Skip to content
2000
image of Targeting Telomere Shelterin Protein TPP1 with Elbasvir: Induction of Autophagy and Suppression of Esophageal Cancer Tumorigenesis

Abstract

Introduction

Esophageal cancer often develops insidiously, with most cases diagnosed at an advanced stage. Currently, the pathogenesis of esophageal cancer remains unclear, treatment outcomes are poor, and the five-year survival rate is low. To tackle the significant clinical challenges of difficult diagnosis and unfavorable prognosis, it is crucial to actively investigate the disease's pathogenesis. This study explored the involvement of telomere shelterin protein TPP1 in the pathogenesis of esophageal cancer and identified potential therapeutic agents for its treatment.

Methods

The expression level of TPP1 protein in 54 pairs of esophageal cancer tissues and paired adjacent tissues was detected immunohistochemistry. The impact of TPP1 silencing and Elbasvir administration on the growth of KYSE150 and TE1 esophageal cancer cell lines was assessed utilizing Cell Counting Kit-8 and colony formation assays. Cell migration was assessed through Transwell and scratch assays. Fluorescence microscopy was employed to observe autophagosome formation, while flow cytometry measured the fluorescence intensity of autophagy markers LC3 and P62 in TPP1-silenced KYSE150 and TE1 cells. Western blotting was utilized to examine the alterations in TPP1, the AKT-mTOR signaling pathway, autophagy-related proteins, and other associated proteins.

Results

TPP1 levels were notably elevated in esophageal squamous cell carcinoma tissues relative to adjacent normal tissues. Suppression of TPP1 substantially reduced the growth and movement of esophageal cancer cells , while triggering autophagy the AKT-mTOR signaling pathway, highlighting TPP1’s cancer-promoting function in esophageal cancer.

Discussion

Elbasvir effectively suppressed the growth and spread of KYSE150 and TE1 cell lines , downregulating TPP1 protein expression in relation to time and dosage. Additional investigations revealed that Elbasvir also inhibited the AKT-mTOR signaling axis and induced autophagy by targeting TPP1. Notably, rescue experiments demonstrated that 3-MA could reverse the inhibitory effects on proliferation, migration, and autophagy induced by TPP1 silencing or Elbasvir treatment in KYSE150 and TE1 cells.

Conclusion

TPP1 emerges as a compelling diagnostic indicator and a potential treatment focus in esophageal cancer, with Elbasvir offering promise as a novel therapeutic agent.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206393619250911115554
2025-10-09
2025-12-25
Loading full text...

Full text loading...

/deliver/fulltext/acamc/10.2174/0118715206393619250911115554/BMS-ACAMC-2025-86.html?itemId=/content/journals/acamc/10.2174/0118715206393619250911115554&mimeType=html&fmt=ahah

