Skip to content
2000
image of Apoptosis-Mediated Anticancer Activity of Zinc Oxide Nanoparticles Derived and Characterized from Halophila beccarii

Abstract

Introduction

Recent advancements in nanomedicine have drawn attention to the use of zinc oxide nanoparticles as apoptotic agents to address triple-negative breast cancer. -mediated zinc oxide nanoparticles (Hb-ZnONPs) were fabricated using zinc acetate dihydrate as the precursor.

Methods

The fabricated nanoparticles were characterized based on morphological, structural, and elemental composition using SEM and XRD. The antiproliferative potential of Hb-ZnONPs was studied using the BT-549 cell line as an model, employing the MTT assay and Annexin V-FITC/PI-based flow cytometry analysis.

Results & Discussion

The Hb-ZnONPs exhibited characteristic absorption maxima at 367 nm with a particle size of 35 nm and −44.7 mV stability. XRD confirmed the hexagonal wurtzite structure with an elemental composition of 62.3% Zn and 25.79% Oxygen. The Hb-ZnONPs demonstrated significant cytotoxicity against BT-549 cells, with 35.26% apoptosis at 5 µg/ml and 38.25% apoptosis at 10 µg/ml. However, cells in the late apoptosis stage increased from 14.48% at 5 µg/ml to 28.16% at 10 µg/ml, indicating a nearly twofold increase with the higher concentration.

Conclusion

Hb-ZnONPs may act as promising apoptotic inducers in the chemotherapy of breast cancer.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206413187250923055621
2025-09-26
2025-11-07
Loading full text...

Full text loading...

