Skip to content
2000
image of Targeting TGF-βR1 Signaling Pathway in Pancreatic Cancer: A Potential Approach with Synthetic Flavanols

Abstract

Introduction

Pancreatic adenocarcinoma is a highly aggressive cancer with a poor prognosis and a five-year survival rate of just 13%. Its asymptomatic onset, rapid progression, and resistance to therapy make it challenging to treat. Transforming Growth Factor-β (TGF-β) signaling, particularly through TGF-β Receptor 1 (TGF-βR1/ALK-5), plays a major role in tumor progression by inducing Epithelial-Mesenchymal Transition (EMT), immune evasion, and apoptosis resistance. Targeting ALK-5 is a promising strategy for therapeutic intervention.

Methods

Twenty-nine synthetic flavonols were designed to inhibit ALK-5 and docked using Schrodinger’s Glide XP. The compounds were synthesized a green, one-pot method and characterized using 1H-NMR, 13C-NMR, Mass Spectrometry, CHN analysis, and IR spectroscopy. The anti-cancer activity was evaluated against MiAPaCa-2 pancreatic cancer cells by measuring GI, TGI, and LC. ALK-5 inhibition was quantified using the ADP-Glo® Kinase Assay, assessing ATP transfer.

Results

RFL-1 showed the strongest binding affinity (–9.38 kcal/mol) at ALK-5’s active site and the highest kinase inhibition (ATP transfer: 3.67%), outperforming quercetin (9.22%). It also demonstrated an IC of 14.92 ± 3.54 µM. Ten flavonols exhibited strong cytotoxicity (GI < 10 μM), while four others showed moderate activity (GI = 23-26 μM).

Discussion

RFL-1 and related flavonols (RFL-12, RFL-20, RFL-25, RFL-28) effectively inhibited ALK-5 and suppressed the growth of pancreatic cancer cells. Their dual activity supports further development as targeted anti-cancer agents.

Conclusion

Synthetic flavonols, particularly RFL-1, show promise as ALK-5 inhibitors and potential therapies for pancreatic adenocarcinoma, warranting further validation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206388963250901091741
2025-10-02
2025-12-24
Loading full text...

Full text loading...