References

  1. Zhu H. Ma X. Ye T. Wang H. Wang Z. Liu Q. Zhao K. Esophageal cancer in China: Practice and research in the new era. Int. J. Cancer 2023 152 9 1741 1751 10.1002/ijc.34301 36151861
    [Google Scholar]
  2. Böhme F. Racz K. Sebesta C. Sebesta C. Esophageal cancer. Wien. Med. Wochenschr. 2023 173 9-10 209 215 10.1007/s10354‑022‑00972‑9 36318394
    [Google Scholar]
  3. Liu C.Q. Ma Y.L. Qin Q. Wang P.H. Luo Y. Xu P.F. Cui Y. Epidemiology of esophageal cancer in 2020 and projections to 2030 and 2040. Thorac. Cancer 2023 14 1 3 11 10.1111/1759‑7714.14745 36482832
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Yang H. Wang F. Hallemeier C.L. Lerut T. Fu J. Oesophageal cancer. Lancet 2024 404 10466 1991 2005 10.1016/S0140‑6736(24)02226‑8 39550174
    [Google Scholar]
  6. He Z.H. Ke Y. Challenges and coping strategies of cancer screening research and practice in China: Taking esophageal cancer as an example. Zhonghua Liu Xing Bing Xue Za Zhi 2024 45 12 1720 1725 10.3760/cma.j.cn112338‑20240524‑00304 39681431
    [Google Scholar]
  7. Zang Z. Liu Y. Wang J. Liu Y. Zhang S. Zhang Y. Zhang L. Zhao D. Liu F. Chao L. Wang X. Zhang C. Song G. Zhang Z. Li Y. Yan Z. Wen Y. Ge Y. Niu C. Feng W. Nakyeyune R. Shen Y. Shao Y. Guo X. Yang A. Liu F. Wang G. Dietary patterns and severity of symptom with the risk of esophageal squamous cell carcinoma and its histological precursor lesions in China: A multicenter cross-sectional latent class analysis. BMC Cancer 2022 22 1 95 10.1186/s12885‑022‑09206‑y 35062901
    [Google Scholar]
  8. Cao J. Xu H. Li W. Guo Z. Lin Y. Shi Y. Hu W. Ba Y. Li S. Li Z. Wang K. Wu J. He Y. Yang J. Xie C. Zhou F. Song X. Chen G. Ma W. Luo S. Chen Z. Cong M. Ma H. Zhou C. Wang W. Luo Q. Shi, Y.; Qi, Y.; Jiang, H.; Guan, W.; Chen, J.; Chen, J.; Fang, Y.; Zhou, L.; Feng, Y.; Tan, R.; Ou, J.; Zhao, Q.; Wu, J.; Xin Lin; Yang, L.; Fu, Z.; Wang, C.; Deng, L.; Li, T.; Song, C.; Shi, H. Nutritional assessment and risk factors associated to malnutrition in patients with esophageal cancer. Curr. Probl. Cancer 2021 45 1 100638 10.1016/j.currproblcancer.2020.100638 32829957
    [Google Scholar]
  9. Uhlenhopp D.J. Then E.O. Sunkara T. Gaduputi V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol. 2020 13 6 1010 1021 10.1007/s12328‑020‑01237‑x 32965635
    [Google Scholar]
  10. Huang F.L. Yu S.J. Esophageal cancer: Risk factors, genetic association, and treatment. Asian J. Surg. 2018 41 3 210 215 10.1016/j.asjsur.2016.10.005 27986415
    [Google Scholar]
  11. Liu Y. Yan C. Yin S. Wang T. Zhu M. Liu L. Jin G. Genetic risk, metabolic syndrome, and gastrointestinal cancer risk: A prospective cohort study. Cancer Med. 2023 12 1 597 605 10.1002/cam4.4923 35730595
    [Google Scholar]
  12. Baiu I. Backhus L. Esophageal cancer surgery. JAMA 2020 324 15 1580 10.1001/jama.2020.2101 33079155
    [Google Scholar]
  13. Quéro L. Besnard C. Guillerm S. Hennequin C. News in gastrointestinal radiotherapy: The esophageal cancer. Cancer Radiother. 2022 26 6-7 875 878 10.1016/j.canrad.2022.06.004 35941048
    [Google Scholar]
  14. Yang Y.M. Hong P. Xu W.W. He Q.Y. Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target. Ther. 2020 5 1 229 10.1038/s41392‑020‑00323‑3 33028804
    [Google Scholar]
  15. Lewis S. Lukovic J. Neoadjuvant therapy in esophageal cancer. Thorac. Surg. Clin. 2022 32 4 447 456 10.1016/j.thorsurg.2022.06.003 36266032
