Skip to content
2000
image of PRR22: A Novel Prognostic Indicator and Therapeutic Target for Prostate Cancer

Abstract

Introduction

Prostate cancer (PRAD) remains a leading malignancy with limited prognostic biomarkers and therapeutic targets. PRR22, a proline-rich protein-coding gene, has a role in PRAD that remains undefined. This study is the first to systematically investigate the clinical relevance and mechanistic implications of PRR22 in PRAD.

Methods

PRR22 expression was analyzed in TCGA-PRAD (n = 501), GSE55945, and the Human Protein Atlas datasets. Prognostic value was assessed via Kaplan-Meier and multivariate Cox analyses. Mechanistic insights were derived from GSEA, immune infiltration profiling, MSI/mRNA-si correlations, and drug sensitivity analysis. Experimental validation was performed via qRT-PCR in PRAD cell lines.

Results

PRR22 was significantly upregulated in PRAD tissues compared to normal tissues ( 0.001) and independently predicted shorter progression-free survival (HR = 1.82, 0.009). Novel associations were identified between PRR22 and TGF-β signaling, immune evasion (, LAG3 upregulation), microsatellite instability (MSI), and stemness (mRNA-si). High PRR22 correlated with resistance to multiple drugs (, bicalutamide, vorinostat).

Discussion

PRR22 overexpression in PRAD is linked to poor prognosis and immune regulation, suggesting its potential as a prognostic biomarker and therapeutic target. Future research should focus on clinical validation and on exploring the molecular mechanisms underlying PRR22's role in PRAD.