References

  1. Vidya C. Hiremath S. Chandraprabha M.N. Antonyraj M.L. Gopal I.V. Jain A. Green synthesis of ZnO nanoparticles by calotropis gigantea. Int. J. Curr. Eng. Technol 2013 1 1 118 120
    [Google Scholar]
  2. Muhammad I. Hassan S.S. Farooq M.A. Zhang H. Ali F. Xiao X. Yan S-K. Jin H-Z. Undescribed secondary metabolites derived from cinnamomum migao H. W. Li, showcasing anti-inflammatory, antioxidant, and in silico properties. J. Mol. Struct. 2024 1312 138485 10.1016/j.molstruc.2024.138485
    [Google Scholar]
  3. Le K.H. Nguyen M.D.B. Tran L.D. Nguyen Thi H.P. Tran C.V. Tran K.V. Nguyen Thi H.P. Dinh Thi N. Yoon Y.S. Nguyen D.D. La D.D. A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Prog. Org. Coat. 2021 158 106339 10.1016/j.porgcoat.2021.106339
    [Google Scholar]
  4. Kalpana V.N. Devi Rajeswari V. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorg. Chem. Appl. 2018 2018 1 12 10.1155/2018/3569758 30154832
    [Google Scholar]
  5. Jeong G.J. Khan S. Tabassum N. Khan F. Kim Y.M. Marine-bioinspired nanoparticles as potential drugs for multiple biological roles. Mar. Drugs 2022 20 8 527 10.3390/md20080527 36005529
    [Google Scholar]
  6. Moustakas M. Malea P. Haritonidou K. Sperdouli I. Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass cymodocea nodosa exposed to copper oxide nanoparticles. Environ. Sci. Pollut. Res. Int. 2017 24 19 16007 16018 10.1007/s11356‑017‑9174‑3 28537017
    [Google Scholar]
  7. Nagime P.V. Chandak V.S. A comprehensive review of nanomaterials synthesis: Physical, chemical, and biological approaches and emerging challenges. Biocatal. Agric. Biotechnol. 2024 62 103458 10.1016/j.bcab.2024.103458
    [Google Scholar]
  8. Rarokar N. Yadav S. Saoji S. Bramhe P. Agade R. Gurav S. Khedekar P. Subramaniyan V. Wong L.S. Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int. J. Pharm. X 2024 7 100231 10.1016/j.ijpx.2024.100231 38322276
    [Google Scholar]
  9. Jha S. Rani R. Singh S. Biogenic zinc oxide nanoparticles and their biomedical applications: A review. J. Inorg. Organomet. Polym. Mater. 2023 33 6 1437 1452 10.1007/s10904‑023‑02550‑x 37359387
    [Google Scholar]
  10. Chanthini A.B. Balasubramani G. Ramkumar R. Sowmiya R. Balakumaran M.D. Kalaichelvan P.T. Perumal P. Structural characterization, antioxidant and in vitro cytotoxic properties of seagrass, Cymodocea serrulata (R.Br.) Asch. & Magnus mediated silver nanoparticles. J. Photochem. Photobiol. B 2015 153 145 152 10.1016/j.jphotobiol.2015.09.014 26409094
    [Google Scholar]
  11. Mishra A.K. Apte D. The current status of halophila beccarii: An ecologically significant, yet vulnerable seagrass of india. Ocean Coast. Manage. 2021 200 105484 10.1016/j.ocecoaman.2020.105484
    [Google Scholar]
  12. Vani M. Devi P.U. Seagrass in the control of hyperglycemic and hyperlipidemic states of streptozotocin induced diabetic rats. Pharmacogn. J. 2020 12 6s 1716 1721 10.5530/pj.2020.12.232
    [Google Scholar]
  13. Heera P. Sharma Y. Anand V. Kumar A. Kumar R. Preparation of ZnO nanoparticles by green synthesis using Jatropha latex as reducing agent. Preprint 2024 10.2139/ssrn.5052267
    [Google Scholar]
  14. Nagarajan S. Arumugam Kuppusamy K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of mannar, india. J. Nanobiotechnology 2013 11 1 39 10.1186/1477‑3155‑11‑39 24298944
    [Google Scholar]
  15. Vijayakumar S. Krishnakumar C. Arulmozhi P. Mahadevan S. Parameswari N. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Glycosmis pentaphylla (Retz.) DC. Microb. Pathog. 2018 116 44 48 10.1016/j.micpath.2018.01.003 29330059
    [Google Scholar]
