Skip to content
2000
image of Camel Milk in Skin Cancer Therapeutics: An In-vitro and In-vivo Study

Abstract

Introduction

Therapeutic applications of camel milk in various human ailments have led to the investigation of camel milk against multiple cancers. However, the absence of its scientific evidence in skin cancer protection has prompted this new study’s inception.

Methods

The study includes estimation of camel milk’s chemo-preventive potential on A431 cells and a two-stage skin carcinogenesis model ( The studies included MTT, scratch and flow cytometry assay to determine the anti-proliferative effects, anti-migratory ability and cell numbers in various cell cycle stages. In the study, estimations of tumour morphology, biochemical alterations, along with a histopathological study were performed. Further, the milk was assessed for its anti-oxidative activities, followed by GC-MS analysis for the investigation of potential compounds.

Results

The results demonstrated camel milk’s dose-dependent anti-proliferation, significant (0.001) cell migration inhibition, and conclusive G1/S phase cell cycle arrest. The study revealed a notable reduction in tumour parameters and histopathological lesions in skin and liver tissues of camel milk-treated mice. Additionally, a marked decrease (0.005; 0.001) in LPO levels and an increase in GSH, catalase and SOD biochemical parameters were noted. Moreover, dose-dependent elevation (0.001) of milk’s anti-oxidative activity (DPPH, ABTS, ferrous-ion & superoxide-anion chelating) and presence of numerous anti-oxidative and anti-cancer compounds was observed.

Discussions

The investigation highlights translational relevance of camel milk's outcomes as supported by findings. Moreover, GC-MS analysis and anti-oxidative potential underscore the mechanism behind the observed chemo-prevention.

Conclusions

The study reveals camel milk’s significant chemo-preventive efficacy primarily due to its robust antioxidant properties, making it a promising adjunct skin cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206409156251001091047
2025-10-20
2025-12-14
Loading full text...

Full text loading...