Conclusion

PRR22 is a novel, independent prognostic biomarker and actionable therapeutic target in PRAD, linking tumor aggressiveness to immune microenvironment remodeling and drug resistance. These findings establish PRR22 as a candidate for clinical implementation in risk stratification and targeted therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206415552250910202624
2025-09-26
2025-11-07
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  2. Gao H.T. Yang Z. Sun H. Zhang Y. Wang Z. Liu W.Y. Wen H.Z. Qu C.B. Wang X.L. TREM2 as an independent predictor of poor prognosis promotes the migration via the PI3K/AKT axis in prostate cancer. Am. J. Transl. Res. 2023 15 2 779 798 36915769
    [Google Scholar]
  3. Liu X. Wang K. Development of a novel, clinically relevant anoikis-related gene signature to forecast prognosis in patients with prostate cancer. Front. Genet. 2023 14 1166668 10.3389/fgene.2023.1166668 37719710
    [Google Scholar]
  4. Armenia J. Wankowicz S.A.M. Liu D. Gao J. Kundra R. Reznik E. Chatila W.K. Chakravarty D. Han G.C. Coleman I. Montgomery B. Pritchard C. Morrissey C. Barbieri C.E. Beltran H. Sboner A. Zafeiriou Z. Miranda S. Bielski C.M. Penson A.V. Tolonen C. Huang F.W. Robinson D. Wu Y.M. Lonigro R. Garraway L.A. Demichelis F. Kantoff P.W. Taplin M.E. Abida W. Taylor B.S. Scher H.I. Nelson P.S. de Bono J.S. Rubin M.A. Sawyers C.L. Chinnaiyan A.M. Schultz N. Van Allen E.M. The long tail of oncogenic drivers in prostate cancer. Nat. Genet. 2018 50 5 645 651 10.1038/s41588‑018‑0078‑z 29610475
    [Google Scholar]
  5. Lu X. Horner J.W. Paul E. Shang X. Troncoso P. Deng P. Jiang S. Chang Q. Spring D.J. Sharma P. Zebala J.A. Maeda D.Y. Wang Y.A. DePinho R.A. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017 543 7647 728 732 10.1038/nature21676 28321130
    [Google Scholar]
  6. Winoker J.S. Anastos H. Rastinehad A.R. Targeted ablative therapies for prostate cancer. Cancer Treat Res. 2018 175 15 53 10.1007/978‑3‑319‑93339‑9_2 30168116
    [Google Scholar]
  7. Xing S. Li D. Zhao Q. RPL22L1 is a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma, promoting the growth and metastasis of LUAD cells by inhibiting the MDM2/P53 signaling pathway. Aging 2024 16 17 12392 12413 10.18632/aging.206096 39207452
    [Google Scholar]
  8. Dong Y. Jin F. Wang J. Li Q. Huang Z. Xia L. Yang M. SFXN3 is associated with poor clinical outcomes and sensitivity to the hypomethylating therapy in non-M3 acute myeloid leukemia patients. Curr. Gene Ther. 2023 23 5 410 418 10.2174/1566523223666230724121515 37491851
    [Google Scholar]
  9. Huang Z. Hu X. Wei Y. Lai Y. Qi J. Pang J. Huang K. Li H. Cai P. ADAMTSL2 is a potential prognostic biomarker and immunotherapeutic target for colorectal cancer: Bioinformatic analysis and experimental verification. PLoS One 2024 19 5 0303909 10.1371/journal.pone.0303909 38814950
    [Google Scholar]
  10. Chen R. Duan J. Ye Y. Xu H. Ding Y. Liu J. Identification and verification of a prognostic risk signature in oral squamous cell carcinoma. Curr. Top. Med. Chem. 2024 24 10.2174/0115680266335055240828061128 39238386
    [Google Scholar]
  11. Han Q. Cui Z. Wang Q. Pang F. Li D. Wang D. Upregulation of OTX2-AS1 is associated with immune infiltration and predicts prognosis of gastric cancer. Technol. Cancer Res. Treat. 2023 22 15330338231154091 10.1177/15330338231154091 36740995
    [Google Scholar]
  12. Liang W. Lu Y. Pan X. Zeng Y. Zheng W. Li Y. Nie Y. Li D. Wang D. Decreased expression of a novel lncRNA FAM181A-AS1 is associated with poor prognosis and immune infiltration in lung adenocarcinoma. Pharm. Genomics Pers. Med. 2022 15 985 998 10.2147/PGPM.S384901 36482943
    [Google Scholar]
  13. Wang J. Dai W. Zhang M. GATA3 positively regulates PAR1 to facilitate in vitro disease progression and decrease cisplatin sensitivity in neuroblastoma via inhibiting the hippo pathway. Anticancer Drugs 2023 34 1 57 72 10.1097/CAD.0000000000001341 35946556
    [Google Scholar]
  14. Wang X. Li T. Eljilany I. Sukrithan V. Ratan A. McCarter M. Multicellular immune ecotypes within solid tumors predict real-world therapeutic benefits with immune checkpoint inhibitors. medRxiv 2024 10.1101/2024.07.19.24310726
    [Google Scholar]
  15. Zhang H. Zhao X. Wang J. Ji W. Development and validation of an immune-related signature for the prediction of recurrence risk of patients with laryngeal cancer. Front. Oncol. 2021 11 683915 10.3389/fonc.2021.683915 34976784
    [Google Scholar]
  16. Lyu G. Bioinformatic analysis and experimental validation of HMGA2-AS1 as a prognostic biomarker associated with immune infiltration in gastric cancer. Recent Pat. Anticancer Drug Discov 2024 10.2174/0115748928284459240318070914 38566377
    [Google Scholar]
  17. Zhu C. Xiao H. Jiang X. Tong R. Guan J. Prognostic biomarker DDOST and its correlation with immune infiltrates in hepatocellular carcinoma. Front. Genet. 2022 12 819520 10.3389/fgene.2021.819520 35173766
    [Google Scholar]