    [Google Scholar]
  16. Rogers J.E. Sewastjanow-Silva M. Waters R.E. Ajani J.A. Esophageal cancer: Emerging therapeutics. Expert Opin. Ther. Targets 2022 26 2 107 117 10.1080/14728222.2022.2036718 35119973
    [Google Scholar]
  17. Marom G. Esophageal cancer staging. Thorac. Surg. Clin. 2022 32 4 437 445 10.1016/j.thorsurg.2022.06.006 36266031
    [Google Scholar]
  18. Sheikh M. Roshandel G. McCormack V. Malekzadeh R. Current status and future prospects for esophageal cancer. Cancers 2023 15 3 765 10.3390/cancers15030765 36765722
    [Google Scholar]
  19. Lin Z. Cai W. Hou W. Chen Y. Gao B. Mao R. Wang L. Li Z. CT-Guided Survival Prediction of Esophageal Cancer. IEEE J. Biomed. Health Inform. 2022 26 6 2660 2669 10.1109/JBHI.2021.3132173 34855605
    [Google Scholar]
  20. Liu B. He Y. Wang Y. Song H. Zhou Z.H. Feigon J. Structure of active human telomerase with telomere shelterin protein TPP1. Nature 2022 604 7906 578 583 10.1038/s41586‑022‑04582‑8 35418675
    [Google Scholar]
  21. Lim C.J. Cech T.R. Shaping human telomeres: From shelterin and CST complexes to telomeric chromatin organization. Nat. Rev. Mol. Cell Biol. 2021 22 4 283 298 10.1038/s41580‑021‑00328‑y 33564154
    [Google Scholar]
  22. Mir S.M. Samavarchi Tehrani S. Goodarzi G. Jamalpoor Z. Asadi J. Khelghati N. Qujeq D. Maniati M. Shelterin complex at telomeres: Implications in ageing. Clin. Interv. Aging 2020 15 827 839 10.2147/CIA.S256425 32581523
    [Google Scholar]
  23. Aramburu T. Plucinsky S. Skordalakes E. POT1-TPP1 telomere length regulation and disease. Comput. Struct. Biotechnol. J. 2020 18 1939 1946 10.1016/j.csbj.2020.06.040 32774788
    [Google Scholar]
  24. Colin L. Reyes C. Berthezene J. Maestroni L. Modolo L. Toselli E. Chanard N. Schaak S. Cuvier O. Gachet Y. Coulon S. Bernard P. Tournier S. Condensin positioning at telomeres by shelterin proteins drives sister-telomere disjunction in anaphase. eLife 2023 12 RP89812 10.7554/eLife.89812.3 37988290
    [Google Scholar]
  25. Gao J. Pickett H.A. Targeting telomeres: Advances in telomere maintenance mechanism-specific cancer therapies. Nat. Rev. Cancer 2022 22 9 515 532 10.1038/s41568‑022‑00490‑1 35790854
    [Google Scholar]
  26. Tomasova K. Seborova K. Kroupa M. Horak J. Kavec M. Vodickova L. Rob L. Hruda M. Mrhalova M. Bartakova A. Bouda J. Fleischer T. Kristensen V.N. Vodicka P. Vaclavikova R. Telomere length as a predictor of therapy response and survival in patients diagnosed with ovarian carcinoma. Heliyon 2024 10 13 e33525 10.1016/j.heliyon.2024.e33525 39050459
    [Google Scholar]
  27. Lin J. Epel E. Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res. Rev. 2022 73 101507 10.1016/j.arr.2021.101507 34736994
    [Google Scholar]
  28. Sekne Z. Ghanim G.E. van Roon A.M.M. Nguyen T.H.D. Structural basis of human telomerase recruitment by TPP1-POT1. Science 2022 375 6585 1173 1176 10.1126/science.abn6840 35201900
    [Google Scholar]
  29. Bertrand A. Ba I. Kermasson L. Pirabakaran V. Chable N. Lainey E. Ménard C. Kallel F. Picard C. Hadiji S. Coolen-Allou N. Blanchard E. de Villartay J.P. Moshous D. Roelens M. Callebaut I. Kannengiesser C. Revy P. Characterization of novel mutations in the TEL-patch domain of the telomeric factor TPP1 associated with telomere biology disorders. Hum. Mol. Genet. 2024 33 7 612 623 10.1093/hmg/ddad210 38176734