  16. Saeed S. Nawaz S. Nisar A. Mehmood T. Tayyab M. Nawaz M. Firyal S. Bilal M. Mohyuddin A. Ullah A. Effective fabrication of zinc-oxide (ZnO) nanoparticles using achyranthes aspera leaf extract and their potent biological activities against the bacterial poultry pathogens. Mater. Res. Express 2021 8 3 035004 10.1088/2053‑1591/abea47
    [Google Scholar]
  17. Taziwa R. Meyer E. Katwire D. Ntozakhe L. Influence of carbon modification on the morphological, structural, and optical properties of zinc oxide nanoparticles synthesized by pneumatic spray pyrolysis technique. J. Nanomater. 2017 2017 1 1 11 10.1155/2017/9095301
    [Google Scholar]
  18. Najmi A. Javed S.A. Al Bratty M. Alhazmi H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022 27 2 349 10.3390/molecules27020349 35056662
    [Google Scholar]
  19. Manjunatha R.L. Sharani K.V.U. Naik D. Synthesis and characterization of ZnO nanoparticles: A review. J. Pharmacogn. Phytochem. 2019 8 3 1095 1101
    [Google Scholar]
  20. Murali M. Mahendra C. Nagabhushan; Rajashekar, N.; Sudarshana, M.S.; Raveesha, K.A.; Amruthesh, K.N. Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L. – An endemic species. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017 179 104 109 10.1016/j.saa.2017.02.027 28236681
    [Google Scholar]
  21. Kamnev A.A. Dyatlova Y.A. Kenzhegulov O.A. Vladimirova A.A. Mamchenkova P.V. Tugarova A.V. Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: Sample preparation effects. Molecules 2021 26 4 1146 10.3390/molecules26041146 33669948
    [Google Scholar]
  22. Sreelakshmi T. Prasad A.R. Joseph A. Synthesis, characterization, and effective removal of dye pollutants from water bodies using a new ZnO nanocomposite. J. Indian Chem. Soc. 2024 101 8 101183 10.1016/j.jics.2024.101183
    [Google Scholar]
  23. Souma M. Bariotakis M. Koufaki M. Stefanakis M.K. Angeli G.K. Ntagounakis G. Trikalitis P. Katerinopoulos H.E. Castanas E. Pirintsos S.A. Synthesis of ZnO nanoparticles from the medicinal plant salvia fruticosa mill.: Green approach for potential biomedical application against Zn deficiency in humans. Ceram. Int. 2024 50 21 41810 41819 10.1016/j.ceramint.2024.08.034
    [Google Scholar]
  24. Shaikhaldein H.O. Al-Qurainy F. Khan S. Nadeem M. Tarroum M. Salih A.M. Gaafar A.R.Z. Alshameri A. Alansi S. Alenezi N.A. Alfarraj N.S. Biosynthesis and characterization of ZnO nanoparticles using Ochradenus arabicus and their effect on growth and antioxidant systems of maerua oblongifolia. Plants 2021 10 9 1808 10.3390/plants10091808 34579340
    [Google Scholar]
  25. Ahamed M. Javed Akhtar; Kumar, S.; Khan, M.; Ahmad, J.; Alrokayan, S.A. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomedicine 2012 7 845 857 10.2147/IJN.S29129 22393286
    [Google Scholar]
  26. Manikandan B. Endo T. Kaneko S. Murali K.R. John R. Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2018 29 11 9474 9485 10.1007/s10854‑018‑8981‑8
    [Google Scholar]
  27. Dhoke S.K. Synthesis of nano-ZnO by chemical method and its characterization. Results Chem. 2023 5 4 100771 10.1016/j.rechem.2023.100771
    [Google Scholar]
  28. Senthilkumar N. Nandhakumar E. Priya P. Soni D. Vimalan M. Potheher, IV Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J. Chem. 2017 41 18 10347 10356 10.1039/C7NJ02664A
    [Google Scholar]
  29. Prakashkumar N. Pugazhendhi A. Brindhadevi K. Garalleh H.A.L. Garaleh M. Suganthy N. RETRACTED: Comparative study of zinc oxide nanoparticles synthesized through biogenic and chemical route with reference to antibacterial, antibiofilm and anticancer activities. Environ. Res. 2023 220 115136 10.1016/j.envres.2022.115136 36584851
