Skip to content
2000
image of Induction of Apoptosis and Activation of Endoplasmic Reticulum Stress by SJ6986 in Diffuse Large B-cell Lymphoma

Abstract

Introduction

Diffuse large B-cell lymphoma (DLBCL) is one of the most prevalent hematological malignancies with high mortality. G1 to S phase transition 1 (GSPT1), a key translation termination factor involved in protein synthesis, has been implicated in tumor progression. This study aimed to investigate the effectiveness and underlying mechanisms of the GSPT1 degrader SJ6986 in DLBCL.

Methods

The TCGA and GTEx datasets were utilized to assess the expression of GSPT1 in DLBCL. The viability and proliferation of DLBCL cells were detected using the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was detected flow cytometry. The expression of GSPT1 was evaluated using qRT-PCR and Western blot. Xenograft mouse models were employed to explore the therapeutic potential of SJ6986. RNA sequencing was used to explore the potential mechanism of SJ6986 in DLBCL.

Results

This study first identified that GSPT1 is highly expressed in DLBCL and demonstrated that its genetic knockdown significantly suppressed the activity of DLBCL cells. Furthermore, it was found that SJ6986 effectively reduced the proliferation of DLBCL cells, induced cell apoptosis, and inhibited tumor growth without significant toxicity. Mechanistically, RNA sequencing analysis showed that the endoplasmic reticulum (ER) stress was significantly triggered following SJ6986 treatment, and SJ6986 was found to activate the ER stress-related apoptosis in DLBCL cells.

Discussion

Our findings suggested that SJ6986 exerts its anti-tumor effects in DLBCL and activates the ER stress-related apoptotic signaling. These results supported SJ6986 as a viable anticancer drug for treating DLBCL. Future studies should further investigate its mechanism and evaluate its clinical application value.

Conclusions

This study validated the efficacy and safety of SJ6986 in treating DLBCL and discovered its role in inducing ER stress and subsequent apoptosis, offering a promising therapeutic option for DLBCL patients.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206407523250902055051
2025-09-29
2025-11-07
Loading full text...

Full text loading...

