Skip to content
2000
image of ALG3 as a PanCancer Oncogene: Bioinformatics Analysis and Identification of Small-Molecule Inhibitors

Abstract

Introduction

Glycosylation plays a crucial role in cellular processes such as recognition and signaling, and its dysregulation is associated with tumor progression. Alpha-1,3-mannosyltransferase (ALG3) is a key enzyme in N-glycosylation, and its aberrant expression has been implicated in various malignancies. However, the mechanisms underlying ALG3-driven oncogenesis and the identification of potential ALG3 inhibitors remain largely unexplored. This study aims to comprehensively investigate the oncogenic role of ALG3 across different cancer types and identify potential inhibitors through bioinformatics analysis and molecular docking-coupled dynamics simulations.

Methods

Multiple cancer-related databases were analyzed to elucidate the oncogenic role of ALG and to assess its expression patterns, genetic alterations, and epigenetic regulation. Furthermore, molecular docking and dynamics simulations were employed to identify small-molecule inhibitors targeting the human ALG3.

Results

Our findings demonstrated a significant upregulation of ALG3 at both transcript and protein levels in cancerous tissues compared to normal ones. High ALG3 expression correlated positively with tumor stage, grade, and metastasis while negatively influencing patient survival. Genetic analysis revealed that amplification was the most common alteration in ALG3, whereas DNA methylation played a key role in its upregulation. Molecular docking and dynamics simulation identified two mannosyltransferase inhibitors, Opn and Clo, as potential inhibitors of ALG3, suggesting their therapeutic potential.

Discussion

This study highlights the oncogenic role of ALG3 in a pan-cancer model and identifies its potential inhibitors. Our findings provide valuable insights into ALG3-driven tumorigenesis and suggest that targeting ALG3 could be a promising strategy for cancer therapy.

Conclusion

The study first reported potential inhibitors of human ALG3 based on a molecular modelling approach. This opens the way for future experimental investigations of the testing of these lead compounds in ALG3-high cancer models.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206395527250902101008
2025-11-03
2025-11-07
Loading full text...

Full text loading...

References

  1. Gharib A.F. Alaa Eldeen M. Khalifa A.S. Elsawy W.H. Eed E.M. Askary A.E. Eid R.A. Soltan M.A. Raafat N. Assessment of glutathione peroxidase-1 (GPX1) gene expression as a specific diagnostic and prognostic biomarker in malignant pleural mesothelioma. Diagnostics 2021 11 12 2285 10.3390/diagnostics11122285 34943522
    [Google Scholar]
  2. Tarin D. Understanding cancer: The molecular mechanisms, biology, pathology and clinical implications of malignant neoplasia. Springer Nature 2023 10.1007/978‑3‑030‑97393‑3
    [Google Scholar]
  3. Ezzaldeen E.M. Yaguchi T. Imagawa R. Soltan M.A. Hirata A. Murakami K. Beneficial effects on T cells by photodynamic therapy with talaporfin enhance cancer immunotherapy. Int. Immunol. 2025 37 6 313 324 10.1093/intimm/dxaf003 39842944
    [Google Scholar]