    [Google Scholar]
  30. Aureli S. Cardenas V.B. Raniolo S. Limongelli V. Conformational plasticity and allosteric communication networks explain Shelterin protein TPP1 binding to human telomerase. Commun. Chem. 2023 6 1 242 10.1038/s42004‑023‑01040‑y 37935941
    [Google Scholar]
  31. Nandakumar J. Bell C.F. Weidenfeld I. Zaug A.J. Leinwand L.A. Cech T.R. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 2012 492 7428 285 289 10.1038/nature11648 23103865
    [Google Scholar]
  32. Rossiello F. Jurk D. Passos J.F. d’Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 2022 24 2 135 147 10.1038/s41556‑022‑00842‑x 35165420
    [Google Scholar]
  33. Witkowska A. Strzalka-Mrozik B. Owczarek A. Gola J. Mazurek U. Grzeszczak W. Gumprecht J. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation. Exp. Ther. Med. 2015 10 6 2224 2230 10.3892/etm.2015.2785 26668621
    [Google Scholar]
  34. Chun-on P. Hinchie A.M. Beale H.C. Gil Silva A.A. Rush E. Sander C. Connelly C.J. Seynnaeve B.K.N. Kirkwood J.M. Vaske O.M. Greider C.W. Alder J.K. TPP1 promoter mutations cooperate with TERT promoter mutations to lengthen telomeres in melanoma. Science 2022 378 6620 664 668 10.1126/science.abq0607 36356143
    [Google Scholar]
  35. Ji Q. Chu X. Zhou Y. Liu X. Zhao W. Ye W. Safety and efficacy of grazoprevir/elbasvir in the treatment of acute hepatitis C in hemodialysis patients. J. Med. Virol. 2022 94 2 675 682 10.1002/jmv.27374 34599755
    [Google Scholar]
  36. Grebely J. Read P. Cunningham E.B. Weltman M. Matthews G.V. Dunlop A. Montebello M. Martinello M. Gilliver R. Marks P. Applegate T.L. Dore G.J. Elbasvir and grazoprevir for hepatitis C virus genotype 1 infection in people with recent injecting drug use (DARLO‐C): An open‐label, single‐arm, phase 4, multicentre trial. Health Sci. Rep. 2020 3 2 e151 10.1002/hsr2.151 32270056
    [Google Scholar]
  37. Labidi A. Bensghaier R. Jebali S. Latrous L. Validated LC/MS method for simultaneous determination of elbasvir and grazoprevir in human plasma. Ann. Pharm. Fr. 2024 82 6 1034 1045 10.1016/j.pharma.2024.05.006 38823440
    [Google Scholar]
  38. Drugs for hepatitis C virus infection. Med. Lett. Drugs Ther. 2024 66 1714 169 174 10.58347/tml.2024.1714a 39466306
    [Google Scholar]
  39. Wang S.J. Huang C.F. Yu M.L. Elbasvir and grazoprevir for the treatment of hepatitis C. Expert Rev. Anti Infect. Ther. 2021 19 9 1071 1081 10.1080/14787210.2021.1874351 33428488
    [Google Scholar]
  40. Hung H.Y. Hung W.L. Gu Y. Chen C.Y. Direct-acting antivirals in hepatitis c treatment for renal impairment: Liver safety concerns and effectiveness in peritoneal dialysis. Biomedicines 2024 13 1 55 10.3390/biomedicines13010055 39857639
    [Google Scholar]
  41. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chao H. Chen L. Craig P.A. Crichlow G.V. Dalenberg K. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Henry J. Hudson B.P. Khokhriakov I. Lawson C.L. Liang Y. Lowe R. Peisach E. Persikova I. Piehl D.W. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Vallat B. Voigt M. Webb B. Westbrook J.D. Whetstone S. Young J.Y. Zalevsky A. Zardecki C. RCSB protein data bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023 51 D1 D488 D508 10.1093/nar/gkac1077 36420884
    [Google Scholar]