References

  1. Zhao H. Zhang Y. Liu H. Wang Y. Song Z. Age-period-cohort analysis of global, regional, and national pancreatic cancer incidence, mortality, and disability-adjusted life years, 1990–2019. BMC Cancer 2024 24 1 1063 10.1186/s12885‑024‑12835‑0 39198814
    [Google Scholar]
  2. Li Z. Zhang X. Sun C. Li Z. Fei H. Zhao D. Global, regional, and national burdens of early onset pancreatic cancer in adolescents and adults aged 15–49 years from 1990 to 2019 based on the Global Burden of Disease Study 2019: A cross-sectional study. Int. J. Surg. 2024 110 4 1929 1940 10.1097/JS9.0000000000001054 38215264
    [Google Scholar]
  3. Hesami Z. Olfatifar M. Sadeghi A. Zali M.R. Mohammadi-Yeganeh S. Habibi M.A. Ghadir M.R. Houri H. Global trend in pancreatic cancer prevalence rates through 2040: An illness-death modeling study. Cancer Med. 2024 13 20 70318 10.1002/cam4.70318 39440551
    [Google Scholar]
  4. Cherri S. Noventa S. Zaniboni A. Pancreatic adenocarcinoma: Beyond first line, where are we? World J. Gastroenterol. 2021 27 17 1847 1863 10.3748/wjg.v27.i17.1847 34007126
    [Google Scholar]
  5. An H. Dai H. Liu X. Changing trends in the global disease burden of pancreatic cancer from 1990 to 2030. Dig. Dis. Sci. 2024 69 7 2450 2461 10.1007/s10620‑024‑08465‑y 38722410
    [Google Scholar]
  6. Key statistics for pancreatic cancer. Available from: https://www.cancer.org/cancer/types/pancreatic-cancer/about/key-statistics.html#:~:text=of%20pancreatic%20cancer-(How%20common%20is%20pancreatic%20cancer%3F,will%20die%20of%20pancreatic%20cancer). 2024
  7. Taylo A. Cooke E. The 10 deadliest cancers, and why there’s no cure. 2024 Available from: https://www.livescience.com/11041-10-deadliest-cancers-cure.html.
  8. Sarfraz Z. Anwar J. Navigating the future of pancreatic cancer treatment: Systematic review insights from immunotherapy clinical trials. J. Clin. Oncol. 2024 42 23_suppl 68 10.1200/JCO.2024.42.23_suppl.68
    [Google Scholar]
  9. Jeong S.H. Hurh K. Park E.C. Leigh J. Kim S.H. Jang S.I. Risk of pancreatic cancer after acute pancreatitis: A retrospective analysis of the Korean national sample cohort. J. Korean Med. Sci. 2024 39 4 21 10.3346/jkms.2024.39.e21 38288535
    [Google Scholar]
  10. Srakocic S. What are the early warning signs of pancreatic cancer? 2022 Available from: https://www.healthline.com/health/pancreatic-cancer/what-are-the-early-warning-signs-of-pancreatic-cancer.
    [Google Scholar]
  11. Zottl J. Sebesta C.G. Tomosel E. Sebesta M.C. Sebesta C. Unraveling the burden of pancreatic cancer in the 21st century: Trends in incidence, mortality, survival, and key contributing factors. Cancers 2025 17 10 1607 10.3390/cancers17101607 40427106
    [Google Scholar]
  12. Hu Z.I. O’Reilly E.M. Therapeutic developments in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2024 21 1 7 24 10.1038/s41575‑023‑00840‑w 37798442
    [Google Scholar]
  13. Koltai T. Earlier diagnosis of pancreatic cancer: Is it possible?. Cancers 2023 15 18 4430 10.3390/cancers15184430 37760400
    [Google Scholar]
  14. Puckett Y. Garfield K. Pancreatic cancer. Treasure Island (FL) StatPearls Publishing 2025
    [Google Scholar]
  15. Xing L. Lv L. Ren J. Yu H. Zhao X. Kong X. Xiang H. Tao X. Dong D. Advances in targeted therapy for pancreatic cancer. Biomed. Pharmacother. 2023 168 115717 10.1016/j.biopha.2023.115717 37862965
    [Google Scholar]
  16. Li B. Zhang Q. Castaneda C. Cook S. Targeted therapies in pancreatic cancer: A new era of precision medicine. Biomedicines 2024 12 10 2175 10.3390/biomedicines12102175 39457488
    [Google Scholar]
  17. Haque S. Morris J.C. Transforming growth factor-β: A therapeutic target for cancer. Hum. Vaccin. Immunother. 2017 13 8 1741 1750 10.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  18. Liu S. Ren J. ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 8 10.1038/s41392‑020‑00436‑9 33414388