  4. Yassen A.S.A. Abdel-Wahab S.M. Darwish K.M. Nafie M.S. Abdelhameed R.F.A. El-Sayyad G.S. El-Batal A.I. Attia K.M. Elshihawy H.A. Elrayess R. Novel curcumin-based analogues as potential VEGFR2 inhibitors with promising metallic loading nanoparticles: Synthesis, biological evaluation, and molecular modelling investigation. RSC Med. Chem. 2024 15 12 4039 4067 10.1039/D4MD00574K 39345715
    [Google Scholar]
  5. Feng C. Su L. Wang L. Yan Z. Wu J. Functional carbohydrates and their manufacturing strategies. Biomanufacture of Functional Carbohydrates. Boca Raton, FL CRC Press 2024 1 20 10.1201/9781003372646‑1
    [Google Scholar]
  6. Berois N. Pittini A. Osinaga E. Targeting tumor glycans for cancer therapy: Successes, limitations, and perspectives. Cancers 2022 14 3 645 10.3390/cancers14030645 35158915
    [Google Scholar]
  7. Pasala C. Sharma S. Roychowdhury T. Moroni E. Colombo G. Chiosis G. N-Glycosylation as a modulator of protein conformation and assembly in disease. Biomolecules 2024 14 3 282 10.3390/biom14030282 38540703
    [Google Scholar]
  8. Xu X. Peng Q. Jiang X. Tan S. Yang W. Han Y. Oyang L. Lin J. Shen M. Wang J. Li H. Xia L. Peng M. Wu N. Tang Y. Wang H. Liao Q. Zhou Y. Altered glycosylation in cancer: Molecular functions and therapeutic potential. Cancer Commun. 2024 44 11 1316 1336 10.1002/cac2.12610 39305520
    [Google Scholar]
  9. He M. Zhou X. Wang X. Glycosylation: Mechanisms, biological functions and clinical implications. Signal Transduct. Target. Ther. 2024 9 1 194 10.1038/s41392‑024‑01886‑1 39098853
    [Google Scholar]
  10. Thomas D. Rathinavel A.K. Radhakrishnan P. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188464 10.1016/j.bbcan.2020.188464 33157161
    [Google Scholar]
  11. Zhao Z. Zheng Z. Huang J. Wang J. Peng T. Lin Y. Jian Z. Expression of ALG3 in hepatocellular carcinoma and its clinical implication. Front. Mol. Biosci. 2022 9 816102 10.3389/fmolb.2022.816102 35782861
    [Google Scholar]
  12. Ke S. Qiu H. Chen J. Shi W. Han C. Gong Y. Chen Y. ALG3 contributes to the malignancy of non-small cell lung cancer and is negatively regulated by MiR-98-5p. Pathol. Res. Pract. 2020 216 3 152761 10.1016/j.prp.2019.152761 31899049
    [Google Scholar]
  13. Sun X. He Z. Guo L. Wang C. Lin C. Ye L. Wang X. Li Y. Yang M. Liu S. Hua X. Wen W. Lin C. Long Z. Zhang W. Li H. Jian Y. Zhu Z. Wu X. Lin H. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J. Exp. Clin. Cancer Res. 2021 40 1 149 10.1186/s13046‑021‑01932‑8 33931075
    [Google Scholar]
  14. Cui X. Pei X. Wang H. Feng P. Qin H. Liu S. Yan Q. Liu J. ALG3 promotes peritoneal metastasis of ovarian cancer through increasing interaction of α1,3-mannosylated uPAR and ADAM8. Cells 2022 11 19 3141 10.3390/cells11193141 36231102
    [Google Scholar]
  15. Shao P. Wei C. Wang Y. ALG3 contributes to the malignant properties of OSCC cells by regulating CDK‐Cyclin pathway. Oral Dis. 2021 27 6 1426 1434 10.1111/odi.13687 33084111
    [Google Scholar]
  16. Liu P. Lin C. Liu Z. Zhu C. Lin Z. Xu D. Chen J. Huang Q. Li C.Y. Hou L. Pan J.A. Liu X. Inhibition of ALG3 stimulates cancer cell immunogenic ferroptosis to potentiate immunotherapy. Cell. Mol. Life Sci. 2022 79 7 352 10.1007/s00018‑022‑04365‑4 35676564
    [Google Scholar]
  17. Behairy M.Y. Soltan M.A. Adam M.S. Refaat A.M. Ezz E.M. Albogami S. Fayad E. Althobaiti F. Gouda A.M. Sileem A.E. Elfaky M.A. Darwish K.M. Alaa Eldeen M. Computational analysis of deleterious SNPs in NRAS to assess their potential correlation with carcinogenesis. Front. Genet. 2022 13 872845 10.3389/fgene.2022.872845 36051694