  42. Wang F. Podell E.R. Zaug A.J. Yang Y. Baciu P. Cech T.R. Lei M. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 2007 445 7127 506 510 10.1038/nature05454 17237768
    [Google Scholar]
  43. Allen W.J. Balius T.E. Mukherjee S. Brozell S.R. Moustakas D.T. Lang P.T. Case D.A. Kuntz I.D. Rizzo R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem. 2015 36 15 1132 1156 10.1002/jcc.23905 25914306
    [Google Scholar]
  44. Althagafi I. El-Metwaly N. Farghaly T.A. New series of thiazole derivatives: Synthesis, structural elucidation, antimicrobial activity, molecular modeling and MOE docking. Molecules 2019 24 9 1741 10.3390/molecules24091741 31060260
    [Google Scholar]
  45. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  46. Lomenick B. Hao R. Jonai N. Chin R.M. Aghajan M. Warburton S. Wang J. Wu R.P. Gomez F. Loo J.A. Wohlschlegel J.A. Vondriska T.M. Pelletier J. Herschman H.R. Clardy J. Clarke C.F. Huang J. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA 2009 106 51 21984 21989 10.1073/pnas.0910040106 19995983
    [Google Scholar]
  47. Zou J. Ma Q. Sun R. Cai J. Liao H. Xu L. Xia J. Huang G. Yao L. Cai Y. Zhong X. Guo X. Dihydroartemisinin inhibits HepG2.2.15 proliferation by inducing cellular senescence and autophagy. BMB Rep. 2019 52 8 520 525 10.5483/BMBRep.2019.52.8.058 31383247
    [Google Scholar]
  48. Savage S.A. Telomere length and cancer risk: Finding Goldilocks. Biogerontology 2024 25 2 265 278 10.1007/s10522‑023‑10080‑9 38109000
    [Google Scholar]
  49. Hakobyan M. Binder H. Arakelyan A. Pan-cancer analysis of telomere maintenance mechanisms. J. Biol. Chem. 2024 300 6 107392 10.1016/j.jbc.2024.107392 38763334
    [Google Scholar]
  50. Karimian K. Groot A. Huso V. Kahidi R. Tan K.T. Sholes S. Keener R. McDyer J.F. Alder J.K. Li H. Rechtsteiner A. Greider C.W. Human telomere length is chromosome end–specific and conserved across individuals. Science 2024 384 6695 533 539 10.1126/science.ado0431 38603523
    [Google Scholar]
  51. Li H. Durbin R. Genome assembly in the telomere-to-telomere era. Nat. Rev. Genet. 2024 25 9 658 670 10.1038/s41576‑024‑00718‑w 38649458
    [Google Scholar]
  52. Wang Q.L. Gong C. Meng X.Y. Fu M. Yang H. Zhou F. Wu Q. Zhou Y. TPP1 is associated with risk of advanced precursors and cervical cancer survival. PLoS One 2024 19 5 e0298118 10.1371/journal.pone.0298118 38722833
    [Google Scholar]
  53. Graniel J.V. Bisht K. Friedman A. White J. Perkey E. Vanderbeck A. Moroz A. Carrington L.J. Brandstadter J.D. Allen F. Shami A.N. Thomas P. Crayton A. Manzor M. Mychalowych A. Chase J. Hammoud S.S. Keegan C.E. Maillard I. Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci. Alliance 2022 5 1 e202101208 10.26508/lsa.202101208 34645668
    [Google Scholar]
  54. Gu L. Liu M. Zhang Y. Zhou H. Wang Y. Xu Z.X. Telomere-related DNA damage response pathways in cancer therapy: Prospective targets. Front. Pharmacol. 2024 15 1379166 10.3389/fphar.2024.1379166 38910895
    [Google Scholar]
  55. Xu M. Axhemi A. Malgowska M. Chen Y. Leonard D. Srinivasan S. Jankowsky E. Taylor D.J. Active and passive destabilization of G-Quadruplex DNA by the telomere POT1-TPP1 complex. J. Mol. Biol. 2021 433 7 166846 10.1016/j.jmb.2021.166846 33549587
    [Google Scholar]