References

  1. Zelenetz A.D. Gordon L.I. Abramson J.S. Advani R.H. Andreadis B. Bartlett N.L. Budde L.E. Caimi P.F. Chang J.E. Christian B. DeVos S. Dholaria B. Fayad L.E. Habermann T.M. Hamid M.S. Hernandez-Ilizaliturri F. Hu B. Kaminski M.S. Karimi Y. Kelsey C.R. King R. Krivacic S. LaCasce A.S. Lim M. Messmer M. Narkhede M. Rabinovitch R. Ramakrishnan P. Reid E. Roberts K.B. Saeed H. Smith S.D. Svoboda J. Swinnen L.J. Tuscano J. Vose J.M. Dwyer M.A. Sundar H. NCCN guidelines® insights: B-cell lymphomas, version 6.2023. J. Natl. Compr. Canc. Netw. 2023 21 11 1118 1131 10.6004/jnccn.2023.0057 37935098
    [Google Scholar]
  2. Sehn L.H. Salles G. Diffuse large B-cell lymphoma. N. Engl. J. Med. 2021 384 9 842 858 10.1056/NEJMra2027612 33657296
    [Google Scholar]
  3. Alizadeh A.A. Eisen M.B. Davis R.E. Ma C. Lossos I.S. Rosenwald A. Boldrick J.C. Sabet H. Tran T. Yu X. Powell J.I. Yang L. Marti G.E. Moore T. Hudson J. Lu L. Lewis D.B. Tibshirani R. Sherlock G. Chan W.C. Greiner T.C. Weisenburger D.D. Armitage J.O. Warnke R. Levy R. Wilson W. Grever M.R. Byrd J.C. Botstein D. Brown P.O. Staudt L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000 403 6769 503 511 10.1038/35000501 10676951
    [Google Scholar]
  4. Frontzek F. Karsten I. Schmitz N. Lenz G. Current options and future perspectives in the treatment of patients with relapsed/refractory diffuse large B-cell lymphoma. Ther. Adv. Hematol. 2022 13 20406207221103321 10.1177/20406207221103321 35785244
    [Google Scholar]
  5. Maurer M.J. Ghesquières H. Jais J.P. Witzig T.E. Haioun C. Thompson C.A. Delarue R. Micallef I.N. Peyrade F. Macon W.R. Jo Molina T. Ketterer N. Syrbu S.I. Fitoussi O. Kurtin P.J. Allmer C. Nicolas-Virelizier E. Slager S.L. Habermann T.M. Link B.K. Salles G. Tilly H. Cerhan J.R. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J. Clin. Oncol. 2014 32 10 1066 1073 10.1200/JCO.2013.51.5866 24550425
    [Google Scholar]
  6. Furqan F. Hamadani M. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma: A review of clinical data. Ther. Adv. Hematol. 2022 13 20406207221087511 10.1177/20406207221087511 35340719
    [Google Scholar]
  7. Chan J.Y. Somasundaram N. Grigoropoulos N. Lim F. Poon M.L. Jeyasekharan A. Yeoh K.W. Tan D. Lenz G. Ong C.K. Lim S.T. Evolving therapeutic landscape of diffuse large B-cell lymphoma: Challenges and aspirations. Discov Oncol. 2023 14 1 132 10.1007/s12672‑023‑00754‑8 37466782
    [Google Scholar]
  8. Klener P. Klanova M. Drug resistance in non-hodgkin lymphomas. Int. J. Mol. Sci. 2020 21 6 2081 10.3390/ijms21062081 32197371
    [Google Scholar]
  9. Zhang J. Gu Y. Chen B. Drug-resistance mechanism and new targeted drugs and treatments of relapse and refractory DLBCL. Cancer Manag. Res. 2023 15 245 255 10.2147/CMAR.S400013 36873252
    [Google Scholar]
  10. Zhouravleva G. Frolova L. Le Goff X. Le Guellec R. Inge-Vechtomov S. Kisselev L. Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 14 16 4065 4072 10.1002/j.1460‑2075.1995.tb00078.x 7664746
    [Google Scholar]
  11. Xiao R. Li C. Chai B. miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed. Pharmacother. 2015 74 138 144 10.1016/j.biopha.2015.08.006 26349975
    [Google Scholar]
  12. Xi Y. Gao J. Li X. Xu L. Li Z. Yang L. Wang J. Wang H. Fang X. Huang S. Xie W. Feng M. Zhang J. GSPT1 functions as a tumor promoter in human liver cancer. Curr. Med. Sci. 2023 43 1 104 114 10.1007/s11596‑022‑2665‑6 36459303
    [Google Scholar]
  13. Shen H. Xu H. Jin W. Wu T. Hu J. Zhang C. Zhong Z. Li J. Mao R. Zhang S. Zhang X. Wu X. Smaill J.B. Xu J. Zhang Y. Xu Y. Discovery of a potent and selective gspt1 molecular glue degrader for the treatment of castration-resistant prostate cancer. J. Med. Chem. 2025 68 2 1553 1571 10.1021/acs.jmedchem.4c02205 39746330
    [Google Scholar]
  14. Samarasinghe K.T.G. Crews C.M. Targeted protein degradation: A promise for undruggable proteins. Cell Chem. Biol. 2021 28 7 934 951 10.1016/j.chembiol.2021.04.011 34004187
    [Google Scholar]
  15. Dong G. Ding Y. He S. Sheng C. Molecular glues for targeted protein degradation: From serendipity to rational discovery. J. Med. Chem. 2021 64 15 10606 10620 10.1021/acs.jmedchem.1c00895 34319094
    [Google Scholar]
  16. Surka C. Jin L. Mbong N. Lu C.C. Jang I.S. Rychak E. Mendy D. Clayton T. Tindall E. Hsu C. Fontanillo C. Tran E. Contreras A. Ng S.W.K. Matyskiela M. Wang K. Chamberlain P. Cathers B. Carmichael J. Hansen J. Wang J.C.Y. Minden M.D. Fan J. Pierce D.W. Pourdehnad M. Rolfe M. Lopez-Girona A. Dick J.E. Lu G. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 2021 137 5 661 677 10.1182/blood.2020008676 33197925
    [Google Scholar]
  17. Sasayama T. Hamada T. Tanaka K. Nagashima H. Yamanishi S. Ueyama T. Potential of GSPT1 as a novel target for glioblastoma therapy. Cell Death Dis. 2024 15 8 572 10.1038/s41419‑024‑06967‑1 39117611
    [Google Scholar]