References

  1. Behrouz S. Saadat S. Memarzia A. Sarir H. Folkerts G. Boskabady M.H. The antioxidant, anti-inflammatory and immunomodulatory effects of camel milk. Front. Immunol. 2022 13 855342 10.3389/fimmu.2022.855342 35493477
    [Google Scholar]
  2. Okechukwu P.N. Hu Z. Chang X. Pan Q. Gu K. Gastroprotective and ulcer healing effects of camel milk and urine in HCl/EtOH, non-steroidal anti-inflammatory drugs (indomethacin), and water-restraint stress-induced ulcer in rats. Pharmacogn. Mag. 2017 13 52 559 565 10.4103/pm.pm_135_17 29200713
    [Google Scholar]
  3. Keykanlu H.R.I. Zibaei S. Ardjmand M. Safekordi A.A. Fluorocarbon nanostructures (PFOB-NEP) as camel milk lactoferrin and its anti- cancer effects on human breast cancer cell line MCF7. Bulg. Chem. Commun 2016 48 323 331
    [Google Scholar]
  4. El-Fakharany E.M. El-Baky N.A. Linjawi M.H. Aljaddawi A.A. Saleem T.H. Nassar A.Y. Osman A. Redwan E.M. Influence of camel milk on the hepatitis C virus burden of infected patients. Exp. Ther. Med. 2017 13 4 1313 1320 10.3892/etm.2017.4159 28413471
    [Google Scholar]
  5. Hussain H. Wattoo F.H. Wattoo M.H.S. Gulfraz M. Masud T. Shah I. Ali S. Alavi S.E. Camel milk as an alternative treatment regimen for diabetes therapy. Food Sci. Nutr. 2021 9 3 1347 1356 10.1002/fsn3.2078 33747450
    [Google Scholar]
  6. Badawy A.A. El-Magd M.A. AlSadrah S.A. Therapeutic effect of camel milk and its exosomes on MCF7 cells in vitro and in vivo. Integr. Cancer Ther. 2018 17 4 1235 1246 10.1177/1534735418786000 29986606
    [Google Scholar]
  7. Krishnankutty R. Iskandarani A. Therachiyil L. Uddin S. Azizi F. Kulinski M. Bhat A.A. Mohammad R.M. Anticancer activity of camel milk via induction of autophagic death in human colorectal and breast cancer cells. Asian Pac. J. Cancer Prev. 2018 19 12 3501 3509 10.31557/APJCP.2018.19.12.3501 30583676
    [Google Scholar]
  8. Korashy H.M. El Gendy M.A.M. Alhaider A.A. El-Kadi A.O. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells. J. Biomed. Biotechnol. 2012 2012 1 10 10.1155/2012/782642 22570534
    [Google Scholar]
  9. Korashy H.M. Maayah Z.H. Abd-Allah A.R. El-Kadi A.O.S. Alhaider A.A. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism. J. Biomed. Biotechnol. 2012 2012 1 9 10.1155/2012/593195 22654482
    [Google Scholar]
  10. Hasson S.S.A.A. Al-Busaidi J.Z. Al-Qarni Z.A.M. Rajapakse S. Al-Bahlani S. Idris M.A. Sallam T.A. In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk. Asian Pac. J. Cancer Prev. 2015 16 15 6651 6661 10.7314/APJCP.2015.16.15.6651 26434890
    [Google Scholar]
  11. Habib H.M. Ibrahim W.H. Schneider-Stock R. Hassan H.M. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem. 2013 141 1 148 152 10.1016/j.foodchem.2013.03.039 23768340
    [Google Scholar]
  12. Alhaider A.A. Abdel Gader A.G.M. Almeshaal N. Saraswati S. Camel milk inhibits inflammatory angiogenesis via downregulation of proangiogenic and proinflammatory cytokines in mice. Acta. Pathol. Microbiol. Scand. Suppl. 2014 122 7 599 607 10.1111/apm.12199 24320686
    [Google Scholar]
  13. Maswadeh H.M. Aljarbou A.N. Alorainy M.S. Alsharidah M.S. Khan M.A. Etoposide incorporated into camel milk phospholipids liposomes shows increased activity against fibrosarcoma in a mouse model. BioMed Res. Int. 2015 2015 1 11 10.1155/2015/743051 25821817
    [Google Scholar]
  14. Uversky V.N. El-Fakharany E.M. Abu-Serie M.M. Almehdar H.A. Redwan E.M. Divergent anticancer activity of free and formulated camel milk α-lactalbumin. Cancer Invest. 2017 35 9 610 623 10.1080/07357907.2017.1373783 28949782
    [Google Scholar]
  15. Yang J. Dou Z. Peng X. Wang H. Shen T. Liu J. Li G. Gao Y. Transcriptomics and proteomics analyses of anti-cancer mechanisms of TR35-An active fraction from Xinjiang Bactrian camel milk in esophageal carcinoma cell. Clin. Nutr. 2019 38 5 2349 2359 10.1016/j.clnu.2018.10.013 30420292
    [Google Scholar]
  16. Ayyash M. Al-Dhaheri A.S. Al Mahadin S. Kizhakkayil J. Abushelaibi A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. J. Dairy Sci. 2018 101 2 900 911 10.3168/jds.2017‑13400 29224862
    [Google Scholar]
  17. Murali C. Mudgil P. Gan C.Y. Tarazi H. El-Awady R. Abdalla Y. Amin A. Maqsood S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep. 2021 11 1 7062 10.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  18. Apalla Z. Nashan D. Weller R.B. Castellsagué X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther. (Heidelb.) 2017 7 S1 5 19 10.1007/s13555‑016‑0165‑y 28150105
    [Google Scholar]
  19. Adnan M. Akhter M.H. Afzal O. Altamimi A.S.A. Ahmad I. Alossaimi M.A. Jaremko M. Emwas A.H. Haider T. Haider M.F. Exploring nanocarriers as treatment modalities for skin cancer. Molecules 2023 28 15 5905 10.3390/molecules28155905 37570875
    [Google Scholar]
  20. Zeng L. Gowda B.H.J. Ahmed M.G. Abourehab M.A.S. Chen Z.S. Zhang C. Li J. Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol. Cancer 2023 22 1 10 10.1186/s12943‑022‑01708‑4 36635761
    [Google Scholar]
  21. Juszczak A.M. Wöelfle U. Končić M.Z. Tomczyk M. Skin cancer, including related pathways and therapy and the role of luteolin derivatives as potential therapeutics. Med. Res. Rev. 2022 42 4 1423 1462 10.1002/med.21880 35187675
    [Google Scholar]