    [Google Scholar]
  19. Luo Q. Hu Z. Zhao H. Fan Y. Tu X. Wang Y. Liu X. The role of TGF-β in the tumor microenvironment of pancreatic cancer. Genes Dis. 2023 10 4 1513 1524 10.1016/j.gendis.2022.10.019 37397548
    [Google Scholar]
  20. Lee H.J. Recent advances in the development of TGF-β signaling inhibitors for anticancer therapy. J. Cancer Prev. 2020 25 4 213 222 10.15430/JCP.2020.25.4.213 33409254
    [Google Scholar]
  21. Principe D.R. Timbers K.E. Atia L.G. Koch R.M. Rana A. TGFβ signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancers 2021 13 20 5086 10.3390/cancers13205086 34680235
    [Google Scholar]
  22. Tindall R.R. Bailey-Lundberg J.M. Cao Y. Ko T.C. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front. Oncol. 2024 14 1362247 10.3389/fonc.2024.1362247 38500662
    [Google Scholar]
  23. Hirata N. Yamada S. Yanagida S. Ono A. Yasuhiko Y. Kanda Y. Transforming growth factor beta promotes the expansion of cancer stem cells via S1PR3 by ligand-independent notch activation. Biol. Pharm. Bull. 2022 45 5 649 658 10.1248/bpb.b22‑00112 35491169
    [Google Scholar]
  24. Brown N.F. Marshall J.F. Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers 2019 11 9 1221 10.3390/cancers11091221 31438626
    [Google Scholar]
  25. Baba A.B. Rah B. Bhat G.R. Mushtaq I. Parveen S. Hassan R. Hameed Zargar M. Afroze D. Transforming growth factor-beta (TGF-β) signaling in cancer—A betrayal within. Front. Pharmacol. 2022 13 13 791272 10.3389/fphar.2022.791272 35295334
    [Google Scholar]
  26. Derynck R. Turley S.J. Akhurst R.J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 2021 18 1 9 34 10.1038/s41571‑020‑0403‑1 32710082
    [Google Scholar]
  27. Jamialahmadi H. Nazari S.E. TanzadehPanah H. Saburi E. Asgharzadeh F. Khojasteh-Leylakoohi F. Alaei M. Mirahmadi M. Babaei F. Asghari S.Z. Mansouri S. Khalili-Tanha G. Maftooh M. Fiuji H. Hassanian S.M. Ferns G.A. Khazaei M. Avan A. Targeting transforming growth factor beta (TGF-β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer. Sci. Rep. 2023 13 1 14357 10.1038/s41598‑023‑41550‑2 37658230
    [Google Scholar]
  28. Večurkovská I. Stupák M. Kaťuchová J. Bohuš P. Hostačná L. Mareková M. Mašlanková J. Expression of individual members of the TGF-β/SMAD signalling pathway in the progression and survival of patients with colorectal carcinoma. Sci. Rep. 2024 14 1 27442 10.1038/s41598‑024‑79463‑3 39523401
    [Google Scholar]
  29. Kim B.G. Malek E. Choi S.H. Ignatz-Hoover J.J. Driscoll J.J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 2021 14 1 55 10.1186/s13045‑021‑01053‑x 33823905
    [Google Scholar]
  30. di Miceli N. Baioni C. Barbieri L. Danielli D. Sala E. Salvioni L. Garbujo S. Colombo M. Prosperi D. Innocenti M. Fiandra L. TGF-β signaling loop in pancreatic ductal adenocarcinoma activates fibroblasts and increases tumor cell aggressiveness. Cancers 2024 16 21 3705 10.3390/cancers16213705 39518142
    [Google Scholar]
  31. Norris A. Korc M. Smad4/TGF-β signaling pathways in pancreatic cancer pathogenesis. Pancreatic Cancer. New York, NY Springer 2010 419 439 10.1007/978‑0‑387‑77498‑5_17
    [Google Scholar]
  32. What are ALK5 inhibitors and how do they work? 2024 Available from: https://synapse.patsnap.com/article/what-are-alk5-inhibitors-and-how-do-they-work.
  33. Parejo-Alonso B. Royo-García A. Espiau-Romera P. Courtois S. Curiel-García Á. Zagorac S. Villaoslada I. Olive K.P. Heeschen C. Sancho P. Pharmacological targeting of the receptor ALK inhibits tumorigenicity and overcomes chemoresistance in pancreatic ductal adenocarcinoma. Biomed. Pharmacother. 2023 158 114162 10.1016/j.biopha.2022.114162 36571997
    [Google Scholar]
  34. Zarin B. Nedaeinia R. Laher I. Manian M. Javanmard S.H. The effects of ALK5 inhibition and simultaneous inhibition or activation of HIF-1α in melanoma tumor growth and angiogenesis. Tumour Biol. 2023 45 1 111 126 10.3233/TUB‑220020 37927290