    [Google Scholar]
  30. Alsaleh N.B. Assiri M.A. Aljarbou A.M. Almutairi M.M. As Sobeai H.M. Alshamrani A.A. Almudimeegh S. Adverse responses following exposure to subtoxic concentrations of zinc oxide and nickle oxide nanoparticles in the Raw 264.7 cells. Toxics 2023 11 8 674 10.3390/toxics11080674 37624179
    [Google Scholar]
  31. Kim M.H. Jeong H.J. Zinc oxide nanoparticles suppress LPS-induced NF- κ B activation by inducing A20, a negative regulator of NF- κB, in RAW 264.7 macrophages. J. Nanosci. Nanotechnol. 2015 15 9 6509 6515 10.1166/jnn.2015.10319 26716206
    [Google Scholar]
  32. Kumar P. Nagarajan A. Uchil P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc 2018 2018 6 pdb.prot095505. 10.1101/pdb.prot095505 29858338
    [Google Scholar]
  33. Rama P. Mariselvi P. Sivakami S. Thangapushbam V. Jothika M. Santhamoorthy M. Karuppiah M. Sundaram S. Arumugam N. Almansour A.I. Eco-friendly green synthesis of zinc oxide nanoparticles and their antimicrobial, anticancer, cytotoxicity activity and degradation of dyes. Preprint 2025 10.2139/ssrn.5219340
    [Google Scholar]
  34. Boroumand Moghaddam A. Moniri M. Azizi S. Abdul Rahim R. Bin Ariff A. Navaderi M. Mohamad R. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes 2017 8 10 281 10.3390/genes8100281 29053567
    [Google Scholar]
  35. Velsankar K. Sudhahar S. Parvathy G. Kaliammal R. Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Mater. Chem. Phys. 2020 239 121976 10.1016/j.matchemphys.2019.121976
    [Google Scholar]
  36. Vafaei S. Sadat Shandiz S.A. Piravar Z. Zinc-phosphate nanoparticles as a novel anticancer agent: An in vitro evaluation of their ability to induce apoptosis. Biol. Trace Elem. Res. 2020 198 1 109 117 10.1007/s12011‑020‑02054‑6 32006202
    [Google Scholar]
  37. Alshehade S.A. Almoustafa H.A. Alshawsh M.A. Chik Z. Flow cytometry-based quantitative analysis of cellular protein expression in apoptosis subpopulations: A protocol. Heliyon 2024 10 13 e33665 10.1016/j.heliyon.2024.e33665 39040270
    [Google Scholar]
  38. Tan Y. Hu A. Lu J. Lin Y. Li X. Yamaguchi T. Tabuchi M. Kawakami Z. Ikarashi Y. Kobayashi H. Protective effects of centella asiatica against senescence and apoptosis in epidermal cells. Biology 2025 14 2 202 10.3390/biology14020202 40001970
    [Google Scholar]
  39. Janaki A.C. Sailatha E. Gunasekaran S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 144 5 17 22 10.1016/j.saa.2015.02.041 25748589
    [Google Scholar]
  40. Singh S. Gade J.V. Verma D.K. Elyor B. Jain B. Exploring ZnO nanoparticles: UV–visible analysis and different size estimation methods. Opt. Mater. 2024 152 115422 10.1016/j.optmat.2024.115422
    [Google Scholar]
  41. Prasad V. D’Souza C. Yadav D. Shaikh A.J. Vigneshwaran N. Spectroscopic characterization of zinc oxide nanorods synthesized by solid-state reaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2006 65 1 173 178 10.1016/j.saa.2005.10.001 16458053
    [Google Scholar]
  42. Harshitha V.R. Ilangovar I.G. Suresh V. Pitchiah S. Sivaperumal P. Synthesis of zinc oxide nanoparticles from cymodocea serrulata leaf extract and their biological activities. Cureus 2024 16 3 e55521 10.7759/cureus.55521 38576637
    [Google Scholar]
  43. Aboul-Soud M.A.M. Siddique R. Fozia F. Ullah A. Rashid Y. Ahmad I. Zaghloul N.S.S. Al-Rejaie S.S. Mohany M. Antiplatelet, cytotoxic activities and characterization of green-synthesized zinc oxide nanoparticles using aqueous extract of Nephrolepis exaltata. Environ. Sci. Pollut. Res. Int. 2023 30 29 73870 73880 10.1007/s11356‑023‑27483‑3 37195603