    [Google Scholar]
  18. Soltan M.A. Eid R.A. Shati A.A. Al-Qahtani S.M. Alqahtani Y.A. Dawood S.A. Alshehri M.A. Zaki M.S.A. Alshaya D.S. Fayad E. Binjawhar D.N. Alsharif G. Eldeen M.A. MAD2L1 induces tumor progression through influencing multiple immune components: A multi-omics analysis with potential inhibitor prediction. J. Computati. Biophys. Chem. 2025 24 2 123 151 10.1142/S2737416524500492
    [Google Scholar]
  19. Soltan M.A. Alhanshani A.A. Shati A.A. Alqahtani Y.A. Alshaya D.S. Alharthi J. Altalhi S.A. Fayad E. Zaki M.S.A. Eid R.A. Cyclin dependent kinase inhibitor 2A genetic and epigenetic alterations interfere with several immune components and predict poor clinical outcome. Biomedicines 2023 11 8 2254 10.3390/biomedicines11082254 37626750
    [Google Scholar]
  20. Soltan M.A. Eldeen M.A. Eid R.A. Alyamani N.M. Alqahtani L.S. Albogami S. Jafri I. Park M.N. Alsharif G. Fayad E. Mohamed G. Osman R. Kim B. Zaki M.S.A. A pan-cancer analysis reveals CHD1L as a prognostic and immunological biomarker in several human cancers. Front. Mol. Biosci. 2023 10 1017148 10.3389/fmolb.2023.1017148 37033447
    [Google Scholar]
  21. Eid R.A. Eldeen M.A. Soltan M.A. Al-Shraim M. Aldehri M. Alqahtani L.S. Alsharif G. Albogami S. Jafri I. Fayad E. Park M.N. Bibi S. Behairy M.Y. Kim B. Zaki M.S.A. Integrative analysis of WDR12 as a potential prognostic and immunological biomarker in multiple human tumors. Front. Genet. 2023 13 1008502 10.3389/fgene.2022.1008502 36726716
    [Google Scholar]
  22. Soltan M.A. Eldeen M.A. Sajer B.H. Abdelhameed R.F.A. Al-Salmi F.A. Fayad E. Jafri I. Ahmed H.E.M. Eid R.A. Hassan H.M. Al-Shraim M. Negm A. Noreldin A.E. Darwish K.M. Integration of chemoinformatics and multi-omics analysis defines ECT2 as a potential target for cancer drug therapy. Biology 2023 12 4 613 10.3390/biology12040613 37106813
    [Google Scholar]
  23. Alaa Eldeen M. Mamdouh F. Abdulsahib W.K. Eid R.A. Alhanshani A.A. Shati A.A. Alqahtani Y.A. Alshehri M.A. Samir A Zaki M. Soltan M.A. Noreldin A.E. Noreldin A.E. Oncogenic potential of replication factor C subunit 4: Correlations with tumor progression and assessment of potential inhibitors. Pharmaceuticals 2024 17 2 152 10.3390/ph17020152 38399367
    [Google Scholar]
  24. Li T. Fu J. Zeng Z. Cohen D. Li J. Chen Q. Li B. Liu X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020 48 W1 W509 W514 10.1093/nar/gkaa407 32442275
    [Google Scholar]
  25. Tang Z. Kang B. Li C. Chen T. Zhang Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019 47 W1 W556 W560 10.1093/nar/gkz430 31114875
    [Google Scholar]
  26. Ru B. Wong C.N. Tong Y. Zhong J.Y. Zhong S.S.W. Wu W.C. Chu K.C. Wong C.Y. Lau C.Y. Chen I. Chan N.W. Zhang J. TISIDB: An integrated repository portal for tumor–immune system interactions. Bioinformatics 2019 35 20 4200 4202 10.1093/bioinformatics/btz210 30903160
    [Google Scholar]
  27. Bartha Á. Győrffy B. TNMplot.com: A web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 2021 22 5 2622 10.3390/ijms22052622 33807717
    [Google Scholar]
  28. Chandrashekar D.S. Karthikeyan S.K. Korla P.K. Patel H. Shovon A.R. Athar M. Netto G.J. Qin Z.S. Kumar S. Manne U. Creighton C.J. Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022 25 18 27 10.1016/j.neo.2022.01.001 35078134
