zhou Q. Pan F. Wang R. Utilizing nanoparticles to overcome Anti-PD-1/PD-L1 immunotherapy resistance in non-small cell lung cancer: A potential strategy. Int. J. Nanomedicine 2025 20 2371 2394 10.2147/IJN.S505539 40027868
    [Google Scholar]
  93. Wang T. Ma W. Zou Z. Zhong J. Lin X. Liu W. Sun W. Hu T. Xu Y. Chen Y. PD‐1 blockade treatment in melanoma: Mechanism of response and tumor‐intrinsic resistance. Cancer Sci. 2025 116 2 329 337 10.1111/cas.16398 39601129
    [Google Scholar]
  94. Hashimoto K. Nishimura S. Goto K. PD 1/PD L1 immune checkpoint in bone and soft tissue tumors. Mol. Clin. Oncol. 2025 22 4 31 10.3892/mco.2025.2826 39989606
    [Google Scholar]
  95. Chocarro de Erauso L. Zuazo M. Arasanz H. Bocanegra A. Hernandez C. Fernandez G. Garcia-Granda M.J. Blanco E. Vera R. Kochan G. Escors D. Resistance to PD-L1/PD-1 blockade immunotherapy. A tumor-intrinsic or tumor-extrinsic phenomenon? Front. Pharmacol. 2020 11 441 10.3389/fphar.2020.00441 32317979
    [Google Scholar]
  96. Delou J.M.A. Souza A.S.O. Souza L.C.M. Borges H.L. Highlights in resistance mechanism pathways for combination therapy. Cells 2019 8 9 1013 10.3390/cells8091013 31480389
    [Google Scholar]
  97. Kong X. Lu P. Liu C. Guo Y. Yang Y. Peng Y. Wang F. Bo Z. Dou X. Shi H. Meng J. A combination of PD 1/PD L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy. Mol. Med. Rep. 2021 23 5 362 10.3892/mmr.2021.12001 33760188
    [Google Scholar]
  98. Kon E. Benhar I. Immune checkpoint inhibitor combinations: Current efforts and important aspects for success. Drug Resist. Updat. 2019 45 13 29 10.1016/j.drup.2019.07.004 31382144
    [Google Scholar]
  99. Tufail M. Wan W.D. Jiang C. Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem. Biol. Interact. 2024 396 111055 10.1016/j.cbi.2024.111055 38763348
    [Google Scholar]
  100. Kou L. Xie X. Chen X. Li B. Li J. Li Y. The progress of research on immune checkpoint inhibitor resistance and reversal strategies for hepatocellular carcinoma. Cancer Immunol. Immunother. 2023 72 12 3953 3969 10.1007/s00262‑023‑03568‑3 37917364
    [Google Scholar]
  101. Havel J.J. Chowell D. Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019 19 3 133 150 10.1038/s41568‑019‑0116‑x 30755690
    [Google Scholar]
  102. Zhu S. Zhang T. Zheng L. Liu H. Song W. Liu D. Li Z. Pan C. Combination strategies to maximize the benefits of cancer immunotherapy. J. Hematol. Oncol. 2021 14 1 156 10.1186/s13045‑021‑01164‑5 34579759
    [Google Scholar]
  103. Cristescu R. Mogg R. Ayers M. Albright A. Murphy E. Yearley J. Sher X. Liu X.Q. Lu H. Nebozhyn M. Zhang C. Lunceford J.K. Joe A. Cheng J. Webber A.L. Ibrahim N. Plimack E.R. Ott P.A. Seiwert T.Y. Ribas A. McClanahan T.K. Tomassini J.E. Loboda A. Kaufman D. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018 362 6411 eaar3593 10.1126/science.aar3593 30309915
    [Google Scholar]
  104. Yarchoan M. Albacker L.A. Hopkins A.C. Montesion M. Murugesan K. Vithayathil T.T. Zaidi N. Azad N.S. Laheru D.A. Frampton G.M. Jaffee E.M. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019 4 6 e126908 10.1172/jci.insight.126908 30895946
    [Google Scholar]
  105. Zhu J. Armstrong A.J. Friedlander T.W. Kim W. Pal S.K. George D.J. Zhang T. Biomarkers of immunotherapy in urothelial and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J. Immunother. Cancer 2018 6 1 4 10.1186/s40425‑018‑0314‑1 29368638
    [Google Scholar]
  106. Upadhaya S. Neftelinov S.T. Hodge J. Campbell J. Challenges and opportunities in the PD1/PDL1 inhibitor clinical trial landscape. Nat. Rev. Drug Discov. 2022 21 7 482 483 10.1038/d41573‑022‑00030‑4 35145263
    [Google Scholar]
  107. Yi M. Zheng X. Niu M. Zhu S. Ge H. Wu K. Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol. Cancer 2022 21 1 28 10.1186/s12943‑021‑01489‑2 35062949
    [Google Scholar]
  108. Chu X. Tian W. Wang Z. Zhang J. Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy: Mechanisms and clinical trials. Mol. Cancer 2023 22 1 93 10.1186/s12943‑023‑01800‑3 37291608
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206393267250912114756
Loading
/content/journals/acamc/10.2174/0118715206393267250912114756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test