    [Google Scholar]
  35. Ramundo V. Palazzo M.L. Aldieri E. TGF-β as predictive marker and pharmacological target in lung cancer approach. Cancers 2023 15 8 2295 10.3390/cancers15082295 37190223
    [Google Scholar]
  36. Hussen B.M. Saleem S.J. Abdullah S.R. Mohamadtahr S. Hidayat H.J. Rasul M.F. Taheri M. Kiani A. Current landscape of miRNAs and TGF‐β signaling in lung cancer progression and therapeutic targets. Mol. Cell. Probes 2023 72 101929 10.1016/j.mcp.2023.101929 37683829
    [Google Scholar]
  37. Ding Q. Wang L. Zhu Q. Chen X. TGF-β/FAK/AKT signal pathway blocked by astragaloside hinders the invasion and metastasis of non-small cell lung cancer. Indian J. Pharm. Sci. 2024 86 1 308 10.36468/pharmaceutical‑sciences.1278
    [Google Scholar]
  38. Barlesi F. Isambert N. Felip E. Cho B.C. Lee D.H. Peguero J. Jerusalem G. Penel N. Saada-Bouzid E. Garrido P. Helwig C. Locke G. Ojalvo L.S. Gulley J.L. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with non-small cell lung cancer resistant or refractory to immune checkpoint inhibitors. Oncologist 2023 28 3 258 267 10.1093/oncolo/oyac253 36571770
    [Google Scholar]
  39. Li X. Wu Y. Tian T. TGF-β signaling in metastatic colorectal cancer (mCRC): From underlying mechanism to potential applications in clinical development. Int. J. Mol. Sci. 2022 23 22 14436 10.3390/ijms232214436 36430910
    [Google Scholar]
  40. Bakrim S. El Hachlafi N. Khalid A. Abdalla A.N. El Omari N. Aboulaghras S. Sakran A.M. Goh K.W. Ming L.C. Razi P. Bouyahya A. Recent advances and molecular mechanisms of TGF-β signaling in colorectal cancer, with focus on bioactive compounds targeting. Biomed. Pharmacother. 2024 177 116886 10.1016/j.biopha.2024.116886 38945700
    [Google Scholar]
  41. Miller A.T. Jin Q. Plouffe D. Corpuz M. Rodrigo E. Wu T.Y. Abstract 1661: Heart-sparing ALK5 inhibitor for treatment of gastrointestinal and liver cancers. Cancer Res. 2023 83 7_Supplement 1661 10.1158/1538‑7445.AM2023‑1661
    [Google Scholar]
  42. Mesquita F.P. Souza P.F.N. da Silva E.L. Lima L.B. de Oliveira L.L.B. Moreira-Nunes C.A. Zuercher W.J. Burbano R.M.R. de Moraes M.E.A. Montenegro R.C. Kinase inhibitor screening displayed ALK as a possible therapeutic biomarker for gastric cancer. Pharmaceutics 2022 14 9 1841 10.3390/pharmaceutics14091841 36145589
    [Google Scholar]
  43. Hu J. Dai S. Yuan M. Li F. Xu S. Gao L. Isoliensinine suppressed gastric cancer cell proliferation and migration by targeting TGFBR1 to regulate TGF-β-smad signaling pathways. Front. Pharmacol. 2024 15 1438161 10.3389/fphar.2024.1438161 39364054
    [Google Scholar]
  44. Targeting TGF-β in gastrointestinal cancers: Is it a viable therapeutic strategy?. 2024 Available from: https://dailynews.ascopubs.org/do/targeting-tgf--x03b2-gastrointestinal-cancers-viable-therapeutic-strategy.
  45. Mansour M.A. Hassan G.S. Serya R.A.T. Jaballah M.Y. Abouzid K.A.M. Advances in the discovery of activin receptor-like kinase 5 (ALK5) inhibitors. Bioorg. Chem. 2024 147 107332 10.1016/j.bioorg.2024.107332 38581966
    [Google Scholar]
  46. Kargbo R.B. ALK inhibitors for treating cancer, blood, and kidney diseases. ACS Med. Chem. Lett. 2022 13 10 1539 1541 10.1021/acsmedchemlett.2c00388 36267131
    [Google Scholar]
  47. Wang Y. Liu Y. Zhang Y. Zhang Z. Xu L. Wang J. Yang Y. Hu B. Yao Y. Wei M. Wang J. Tang B. Zhang K. Liu S. Yang G. Design, synthesis and evaluation of a pyrazolo[3,4-d]pyrimidine derivative as a novel and potent TGFβ1R1 inhibitor. Eur. J. Med. Chem. 2024 271 116395 10.1016/j.ejmech.2024.116395 38626523
    [Google Scholar]
  48. Yap T.A. Choudhury A.D. Hamilton E. Rosen L.S. Stratton K.L. Gordon M.S. Schaer D. Liu L. Zhang L. Mittapalli R.K. Zhong W. Soman N. Tolcher A.W. PF-06952229, a selective TGF-β-R1 inhibitor: Preclinical development and a first-in-human, phase I, dose-escalation study in advanced solid tumors. ESMO Open 2024 9 9 103653 10.1016/j.esmoop.2024.103653 39214047