    [Google Scholar]
  29. Lyu J. Li J.J. Su J. Peng F. Chen Y.E. Ge X. Li W. DORGE: Discovery of oncogenes and tumor suppressor genes using genetic and epigenetic features. Sci. Adv. 2020 6 46 eaba6784 10.1126/sciadv.aba6784 33177077
    [Google Scholar]
  30. Kiselev I.S. Kulakova O.G. Boyko A.N. Favorova O.O. DNA methylation as an epigenetic mechanism in the development of multiple sclerosis. Acta. Nat. 2021 13 2 45 57 10.32607/actanaturae.11043 34377555
    [Google Scholar]
  31. Li Y. Ge D. Lu C. The SMART App: An interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 2019 12 1 71 10.1186/s13072‑019‑0316‑3 31805986
    [Google Scholar]
  32. Ardito F. Giuliani M. Perrone D. Troiano G. Muzio L.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy. (Review) Int. J. Mol. Med. 2017 40 2 271 280 10.3892/ijmm.2017.3036 28656226
    [Google Scholar]
  33. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  34. Behairy M.Y. Eid R.A. Otifi H.M. Mohammed H.M. Alshehri M.A. Asiri A. Aldehri M. Zaki M.S.A. Darwish K.M. Elhady S.S. El-Shaer N.H. Eldeen M.A. Unraveling extremely damaging IRAK4 variants and their potential implications for IRAK4 inhibitor efficacy. J. Pers. Med. 2023 13 12 1648 10.3390/jpm13121648 38138875
    [Google Scholar]
  35. Le Guilloux V. Schmidtke P. Tuffery P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics 2009 10 1 168 10.1186/1471‑2105‑10‑168 19486540
    [Google Scholar]
  36. Liang J. Woodward C. Edelsbrunner H. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998 7 9 1884 1897 10.1002/pro.5560070905 9761470
    [Google Scholar]
  37. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  38. Xue Q. Liu X. Russell P. Li J. Pan W. Fu J. Zhang A. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022 233 113323 10.1016/j.ecoenv.2022.113323 35183811
    [Google Scholar]
  39. Jo S. Lim J.B. Klauda J.B. Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009 97 1 50 58 10.1016/j.bpj.2009.04.013 19580743
    [Google Scholar]
  40. Jo S. Kim T. Im W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2007 2 9 880 10.1371/journal.pone.0000880 17849009
    [Google Scholar]
  41. Lee J. Patel D.S. Ståhle J. Park S.J. Kern N.R. Kim S. Lee J. Cheng X. Valvano M.A. Holst O. Knirel Y.A. Qi Y. Jo S. Klauda J.B. Widmalm G. Im, W. CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. J. Chem. Theory Comput. 2019 15 1 775 786 10.1021/acs.jctc.8b01066 30525595
    [Google Scholar]
  42. Jo S. Kim T. Iyer V.G. Im, W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  43. Páll S. Abraham M.J. Kutzner C. Hess B. Lindahl E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. International Conference on Exascale Applications and Software, EASC 2014 Stockholm, Sweden April 2-3, 2014 3 27 10.1007/978‑3‑319‑15976‑8_1
    [Google Scholar]
  44. Soltan M.A. Abdulsahib W.K. Eid R.A. Alshaya D.S. Sideeg A.M. Osman R. Alarabi T.G.M. Mohamed G. Al-Salmi F.A. Fayad E. Abduljabbar M.H. Alshehri M.A. Gouda A.M. Eldeen M.A. Application of reverse vaccinology and immunoinformatics to design a multitope vaccine against gastrointestinal cancer-inducing Cryptosporidium Parvum. J. Comput. Biophys. Chem. 2025 24 1 13 32 10.1142/S2737416524500376
    [Google Scholar]