    [Google Scholar]
  44. Naiel B. Fawzy M. Halmy M.W.A. Mahmoud A.E.D. Green synthesis of zinc oxide nanoparticles using sea lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 2022 12 1 20370 10.1038/s41598‑022‑24805‑2 36437355
    [Google Scholar]
  45. Nkemzi A.Q. Okaiyeto K. Oyenihi O. Opuwari C.S. Ekpo O.E. Oguntibeju O.O. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of helichrysum cymosum 3 Biotech 2024 14 12 291 10.1007/s13205‑024‑04125‑0 39507059
    [Google Scholar]
  46. Ramesh P. Rajendran A. Ashokkumar M. Biosynthesis of zinc oxide nanoparticles from Phyllanthus Niruri plant extract for photocatalytic and antioxidant activities. Int. J. Environ. Anal. Chem. 2024 104 7 1561 1572 10.1080/03067319.2022.2041004
    [Google Scholar]
  47. Umar H. Kavaz D. Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomedicine 2018 14 87 100 10.2147/IJN.S186888 30587987
    [Google Scholar]
  48. Karam S.T. Abdulrahman A.F. Green synthesis and characterization of ZnO nanoparticles by using thyme plant leaf extract. Photonics 2022 9 8 594 10.3390/photonics9080594
    [Google Scholar]
  49. Rambabu K. Bharath G. Banat F. Show P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater. 2021 402 123560 10.1016/j.jhazmat.2020.123560 32759001
    [Google Scholar]
  50. Unni V. Abishad P. Prasastha Ram V. Niveditha P. Yasur J. John L. Rawool D.B. Green synthesis, and characterization of zinc oxide nanoparticles using piper longum catkin extract and its in vitro antimicrobial activity against multi-drug-resistant non-typhoidal salmonella spp. Inorg Nano-Met Chem. 2022 54 9 849 857 10.1080/24701556.2022.2078356
    [Google Scholar]
  51. Anandan M. Dinesh S. Krishnakumar N. Balamurugan K. Tuning the crystalline size of template free hexagonal ZnO nanoparticles via precipitation synthesis towards enhanced photocatalytic performance. J. Mater. Sci. Mater. Electron. 2017 28 3 2574 2585 10.1007/s10854‑016‑5833‑2
    [Google Scholar]
  52. Gautam S.K. Sapkota B. Bhujel A. Bhattarai S. Estimation of particle size and band gap of zinc oxide nanoparticle synthesized by chemical precipitation method. J. Nepal Chem. Soc. 2020 41 1 46 50 10.3126/jncs.v41i1.30448
    [Google Scholar]
  53. Darezereshki E. Vakylabad A.B. Koohestani B. A hydrometallurgical approach to produce nano-ZnO from electrical arc furnace dusts. Min. Metall. Explor. 2021 38 3 1525 1535 10.1007/s42461‑021‑00412‑z
    [Google Scholar]
  54. Barzinjy A.A. Azeez H.H. Green synthesis and characterization of zinc oxide nanoparticles using eucalyptus globulus labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2020 2 5 991 10.1007/s42452‑020‑2813‑1
    [Google Scholar]
  55. Islam M.F. islam, S.; Miah, M.A.S.; Huq, A.K.O.; Saha, A.K.; Mou, Z.J.; Mondol, M.M.H.; Bhuiyan, M.N.I. Green synthesis of zinc oxide nano particles using Allium cepa L. waste peel extracts and its antioxidant and antibacterial activities. Heliyon 2024 10 3 e25430 10.1016/j.heliyon.2024.e25430 38333859
    [Google Scholar]
  56. Shen C. James S.A. de Jonge M.D. Turney T.W. Wright P.F.A. Feltis B.N. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol. Sci. 2013 136 1 120 130 10.1093/toxsci/kft187 23997113
    [Google Scholar]
  57. Rupa E.J. Nahar J. Al-Amin M. Park J.K. Murugesan M. Awais M. Lee S.J. Kim I.M. Ling L. Yang D.C. Yang D-U. Jung D-H. Jung S-K. Cissus antractica-ZnO NPs induce apoptosis in A549 Cells through ROS-generated p53/Bcl-2/Bax signaling pathways and inhibition of inflammatory cytokines. Coatings 2023 13 12 2077 10.3390/coatings13122077
    [Google Scholar]