  56. Cai S.W. Takai H. Zaug A.J. Dilgen T.C. Cech T.R. Walz T. de Lange T. POT1 recruits and regulates CST-Polα/primase at human telomeres. Cell 2024 187 14 3638 3651.e18 10.1016/j.cell.2024.05.002 38838667
    [Google Scholar]
  57. Kaur P. Barnes R. Pan H. Detwiler A.C. Liu M. Mahn C. Hall J. Messenger Z. You C. Piehler J. Smart R.C. Riehn R. Opresko P.L. Wang H. TIN2 is an architectural protein that facilitates TRF2-mediated trans - and cis- interactions on telomeric DNA. Nucleic Acids Res. 2021 49 22 13000 13018 10.1093/nar/gkab1142 34883513
    [Google Scholar]
  58. Wang H. Ma T. Zhang X. Chen W. Lan Y. Kuang G. Hsu S.J. He Z. Chen Y. Stewart J. Bhattacharjee A. Luo Z. Price C. Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res. 2023 51 10 4914 4928 10.1093/nar/gkad237 37021555
    [Google Scholar]
  59. Xia Y. Sun M. Huang H. Jin W.L. Drug repurposing for cancer therapy. Signal Transduct. Target. Ther. 2024 9 1 92 10.1038/s41392‑024‑01808‑1 38637540
    [Google Scholar]
  60. Bhatia T. Sharma S. Drug repurposing: Insights into current advances and future applications. Curr. Med. Chem. 2025 32 3 468 510 10.2174/0109298673266470231023110841 37946344
    [Google Scholar]
  61. Jourdan J.P. Bureau R. Rochais C. Dallemagne P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020 72 9 1145 1151 10.1111/jphp.13273 32301512
    [Google Scholar]
  62. Li Q. Ma Q. Xu L. Gao C. Yao L. Wen J. Yang M. Cheng J. Zhou X. Zou J. Zhong X. Guo X. Human telomerase reverse transcriptase as a therapeutic target of dihydroartemisinin for esophageal squamous cancer. Front. Pharmacol. 2021 12 769787 10.3389/fphar.2021.769787 34744749
    [Google Scholar]
  63. Yuan Z. Cai J. Du Q. Ma Q. Xu L. Cai Y. Zhong X. Guo X. Chloroquine sensitizes esophageal carcinoma EC109 cells to paclitaxel by inhibiting autophagy. Crit. Rev. Eukaryot. Gene Expr. 2023 33 6 43 53 10.1615/CritRevEukaryotGeneExpr.2023046722 37522544
    [Google Scholar]
  64. Cai Y. Cai J. Ma Q. Xu Y. Zou J. Xu L. Wang D. Guo X. Chloroquine affects autophagy to achieve an anticancer effect in EC109 esophageal carcinoma cells in vitro. Oncol. Lett. 2018 15 1 1143 1148 29422973
    [Google Scholar]
  65. Toyodome A. Mawatari S. Eguchi H. Takeda M. Kumagai K. Taniyama O. Ijuin S. Sakae H. Tabu K. Oda K. Ikeda M. Ido A. Analysis of the susceptibility of refractory hepatitis C virus resistant to nonstructural 5A inhibitors. Sci. Rep. 2024 14 1 16363 10.1038/s41598‑024‑67169‑5 39013947
    [Google Scholar]
  66. Liu C.H. Peng C.Y. Fang Y.J. Kao W.Y. Yang S.S. Lin C.K. Lai H.C. Su W.P. Fang S.U. Chang C.C. Su T.H. Liu C.J. Chen P.J. Chen D.S. Kao J.H. Elbasvir/grazoprevir for hepatitis C virus genotype 1b East-Asian patients receiving hemodialysis. Sci. Rep. 2020 10 1 9180 10.1038/s41598‑020‑66182‑8 32513953
    [Google Scholar]
  67. Asselah T. Pol S. Hezode C. Loustaud-Ratti V. Leroy V. Ahmed S.N.S. Ozenne V. Bronowicki J.P. Larrey D. Tran A. Alric L. Nguyen-Khac E. Robertson M.N. Hanna G.J. Brown D. Asante-Appiah E. Su F.H. Hwang P. Hall J.D. Guidoum A. Hagen K. Haber B.A. Talwani R. Serfaty L. Efficacy and safety of elbasvir/grazoprevir for 8 or 12 weeks for hepatitis C virus genotype 4 infection: A randomized study. Liver Int. 2020 40 5 1042 1051 10.1111/liv.14313 31765046
    [Google Scholar]