  45. Lomize M.A. Pogozheva I.D. Joo H. Mosberg H.I. Lomize A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012 40 D1 D370 D376 10.1093/nar/gkr703 21890895
    [Google Scholar]
  46. Sonne J. Jensen M.Ø. Hansen F.Y. Hemmingsen L. Peters G.H. Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. Biophys. J. 2007 92 12 4157 4167 10.1529/biophysj.106.087130 17400696
    [Google Scholar]
  47. Tieleman D.P. Marrink S.J. Berendsen H.J.C. A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta Rev. Biomembr. 1997 1331 3 235 270 10.1016/S0304‑4157(97)00008‑7 9512654
    [Google Scholar]
  48. Saleh A.H. Abdelwaly A. Darwish K.M. Eissa A.A. Chittiboyina A. Helal M.A. Deciphering the molecular basis of the kappa opioid receptor selectivity: A molecular dynamics study. J. Mol. Graph. Model. 2021 106 107940 10.1016/j.jmgm.2021.107940 34015577
    [Google Scholar]
  49. Ross G.A. Rustenburg A.S. Grinaway P.B. Fass J. Chodera J.D. Biomolecular simulations under realistic macroscopic salt conditions. J. Phys. Chem. B 2018 122 21 5466 5486 10.1021/acs.jpcb.7b11734 29649876
    [Google Scholar]
  50. Zaki A.A. Ashour A. Elhady S.S. Darwish K.M. Al-Karmalawy A.A. Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. J. Tradit. Complement. Med. 2022 12 1 16 34 10.1016/j.jtcme.2021.05.001 34026584
    [Google Scholar]
  51. Darden T. York D. Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 10089 10089 10.1063/1.464397
    [Google Scholar]
  52. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  53. Páll S. Hess B. A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun. 2013 184 12 2641 2650 10.1016/j.cpc.2013.06.003
    [Google Scholar]
  54. Kumari R. Kumar R. Lynn A. Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  55. Comoglio P.M. Trusolino L. Boccaccio C. Known and novel roles of the MET oncogene in cancer: A coherent approach to targeted therapy. Nat. Rev. Cancer 2018 18 6 341 358 10.1038/s41568‑018‑0002‑y 29674709
    [Google Scholar]
  56. Wee Y. Wang T. Liu Y. Li X. Zhao M. A pan-cancer study of copy number gain and up-regulation in human oncogenes. Life Sci. 2018 211 206 214 10.1016/j.lfs.2018.09.032 30243646
    [Google Scholar]
  57. Yuan Y. Xie B. Guo D. Liu C. Jiang G. Lai G. Zhang Y. Hu X. Wu Z. Zheng R. Huang L. Identification of ALG3 as a potential prognostic biomarker in lung adenocarcinoma. Heliyon 2023 9 7 18065 10.1016/j.heliyon.2023.e18065 37539167
    [Google Scholar]
  58. Zhou H. Cao T. Li W.P. Wu G. Combined expression and prognostic significance of PPFIA1 and ALG3 in head and neck squamous cell carcinoma. Mol. Biol. Rep. 2019 46 3 2693 2701 10.1007/s11033‑019‑04712‑y 30805892
    [Google Scholar]
  59. Testa U. Castelli G. Pelosi E. Genetic alterations of metastatic colorectal cancer. Biomedicines 2020 8 10 414 10.3390/biomedicines8100414 33066148
    [Google Scholar]
  60. Dakal T.C. Dhabhai B. Pant A. Moar K. Chaudhary K. Yadav V. Ranga V. Sharma N.K. Kumar A. Maurya P.K. Maciaczyk J. Schmidt-Wolf I.G.H. Sharma A. Oncogenes and tumor suppressor genes: Functions and roles in cancers. MedComm 2024 5 6 e582 10.1002/mco2.582 38827026
    [Google Scholar]
  61. Buscail L. Bournet B. Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020 17 3 153 168 10.1038/s41575‑019‑0245‑4 32005945
    [Google Scholar]