  18. Nishiguchi G. Keramatnia F. Min J. Chang Y. Jonchere B. Das S. Actis M. Price J. Chepyala D. Young B. McGowan K. Slavish P.J. Mayasundari A. Jarusiewicz J.A. Yang L. Li Y. Fu X. Garrett S.H. Papizan J.B. Kodali K. Peng J. Pruett Miller S.M. Roussel M.F. Mullighan C. Fischer M. Rankovic Z. Identification of potent, selective, and orally bioavailable small-molecule gspt1/2 degraders from a focused library of cereblon modulators. J. Med. Chem. 2021 64 11 7296 7311 10.1021/acs.jmedchem.0c01313 34042448
    [Google Scholar]
  19. Chen X. Cubillos-Ruiz J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 2021 21 2 71 88 10.1038/s41568‑020‑00312‑2 33214692
    [Google Scholar]
  20. Susanibar-Adaniya S. Barta S.K. 2021 update on diffuse large b cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021 96 5 617 629 10.1002/ajh.26151 33661537
    [Google Scholar]
  21. Bachanova V. Perales M.A. Abramson J.S. Modern management of relapsed and refractory aggressive B-cell lymphoma: A perspective on the current treatment landscape and patient selection for CAR T-cell therapy. Blood Rev. 2020 40 100640 10.1016/j.blre.2019.100640 31780119
    [Google Scholar]
  22. Crump M. Neelapu S.S. Farooq U. Van Den Neste E. Kuruvilla J. Westin J. Link B.K. Hay A. Cerhan J.R. Zhu L. Boussetta S. Feng L. Maurer M.J. Navale L. Wiezorek J. Go W.Y. Gisselbrecht C. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017 130 16 1800 1808 10.1182/blood‑2017‑03‑769620 28774879
    [Google Scholar]
  23. Zhang D. Lin P. Lin J. Molecular glues targeting GSPT1 in cancers: A potent therapy. Bioorg. Chem. 2024 143 107000 10.1016/j.bioorg.2023.107000 38029571
    [Google Scholar]
  24. Long X. Zhao L. Li G. Wang Z. Deng Z. Identification of GSPT1 as prognostic biomarker and promoter of malignant colon cancer cell phenotypes via the GSK-3β/CyclinD1 pathway. Aging 2021 13 7 10354 10368 10.18632/aging.202796 33819920
    [Google Scholar]
  25. Liu R. Han X. Gao S. Chen Y. Zhang J. Hsa_circ_0001944 enhanced GSPT1 expression via sponging miR ‐498 to promote proliferation and invasion of gastric cancer. J. Clin. Lab. Anal. 2023 37 2 24810 10.1002/jcla.24810 36597856
    [Google Scholar]
  26. Chang X. Qu F. Li C. Zhang J. Zhang Y. Xie Y. Fan Z. Bian J. Wang J. Li Z. Xu X. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Med. Res. Rev. 2024 44 4 1727 1767 10.1002/med.22024 38314926
    [Google Scholar]
  27. Nair S. Bora-Singhal N. Perumal D. Chellappan S. Nicotine-mediated invasion and migration of non-small cell lung carcinoma cells by modulating STMN3 and GSPT1 genes in an ID1-dependent manner. Mol. Cancer 2014 13 1 173 10.1186/1476‑4598‑13‑173 25028095
    [Google Scholar]
  28. Borsi E. Mazzocchetti G. Dico A.F. Vigliotta I. Martello M. Poletti A. Solli V. Armuzzi S. Taurisano B. Kanapari A. Pistis I. Zamagni E. Tacchetti P. Pantani L. Mancuso K. Rocchi S. Rizzello I. Cavo M. Terragna C. High levels of CRBN isoform lacking IMiDs binding domain predicts for a worse response to IMiDs-based upfront therapy in newly diagnosed myeloma patients. Clin. Exp. Med. 2023 23 8 5227 5239 10.1007/s10238‑023‑01205‑y 37815734
    [Google Scholar]
  29. Walter P. Ron D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011 334 6059 1081 1086 10.1126/science.1209038 22116877
    [Google Scholar]
  30. Rozpedek W. Pytel D. Mucha B. Leszczynska H. Diehl J.A. Majsterek I. The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr. Mol. Med. 2016 16 6 533 544 10.2174/1566524016666160523143937 27211800
    [Google Scholar]
  31. Li Y. Jiang W. Niu Q. Sun Y. Meng C. Tan L. Song C. Qiu X. Liao Y. Ding C. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis. 2019 10 12 891 10.1038/s41419‑019‑2128‑6 31767828
    [Google Scholar]
  32. Myoishi M. Hao H. Minamino T. Watanabe K. Nishihira K. Hatakeyama K. Asada Y. Okada K. Ishibashi-Ueda H. Gabbiani G. Bochaton-Piallat M.L. Mochizuki N. Kitakaze M. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 2007 116 11 1226 1233 10.1161/CIRCULATIONAHA.106.682054 17709641
    [Google Scholar]
  33. Wang M. Kaufman R.J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016 529 7586 326 335 10.1038/nature17041 26791723
    [Google Scholar]
  34. Alnuqaydan A.M. Rah B. Almutary A.G. Chauhan S.S. Synergistic antitumor effect of 5-fluorouracil and withaferin-A induces endoplasmic reticulum stress-mediated autophagy and apoptosis in colorectal cancer cells. Am. J. Cancer Res. 2020 10 3 799 815 32266092
    [Google Scholar]
  35. Peng C. Ma P. Dai H. Schizandrin A promotes apoptosis in prostate cancer by inducing ROS-mediated endoplasmic reticulum stress and JNK MAPK signaling activation. Pathol. Res. Pract. 2025 269 155889 10.1016/j.prp.2025.155889 40081283
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206407523250902055051
Loading
/content/journals/acamc/10.2174/0118715206407523250902055051
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test