  58. Bisht G. Rayamajhi S. ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine (Rij) 2016 3 9 9 10.5772/63437 29942384
    [Google Scholar]
  59. Mishra A.P. Salehi B. Sharifi-Rad M. Pezzani R. Kobarfard F. Sharifi-Rad J. Nigam M. Programmed cell death, from a cancer perspective: An overview. Mol. Diagn. Ther. 2018 22 3 281 295 10.1007/s40291‑018‑0329‑9 29560608
    [Google Scholar]
  60. Yu Z. Li Q. Wang J. Yu Y. Wang Y. Zhou Q. Li P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett. 2020 15 1 115 10.1186/s11671‑020‑03344‑7 32436107
    [Google Scholar]
  61. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  62. Cendrowicz E. Sas Z. Bremer E. Rygiel T.P. The role of macrophages in cancer development and therapy. Cancers 2021 13 8 1946 10.3390/cancers13081946 33919517
    [Google Scholar]
  63. Kwan Y.P. Saito T. Ibrahim D. Al-Hassan F.M.S. Ein Oon C. Chen Y. Jothy S.L. Kanwar J.R. Sasidharan S. Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm. Biol. 2015 54 7 1 14 10.3109/13880209.2015.1064451 26154521
    [Google Scholar]
  64. Tirapelli C.R. Padovan J.C. Oxidative stress in cardiorenal system. Antioxidants 2024 13 9 1126 10.3390/antiox13091126 39334785
    [Google Scholar]
  65. Sivaraj R. Rahman P.K. Rajiv P. Narendhran S. Venckatesh R. Biosynthesis and characterization of acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 129 255 258 10.1016/j.saa.2014.03.027 24747845
    [Google Scholar]
  66. Strasser A. Vaux D.L. Cell death in the origin and treatment of cancer. Mol. Cell 2020 78 6 1045 1054 10.1016/j.molcel.2020.05.014 32516599
    [Google Scholar]
  67. Li Y. Li J. Lu Y. Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochem. Funct. 2024 42 1 e3909 10.1002/cbf.3909 38269499
    [Google Scholar]
  68. Anjum S. Hashim M. Malik S.A. Khan M. Lorenzo J.M. Abbasi B.H. Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021 13 18 4570 10.3390/cancers13184570 34572797
    [Google Scholar]
  69. Ouyang L. Shi Z. Zhao S. Wang F.T. Zhou T.T. Liu B. Bao J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012 45 6 487 498 10.1111/j.1365‑2184.2012.00845.x 23030059
    [Google Scholar]
  70. Thokchom B. Bhavi S.M. Abbigeri M.B. Green synthesis, characterization and biomedical applications of centella asiatica-derived carbon dots. Carbon Lett. 2023 33 1057 1071 10.1007/s42823‑023‑00505‑3
    [Google Scholar]
  71. Bhavi S.M. Padti A.C. Thokchom B. Singh S.R. Bhat S.S. Bajire S.K. Shastry R.P. Srinath B.S. Gummani S.S. Harini B.P. Yarajarla R.B. Biogenic silver nanoparticles from simarouba glauca DC leaf extract: Synthesis, characterization, and anticancer efficacy in lung cancer cells with protective effects in caenorhabditis elegans. Nano TransMed 2024 3 100052 10.1016/j.ntm.2024.100052
    [Google Scholar]
  72. Krysko D.V. Vanden Berghe T. D’Herde K. Vandenabeele P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods 2008 44 3 205 221 10.1016/j.ymeth.2007.12.001 18314051
    [Google Scholar]
  73. Repnik U. Hafner Česen M. Turk B. Lysosomal membrane permeabilization in cell death: Concepts and challenges Mitochondrion 2014 19 Pt A 49 57 10.1016/j.mito.2014.06.006 24984038
    [Google Scholar]
  74. Savitskaya M.A. Zakharov I.I. Onishchenko G.E. Apoptotic features in non-apoptotic processes. Biochemistry 2022 87 3 191 206 10.1134/S0006297922030014 35526851
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206413187250923055621
Loading
/content/journals/acamc/10.2174/0118715206413187250923055621
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: chemotherapy ; Apoptosis ; seagrass ; cytotoxicity ; ZnO NPs ; anticancer ; green synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test