  62. Das S. Dey M.K. Devireddy R. Gartia M.R. Biomarkers in cancer detection, diagnosis, and prognosis. Sensors 2023 24 1 37 10.3390/s24010037 38202898
    [Google Scholar]
  63. Romero-Garcia S. Prado-Garcia H. Carlos-Reyes A. Role of DNA methylation in the resistance to therapy in solid tumors. Front. Oncol. 2020 10 1152 10.3389/fonc.2020.01152 32850327
    [Google Scholar]
  64. Pang K. Wang W. Qin J.X. Shi Z.D. Hao L. Ma Y.Y. Xu H. Wu Z.X. Pan D. Chen Z.S. Han C.H. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm 2022 3 4 e175 10.1002/mco2.175 36349142
    [Google Scholar]
  65. Eid R.A. Soltan M.A. Eldeen M.A. Shati A.A. Dawood S.A. Eissa M. Zaki M.S.A. Algahtani M. Theyab A. Abdel-Daim M.M. Kim B. Assessment of RACGAP1 as a prognostic and immunological biomarker in multiple human tumors: A multiomics analysis. Int. J. Mol. Sci. 2022 23 22 14102 10.3390/ijms232214102 36430577
    [Google Scholar]
  66. Wang R. Yang J.F. Ho F. Robertson E.S. You J. Bromodomain-containing protein BRD4 is hyperphosphorylated in mitosis. Cancers 2020 12 6 1637 10.3390/cancers12061637 32575711
    [Google Scholar]
  67. Ma L. Shan L. ACTL6A promotes the growth in non-small cell lung cancer by regulating Hippo/Yap pathway. Exp. Lung Res. 2021 47 5 250 259 10.1080/01902148.2021.1916651 33896314
    [Google Scholar]
  68. Zhang Z. Guo H. Zhang H. Upregulated expression of actin-like 6A is a risk factor affecting the prognosis of pancreatic cancer. Cancer Manag. Res. 2021 13 9467 9475 10.2147/CMAR.S342745 35002324
    [Google Scholar]
  69. Yang Z. Zou S. Zhang Y. Zhang J. Zhang P. Xiao L. Xie Y. Meng M. Feng J. Kang L. Lee M.H. Fang L. ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis. Nat. Commun. 2023 14 1 4193 10.1038/s41467‑023‑39901‑8 37443154
    [Google Scholar]
  70. Li J. Liu X. Dong S. Liao H. Huang W. Yuan X. Circ_0101802 facilitates colorectal cancer progression depending on the regulation of miR-665/DVL3 signaling. Biochem. Genet. 2022 60 6 2250 2267 10.1007/s10528‑022‑10207‑6 35314912
    [Google Scholar]
  71. Zhao Q. Zhuang K. Han K. Tang H. Wang Y. Si W. Yang Z. Silencing DVL3 defeats MTX resistance and attenuates stemness via Notch Signaling Pathway in colorectal cancer. Pathol. Res. Pract. 2020 216 8 152964 10.1016/j.prp.2020.152964 32414668
    [Google Scholar]
  72. Del Valle L. Dai L. Lin H.Y. Lin Z. Chen J. Post S.R. Qin Z. Role of EIF4G1 network in non‐small cell lung cancers (NSCLC) cell survival and disease progression. J. Cell. Mol. Med. 2021 25 6 2795 2805 10.1111/jcmm.16307 33539648
    [Google Scholar]
  73. Li K. Tan G. Zhang X. Lu W. Ren J. Si Y. Adu-Gyamfi E.A. Li F. Wang Y. Xie B. Wang M. EIF4G1 is a potential prognostic biomarker of breast cancer. Biomolecules 2022 12 12 1756 10.3390/biom12121756 36551184
    [Google Scholar]
  74. Dell’Anno I. Barbarino M. Barone E. Giordano A. Luzzi L. Bottaro M. Migliore L. Agostini S. Melani A. Melaiu O. Catalano C. Cipollini M. Silvestri R. Corrado A. Gemignani F. Landi S. EIF4G1 and RAN as possible drivers for malignant pleural mesothelioma. Int. J. Mol. Sci. 2020 21 14 4856 10.3390/ijms21144856 32659970
    [Google Scholar]
  75. Bhandari N. Acharya D. Chatterjee A. Mandve L. Kumar P. Pratap S. Malakar P. Shukla S.K. Pan-cancer integrated bioinformatic analysis of RNA polymerase subunits reveal RNA Pol I member CD3EAP regulates cell growth by modulating autophagy. Cell Cycle 2023 22 18 1986 2002 10.1080/15384101.2023.2265676 37795959