  68. Shah R.B. Garrett K.L. Brotherton A.L. Noska A.J. Elbasvir/grazoprevir administered for 12 weeks via percutaneous endoscopic gastrostomy tube achieves sustained virologic response: A case report and a review of the literature. Pharmacotherapy 2021 41 7 634 640 10.1002/phar.2531 33934388
    [Google Scholar]
  69. Kibria M.K. Ali M.A. Mollah M.N.H. Exploring bacterial key genes and therapeutic agents for breast cancer among the Ghanaian female population: Insights from In Silico analyses. PLoS One 2024 19 11 e0312493 10.1371/journal.pone.0312493 39585882
    [Google Scholar]
  70. Kibria M.K. Ali M.A. Yaseen M. Khan I.A. Bhat M.A. Islam M.A. Mahumud R.A. Mollah M.N.H. Discovery of bacterial key genes from 16S rRNA-Seq profiles that are associated with the complications of SARS-CoV-2 infections and provide therapeutic indications. Pharmaceuticals 2024 17 4 432 10.3390/ph17040432 38675393
    [Google Scholar]
  71. Hill D.D. Kramer J.R. Chaffin K.R. Mast T.C. Robertson M.N. Kanwal F. Haber B.A. Effectiveness of elbasvir/grazoprevir plus ribavirin for hepatitis C virus genotype 1a infection and baseline NS5A resistance. Ann. Hepatol. 2023 28 2 100899 10.1016/j.aohep.2023.100899 36632975
    [Google Scholar]
  72. Sandhu R. Sharma M. Wei D. Xu L. The structurally conserved TELR region on shelterin protein TPP1 is essential for telomerase processivity but not recruitment. Proc. Natl. Acad. Sci. USA 2021 118 30 e2024889118 10.1073/pnas.2024889118 34282008
    [Google Scholar]
  73. Boyle J.M. Hennick K.M. Regalado S.G. Vogan J.M. Zhang X. Collins K. Hockemeyer D. Telomere length set point regulation in human pluripotent stem cells critically depends on the shelterin protein TPP1. Mol. Biol. Cell 2020 31 23 2583 2596 10.1091/mbc.E19‑08‑0447 32903138
    [Google Scholar]
  74. Jones-Weinert C. Mainz L. Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat. Rev. Mol. Cell Biol. 2024 39614014
    [Google Scholar]
  75. Wen J. Zhong X. Gao C. Yang M. Tang M. Yuan Z. Wang Q. Xu L. Ma Q. Guo X. Fang L. TPP1 inhibits DNA damage response and chemosensitivity in esophageal cancer. Crit. Rev. Eukaryot. Gene Expr. 2023 33 8 77 91 10.1615/CritRevEukaryotGeneExpr.2023048720 37606165
    [Google Scholar]
  76. Mar F.A. Debnath J. Stohr B.A. Autophagy-independent senescence and genome instability driven by targeted telomere dysfunction. Autophagy 2015 11 3 527 537 10.1080/15548627.2015.1017189 25751002
    [Google Scholar]
  77. Du J. Xu Q. Zhao H. Jia X. Ba N. Peng F. Zhang Z. PI3K inhibitor 3-MA promotes the antiproliferative activity of esomeprazole in gastric cancer cells by downregulating EGFR via the PI3K/FOXO3a pathway. Biomed. Pharmacother. 2022 148 112665 10.1016/j.biopha.2022.112665 35228068
    [Google Scholar]
  78. Fang S. Wan X. Zou X. Sun S. Hao X. Liang C. Zhang Z. Zhang F. Sun B. Li H. Yu B. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 2021 12 1 88 10.1038/s41419‑020‑03357‑1 33462182
    [Google Scholar]
  79. Yu K. Zeng Z. Cheng S. Hu W. Gao C. Liu F. Chen J. Qian Y. Xu D. Zhao J. Liu X. Wang J. TPP1 enhances the therapeutic effects of transplanted aged mesenchymal stem cells in infarcted hearts via the MRE11/AKT pathway. Front. Cell Dev. Biol. 2020 8 588023 10.3389/fcell.2020.588023 33195247
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206393619250911115554
Loading
/content/journals/acamc/10.2174/0118715206393619250911115554
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test