    [Google Scholar]
  49. Park M.S. Park H.J. An Y.J. Choi J.H. Cha G. Lee H.J. Park S.J. Dewang P.M. Kim D.K. Synthesis, biological evaluation and molecular modelling of 2,4-disubstituted-5-(6-alkylpyridin-2-yl)-1 H -imidazoles as ALK5 inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 702 712 10.1080/14756366.2020.1734799 32164459
    [Google Scholar]
  50. Kim N.H. Lee J. Kim S.H. Kang S.H. Bae S. Yu C.H. Seo J. Kim H.T. ALK5/VEGFR2 dual inhibitor TU2218 alone or in combination with immune checkpoint inhibitors enhances immune-mediated antitumor effects. Cancer Immunol. Immunother. 2024 73 10 190 10.1007/s00262‑024‑03777‑4 39105882
    [Google Scholar]
  51. Yang H.X. Guo F.Y. Lin Y.C. Wu Y.L. Nan J.X. Jin C.H. Lian L.H. Synthesis of and anti-fibrotic effect of pyrazole derivative J-1048: Inhibition of ALK5 as a novel approach to liver fibrosis targeting inflammation. Bioorg. Chem. 2023 139 106723 10.1016/j.bioorg.2023.106723 37459824
    [Google Scholar]
  52. Sáez-Borderías A. Van Kaem T. Alberti J. Stiers P.J. Sabadie C. Van Heeswijk R. Senso T. Pampín B. Bosser R. Wiesel P. P0334 AGMB-129, an investigational ALK5 inhibitor for the treatment of Fibrostenosing Crohn’s Disease (FSCD), shows gastrointestinal (GI) restricted pharmacokinetics (PK) and a favorable safety profile in healthy subjects. J. Crohn’s Colitis 2025 19 Supplement_1 i796 10.1093/ecco‑jcc/jjae190.0508
    [Google Scholar]
  53. Piskorz C.J. Carreira E.M. Ferber S. Matier W.L. Spirocyclic compounds and uses thereof. Patent WO2020123453A2, 2020
    [Google Scholar]
  54. Tschernia N.P. Gulley J.L. Tumour in the crossfire: Inhibiting TGF-β to enhance cancer immunotherapy. BioDrugs 2022 36 2 153 180 10.1007/s40259‑022‑00521‑1 35353346
    [Google Scholar]
  55. Ciardiello D. Elez E. Tabernero J. Seoane J. Clinical development of therapies targeting TGFβ: Current knowledge and future perspectives. Ann. Oncol. 2020 31 10 1336 1349 10.1016/j.annonc.2020.07.009 32710930
    [Google Scholar]
  56. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  57. Pyo Y. Kwon K. Jung Y. Anticancer potential of flavonoids: Their role in cancer prevention and health benefits. Foods 2024 13 14 2253 10.3390/foods13142253 39063337
    [Google Scholar]
  58. Asgharian P. Tazehkand A.P. Soofiyani S.R. Hosseini K. Martorell M. Tarhriz V. Ahangari H. Cruz-Martins N. Sharifi-Rad J. Almarhoon Z.M. Ydyrys A. Nurzhanyat A. Yessenbekova A. Cho W.C. Quercetin impact in pancreatic cancer: An overview on its therapeutic effects. Oxid. Med. Cell. Longev. 2021 2021 1 4393266 10.1155/2021/4393266 34777687
    [Google Scholar]
  59. Hu Y. Li R. Jin J. Wang Y. Ma R. Quercetin improves pancreatic cancer chemo‐sensitivity by regulating oxidative‐inflammatory networks. J. Food Biochem. 2022 46 12 14453 10.1111/jfbc.14453 36181395
    [Google Scholar]
  60. Osredkar J. Quercetin: A flavonoid with diverse chemo preventive properties against cancer;
    [Google Scholar]
  61. Guo Y. Tong Y. Zhu H. Xiao Y. Guo H. Shang L. Zheng W. Ma S. Liu X. Bai Y. Quercetin suppresses pancreatic ductal adenocarcinoma progression via inhibition of SHH and TGF-β/Smad signaling pathways. Cell Biol. Toxicol. 2021 37 3 479 496 10.1007/s10565‑020‑09562‑0 33070227
    [Google Scholar]
  62. Li X. Lee M. Chen G. Zhang Q. Zheng S. Wang G. Chen Q.H. 3-O-Substituted-3′,4′,5′-trimethoxyflavonols: Synthesis and cell-based evaluation as anti-prostate cancer agents. Bioorg. Med. Chem. 2017 25 17 4768 4777 10.1016/j.bmc.2017.07.022 28760528
    [Google Scholar]
  63. Mughal E.U. Sadiq A. Ashraf J. Zafar M.N. Sumrra S.H. Tariq R. Mumtaz A. Javid A. Khan B.A. Ali A. Javed C.O. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Bioorg. Chem. 2019 91 103124 10.1016/j.bioorg.2019.103124 31319297