    [Google Scholar]
  76. Liu Y. Wu M. Xu S. Niu X. Liu W. Miao C. Lin A. Xu Y. Yu L. PSMD2 contributes to the progression of esophageal squamous cell carcinoma by repressing autophagy. Cell Biosci. 2023 13 1 67 10.1186/s13578‑023‑01016‑4 36998052
    [Google Scholar]
  77. Wang S. Wang H. Zhu S. Wang Z. PSMD2 promotes the progression of bladder cancer and is correlated with immune infiltration. Front. Oncol. 2022 12 1058506 10.3389/fonc.2022.1058506 36505799
    [Google Scholar]
  78. Zhao H. Lu G. Prognostic implication and immunological role of PSMD2 in lung adenocarcinoma. Front. Genet. 2022 13 905581 10.3389/fgene.2022.905581 35754829
    [Google Scholar]
  79. Wang W.H. Chen S.K. Huang H.C. Juan H.F. Proteomic analysis reveals that metformin suppresses PSMD2, STIP1, and CAP1 for preventing gastric cancer AGS cell proliferation and migration. ACS Omega 2021 6 22 14208 14219 10.1021/acsomega.1c00894 34124444
    [Google Scholar]
  80. Pérot S. Sperandio O. Miteva M.A. Camproux A.C. Villoutreix B.O. Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery. Drug Discov. Today 2010 15 15-16 656 667 10.1016/j.drudis.2010.05.015 20685398
    [Google Scholar]
  81. Orchard M.G. Neuss J.C. Galley C.M.S. Carr A. Porter D.W. Smith P. Scopes D.I.C. Haydon D. Vousden K. Stubberfield C.R. Young K. Page M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg. Med. Chem. Lett. 2004 14 15 3975 3978 10.1016/j.bmcl.2004.05.050 15225710
    [Google Scholar]
  82. van der Peet P. Ralton J.E. McConville M.J. Williams S.J. Discovery of inhibitors of Leishmania β-1,2-mannosyltransferases using a click-chemistry-derived guanosine monophosphate library. PLoS One 2012 7 2 32642 10.1371/journal.pone.0032642 22393429
    [Google Scholar]
  83. Karplus M. Petsko G.A. Molecular dynamics simulations in biology. Nature 1990 347 6294 631 639 10.1038/347631a0 2215695
    [Google Scholar]
  84. Arnittali M. Rissanou A. Harmandaris V. Structure of biomolecules through molecular dynamics simulations. Procedia Comput. Sci. 2019 156 69 78 10.1016/j.procs.2019.08.181
    [Google Scholar]
  85. Behairy M.Y. Soltan M.A. Eldeen M.A. Abdulhakim J.A. Alnoman M.M. Abdel-Daim M.M. Otifi H. Al-Qahtani S.M. Zaki M.S.A. Alsharif G. Albogami S. Jafri I. Fayad E. Darwish K.M. Elhady S.S. Eid R.A. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front. Immunol. 2022 13 1008463 10.3389/fimmu.2022.1008463 36569842
    [Google Scholar]
  86. Al-Karmalawy A.A. Dahab M.A. Metwaly A.M. Elhady S.S. Elkaeed E.B. Eissa I.H. Darwish K.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Front Chem. 2021 9 661230 10.3389/fchem.2021.661230 34017819
    [Google Scholar]
  87. Kim T.E. Tsuboyama K. Houliston S. Martell C.M. Phoumyvong C.M. Lemak A. Haddox H.K. Arrowsmith C.H. Rocklin G.J. Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation. Proc. Natl. Acad. Sci. USA 2022 119 41 2122676119 10.1073/pnas.2122676119 36191185
    [Google Scholar]
  88. Fatriansyah J.F. Rizqillah R.K. Yandi M.Y. Sahlan M. Molecular docking and dynamics studies on propolis sulabiroin-A as a potential inhibitor of SARS-CoV-2. J. King Saud Univ. Sci. 2022 34 1 101707 10.1016/j.jksus.2021.101707 34803333
    [Google Scholar]