  18. Zhao L. Wang Y.F. Adamcakova-Dodd A. Thorne P.S. Islam R. Liu K.J. Chen F. Luo J. Liu L.Z. Nrf2/cyclooxygenase 2 signaling in Cr(VI)-induced carcinogenesis. Ecotoxicol. Environ. Saf. 2025 291 117800 10.1016/j.ecoenv.2025.117800 39923569
    [Google Scholar]
  19. Zhou D. Cui Y. Liang T. Wu Z. Yan H. Li Y. Yin W. Lin Y. You Q. Pan-cancer analysis identifies CLEC12A as a potential biomarker and therapeutic target for lung adenocarcinoma. Cancer Cell Int. 2025 25 1 128 10.1186/s12935‑025‑03755‑5 40181336
    [Google Scholar]
  20. Jin J. Tu J. Ren J. Cai Y. Chen W. Zhang L. Zhang Q. Zhu G. Comprehensive analysis to identify MAGEA3 expression correlated with immune infiltrates and lymph node metastasis in gastric cancer. Front. Oncol. 2021 11 784925 10.3389/fonc.2021.784925 34970496
    [Google Scholar]
  21. Miao L. Jing L. Chen B. Zeng T. Chen Y. TPD52 is a potential prognostic biomarker and correlated with immune infiltration: A pan-cancer analysis. Curr. Mol. Med. 2024 24 11 1413 1425 10.2174/0115665240260252230919054858 38178662
    [Google Scholar]
  22. Zou Y. Wang G. Fan M. Comprehensive multiomic analysis identified TUBA1C as a potential prognostic biological marker of immune-related therapy in pan-cancer. Comput. Math. Methods Med. 2022 2022 1 33 10.1155/2022/9493115 36466547
    [Google Scholar]
  23. Cai H. Chen S. Wu Z. Wang F. Tang S. Li D. Wang D. Guo W. Comprehensive analysis of ZNF692 as a potential biomarker associated with immune infiltration in a pan cancer analysis and validation in hepatocellular carcinoma. Aging 2023 15 22 13041 13058 10.18632/aging.205218 37980166
    [Google Scholar]
  24. Yamamoto H. Watanabe Y. Maehata T. Imai K. Itoh F. Microsatellite instability in cancer: A novel landscape for diagnostic and therapeutic approach. Arch. Toxicol. 2020 94 10 3349 3357 10.1007/s00204‑020‑02833‑z 32632538
    [Google Scholar]
  25. Bonneville R Krook MA Kautto EA Miya J Wing MR Chen HZ Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017 PO.17.00073 10.1200/PO.17.00073 29850653
    [Google Scholar]
  26. Zhong F. Liu J. Gao C. Chen T. Li B. Downstream regulatory network of MYBL2 mediating its oncogenic role in melanoma. Front. Oncol. 2022 12 816070 10.3389/fonc.2022.816070 35664780
    [Google Scholar]
  27. Lyu G. Li D. ZP3 expression in pancreatic adenocarcinoma: Its implications for the prognosis and therapy. Protein Pept. Lett. 2025 32 2 124 138 10.2174/0109298665350171241204153202 39791146
    [Google Scholar]
  28. Zhang Z. MiR-124-3p suppresses prostatic carcinoma by targeting PTGS2 through the AKT/NF-κB pathway. Mol. Biotechnol. 2021 63 7 621 630 10.1007/s12033‑021‑00326‑7 33893997
    [Google Scholar]
  29. Fan J. Xue L. Lin H. Luo J. Depletion of NUAK2 blocks the stemness and angiogenesis and facilitates senescence of lung adenocarcinoma cells via enhancing ferroptosis. Cell Div. 2024 19 1 23 10.1186/s13008‑024‑00128‑8 39068449
    [Google Scholar]
  30. Jiang J. Du Z. Tang H. Huang Y. Li D. Liang Q. Comprehensive analysis and experimental validation of TLL2 as a potential new prognostic biomarker associated with immune infiltration in lung adenocarcinoma. Recent Pat. Anticancer Drug Discov 2024 10.2174/0115748928303392240817131807 39192647
    [Google Scholar]
  31. Song L. Huo X. Li X. Xu X. Zheng Y. Li D. Zhang J. Wang K. Wang L. Wu Z. SERPINF1 mediates tumor progression and stemness in glioma. Genes 2023 14 3 580 10.3390/genes14030580 36980858
    [Google Scholar]
  32. Choi J. Kim J. Jung Y.W. Park J.H. Lee J.H. Neurotrophic receptor tyrosine kinase 3 as a prognostic biomarker in breast cancer using bioinformatic analysis. Medicina 2025 61 3 474 10.3390/medicina61030474 40142285
    [Google Scholar]
  33. Zhang Y. Ji Q. Wang J. Dong Y. Pang M. Fu S. Wei Y. Zhu Q. High expression of KNL1 in prostate adenocarcinoma is associated with poor prognosis and immune infiltration. Front. Genet. 2023 13 1100787 10.3389/fgene.2022.1100787 36685823
    [Google Scholar]
  34. Hu Q.Y. Liu J. Zhang X.K. Yang W.T. Tao Y.T. Chen C. Qian Y.H. Tang J.S. Yao X.S. Xu Y.H. Wang J.H. Nur77 serves as a potential prognostic biomarker that correlates with immune infiltration and may act as a good target for prostate adenocarcinoma. Molecules 2023 28 3 1238 10.3390/molecules28031238 36770929
    [Google Scholar]
  35. Liu S. Yu Y. Xu J. Wang Y. Li D. Single‐cell and bulk RNA‐sequencing reveals mitosis‐involved gene HAUS1 is a promising indicator for predicting prognosis and immune responses in prostate adenocarcinoma (PRAD). Cell Biol. Int. 2024 48 8 1169 1184 10.1002/cbin.12191 38818762
    [Google Scholar]
  36. Wang Y. Ma L. He J. Gu H. Zhu H. Identification of cancer stem cell-related genes through single cells and machine learning for predicting prostate cancer prognosis and immunotherapy. Front. Immunol. 2024 15 1464698 10.3389/fimmu.2024.1464698 39267762
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206415552250910202624
Loading
/content/journals/acamc/10.2174/0118715206415552250910202624
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: immune infiltration ; PRR22 ; prognostic biomarker ; drug sensitivity ; Prostate cancer ; MSI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test