    [Google Scholar]
  64. Zhao C.L. Chik W.I. Zhang H.J. Bioprospecting and bioassay-guided isolation of medicinal plants—A tool for drug discovery. Evidence-Based Validation of Herbal Medicine (Second Edition) Elsevier 2022 511 537 10.1016/B978‑0‑323‑85542‑6.00028‑7
    [Google Scholar]
  65. History of the NCI-60 screen and COMPARE algorithm. 2022 Available from: https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm.
  66. ADP-Glo™: A luminescent ADP detection assay for kinases and other ADP-generating enzymes. 2024 Available from: https://www.promega.in/resources/scientific-posters/posters/adpglo-a-luminescent-adp-detection-assay-for-kinases-and-other-adp-generating-enzymes/.
  67. Glickman J. Markossian S. Grossman A. Arkin M. Auld D. Austin C. Assay development for protein kinase enzymes. Assay Guidance Manual Bethesda (MD) 2024
    [Google Scholar]
  68. Vaidyanathan R. Murugan Sreedevi S. Ravichandran K. Vinod S.M. Hari Krishnan Y. Babu L.K. Parthiban P.S. Basker L. Perumal T. Rajaraman V. Arumugam G. Rajendran K. Mahalingam V. Molecular docking approach on the binding stability of derivatives of phenolic acids (DPAs) with Human Serum Albumin (HSA): Hydrogen-bonding versus hydrophobic interactions or combined influences? JCIS Open 2023 12 100096 10.1016/j.jciso.2023.100096
    [Google Scholar]
  69. Scott Sawyer J. Beight D.W. Britt K.S. Anderson B.D. Campbell R.M. Goodson T. Herron D.K. Li H.Y. McMillen W.T. Mort N. Parsons S. Smith E.C.R. Wagner J.R. Yan L. Zhang F. Yingling J.M. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg. Med. Chem. Lett. 2004 14 13 3581 3584 10.1016/j.bmcl.2004.04.007 15177479
    [Google Scholar]
  70. NCI-60 screening methodology. 2024 Available from:https://dctd.cancer.gov/data-tools-biospecimens/data.
  71. Jannuzzi A.T. Yilmaz G., A.M. Biswas A. Mondal S. Basavanakatti V.N. Yıldırım H. Yıldız M. Bayrak N. Jayaprakash V. TuYuN A.F. Prospects for prostate cancer chemotherapy: Cytotoxic evaluation and mechanistic insight of Quinolinequinones with ADME/PK Profile. Biomedicines 2024 12 6 1241 10.3390/biomedicines12061241 38927448
    [Google Scholar]
  72. Feng Q. Lian Y. Qian Y. Shih J.C. Near-infrared MAO A inhibitor (NMI) outperformed FDA-approved chemotherapeutic agents in brain and other cancers: A bioinformatic analysis of NCI60 screening data. Brain Sci. 2021 11 10 1318 10.3390/brainsci11101318 34679383
    [Google Scholar]
  73. Ivasechko I. Lozynskyi A. Senkiv J. Roszczenko P. Kozak Y. Finiuk N. Klyuchivska O. Kashchak N. Manko N. Maslyak Z. Lesyk D. Karkhut A. Polovkovych S. Czarnomysy R. Szewczyk O. Kozytskiy A. Karpenko O. Khyluk D. Gzella A. Bielawski K. Bielawska A. Dzubak P. Gurska S. Hajduch M. Stoika R. Lesyk R. Molecular design, synthesis and anticancer activity of new thiopyrano[2,3-d]thiazoles based on 5-hydroxy-1,4-naphthoquinone (juglone). Eur. J. Med. Chem. 2023 252 252 115304 10.1016/j.ejmech.2023.115304 37001390
    [Google Scholar]
  74. Biswas P. Dey D. Biswas P.K. Rahaman T.I. Saha S. Parvez A. Khan D.A. Lily N.J. Saha K. Sohel M. Hasan M.M. Al Azad S. Bibi S. Hasan M.N. Rahmatullah M. Chun J. Rahman M.A. Kim B. A comprehensive analysis and anti-cancer activities of Quercetin in ROS-Mediated Cancer and cancer stem cells. Int. J. Mol. Sci. 2022 23 19 11746 10.3390/ijms231911746 36233051
    [Google Scholar]
  75. Shahbaz M. Naeem H. Momal U. Imran M. Alsagaby S.A. Al Abdulmonem W. Waqar A.B. El-Ghorab A.H. Ghoneim M.M. Abdelgawad M.A. Shaker M.E. Umar M. Hussain M. Kumar R. Al Jbawi E. Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies. Int. J. Food Prop. 2023 26 1 2590 2626 10.1080/10942912.2023.2252619
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206388963250901091741
Loading
/content/journals/acamc/10.2174/0118715206388963250901091741
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test