  89. Singh W. Karabencheva-Christova T.G. Black G.W. Ainsley J. Dover L. Christov C.Z. Conformational dynamics, ligand binding and effects of mutations in NirE an S-adenosyl-l-methionine dependent methyltransferase. Sci. Rep. 2016 6 20107 10.1038/srep20107 26822701
    [Google Scholar]
  90. Ding T. Karlov D.S. Pino-Angeles A. Tikhonova I.G. Intermolecular interactions in G protein-coupled receptor allosteric sites at the membrane interface from molecular dynamics simulations and quantum chemical calculations. J. Chem. Inf. Model. 2022 62 19 4736 4747 10.1021/acs.jcim.2c00788 36178787
    [Google Scholar]
  91. Stanley N. Pardo L. Fabritiis G.D. The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Sci. Rep. 2016 6 22639 10.1038/srep22639 26940769
    [Google Scholar]
  92. Luís J.P. Mata A.I. Simões C.J.V. Brito R.M.M. Conformational dynamics of the soluble and membrane-bound forms of interleukin-1 receptor type-1: Insights into linker flexibility and domain orientation. Int. J. Mol. Sci. 2022 23 5 2599 10.3390/ijms23052599 35269739
    [Google Scholar]
  93. de Souza A.S. Pacheco B.D.C. Pinheiro S. Muri E.M.F. Dias L.R.S. Lima C.H.S. Garrett R. de Moraes M.B.M. de Souza B.E.G. Puzer L. 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorg. Med. Chem. Lett. 2019 29 9 1094 1098 10.1016/j.bmcl.2019.02.031 30833107
    [Google Scholar]
  94. Cavasotto C.N. Binding free energy calculation using quantum mechanics aimed for drug lead optimization. Methods Mol. Biol. 2020 2114 257 268 10.1007/978‑1‑0716‑0282‑9_16 32016898
    [Google Scholar]
  95. Biela A. Khayat M. Tan H. Kong J. Heine A. Hangauer D. Klebe G. Impact of ligand and protein desolvation on ligand binding to the S1 pocket of thrombin. J. Mol. Biol. 2012 418 5 350 366 10.1016/j.jmb.2012.01.054 22366545
    [Google Scholar]
  96. Abdelhameed R.F.A. Ibrahim A.K. Elfaky M.A. Habib E.S. Mahamed M.I. Mehanna E.T. Darwish K.M. Khodeer D.M. Ahmed S.A. Elhady S.S. Antioxidant and anti-inflammatory activity of Cynanchum acutum L. isolated flavonoids using experimentally induced type 2 diabetes mellitus: Biological and in silico investigation for NF-κB pathway/miR-146a expression modulation. Antioxidants 2021 10 11 1713 10.3390/antiox10111713 34829584
    [Google Scholar]
  97. Preikša J. Petrikaitė V. Petrauskas V. Matulis D. Intrinsic solubility of ionizable compounds from p Ka shift. ACS Omega 2023 8 47 44571 44577 10.1021/acsomega.3c04071 38046347
    [Google Scholar]
  98. Makarenkov A.V. Kiselev S.S. Kononova E.G. Dolgushin F.M. Peregudov A.S. Borisov Y.A. Ol’shevskaya V.A. Synthesis, characterization and DFT study of a new family of high-energy compounds based on s-Triazine, Carborane and Tetrazoles. Molecules 2022 27 21 7484 10.3390/molecules27217484 36364313
    [Google Scholar]
  99. Ghareb N. Darwish K.M. Nafie M.S. Elrayess R. Abourobe N.M. Fattah S.A. Hazem R.M. Mehanna E.T. Elrayess R. Development, biological evaluation, and molecular modelling of some benzene-sulfonamide derivatives as protein tyrosine phosphatase-1B inhibitors for managing diabetes mellitus and associated metabolic disorders. RSC Med. Chem. 2025 16 1 247 273 10.1039/D4MD00594E 39464651
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206395527250902101008
Loading
/content/journals/acamc/10.2174/0118715206395527250902101008
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test