  22. Ng C. Yen H. Hsiao H.Y. Su S.C. Phytochemicals in skin cancer prevention and treatment: An updated review. Int. J. Mol. Sci. 2018 19 4 941 10.3390/ijms19040941 29565284
    [Google Scholar]
  23. Bagde A. Mondal A. Singh M. Drug delivery strategies for chemoprevention of UVB ‐induced skin cancer: A review. Photodermatol. Photoimmunol. Photomed. 2018 34 1 60 68 10.1111/phpp.12368 29150967
    [Google Scholar]
  24. Stobiecka M. Król J. Brodziak A. Antioxidant activity of milk and dairy products. Animals (Basel) 2022 12 3 245 10.3390/ani12030245 35158569
    [Google Scholar]
  25. Peterle L. Sanfilippo S. Borgia F. Li Pomi F.; Vadalà, R.; Costa, R.; Cicero, N.; Gangemi, S. The role of nutraceuticals and functional foods in skin cancer: mechanisms and therapeutic potential. Foods 2023 12 13 2629 10.3390/foods12132629 37444367
    [Google Scholar]
  26. Morgan D.M. Tetrazolium (MTT) assay for cellular viability and activity. Methods Mol. Biol. 1998 79 179 183 9463833
    [Google Scholar]
  27. Sánchez-Díez M. Romero-Jiménez P. Alegría-Aravena N. Gavira-O’Neill C.E. Vicente-García E. Quiroz-Troncoso J. González-Martos R. Ramírez-Castillejo C. Pastor J.M. Assessment of cell viability in drug therapy: IC50 and other new time-independent indices for evaluating chemotherapy efficacy. Pharmaceutics 2025 17 2 247 10.3390/pharmaceutics17020247 40006615
    [Google Scholar]
  28. Kotian S.R. Bhat K.M.R. Padma D. Pai K.S.R. Influence of traditional medicines on the activity of keratinocytes in wound healing: an in-vitro study. Anat. Cell Biol. 2019 52 3 324 332 10.5115/acb.19.009 31598362
    [Google Scholar]
  29. Khan F. Ahmed F. Pushparaj P.N. Abuzenadah A. Kumosani T. Barbour E. AlQahtani M. Gauthaman K. Ajwa date (Phoenix dactylifera L.) extract inhibits human breast adenocarcinoma (MCF7) cells in vitro by inducing apoptosis and cell cycle arrest. PLoS One 2016 11 7 e0158963 10.1371/journal.pone.0158963 27441372
    [Google Scholar]
  30. Prashar R. Kumar A. Banerjee S. Rao A.R. Chemopreventive action by an extract from Ocimum sanctum on mouse skin papillomagenesis and its enhancement of skin glutathione S-transferase activity and acid soluble sulfydryl level. Anticancer Drugs 1994 5 5 567 572 10.1097/00001813‑199410000‑00008 7858289
    [Google Scholar]
  31. Abel E.L. Angel J.M. Kiguchi K. DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications. Nat. Protoc. 2009 4 9 1350 1362 10.1038/nprot.2009.120 19713956
    [Google Scholar]
  32. Shaw R. Miller S. Curwen J. Dymond M. Design, analysis and reporting of tumor models. Lab Anim. (NY) 2017 46 5 207 211 10.1038/laban.1257 28422097
    [Google Scholar]
  33. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  34. Moron M. Depierre J. Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta, Gen. Subj. 1979 582 1 67 78 10.1016/0304‑4165(79)90289‑7 760819
    [Google Scholar]
  35. Beers R.F. Sizer I.W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952 195 1 133 140 10.1016/S0021‑9258(19)50881‑X 14938361
    [Google Scholar]
  36. Marklund S.L. Holme E. Hellner L. Superoxide dismutase in extracellular fluids. Clin. Chim. Acta 1982 126 1 41 51 10.1016/0009‑8981(82)90360‑6 7172448
    [Google Scholar]
  37. Ali H. Dixit S. Alqahtani S. Ali D. Alkahtani S. Alarifi S. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des. Devel. Ther. 2015 9 2793 2800 10.2147/DDDT.S83514 26060396
    [Google Scholar]
  38. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  39. Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999 26 9-10 1231 1237 10.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  40. Zhu K. Zhou H. Qian H. Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem. 2006 41 6 1296 1302 10.1016/j.procbio.2005.12.029
    [Google Scholar]
  41. Hyland K. Voisin E. Banoun H. Auclair C. Banoun H. Superoxide dismutase assay using alkaline dimethylsulfoxide as superoxide anion-generating system. Anal. Biochem. 1983 135 2 280 287 10.1016/0003‑2697(83)90684‑X 6318599
    [Google Scholar]
  42. Wu X. Wang F. Chen M. Wang J. Zhang Y. Quantification of free short-chain fatty acids in raw cow milk by gas chromatography-mass spectrometry. Foods 2023 12 7 1367 10.3390/foods12071367 37048189
    [Google Scholar]
  43. Malumbres M. Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 2009 9 3 153 166 10.1038/nrc2602 19238148
    [Google Scholar]
  44. Sun K. Li M. Song Y. Tang J. Liu R. Organism and molecular-level responses of superoxide dismutase interaction with 2-pentanone. Chemosphere 2022 286 Pt 2 131707 10.1016/j.chemosphere.2021.131707 34365170
    [Google Scholar]
  45. More K. Tayade S. Gawande P. Manik S. Shelke D. Antioxidant and antimicrobial potential of Canavalia gladiata (Jacq.) DC. leaves and seeds: GC-MS based metabolic profiling. Indian J. Nat. Prod. Resour. 2022 13 2 163 169
    [Google Scholar]
  46. Kitic D. Miladinovic B. Randjelovic M. Szopa A. Sharifi-Rad J. Calina D. Seidel V. Anticancer potential and other pharmacological properties of Prunus armeniaca L.: An updated overview. Plants 2022 11 14 1885 10.3390/plants11141885 35890519
    [Google Scholar]
  47. Jayaraman S. Veeraraghavan V. Antidiabetic and antioxidant potential of ethyl iso-allocholate is mediated through insulin receptor/IRS-1/Akt/GLUT 4 mediated pathways: In vitro and in silicomechanisms Texila Int. J. Public. Health 2024, 2024 10.21522/TIJPH.2013.SE.24
    [Google Scholar]
  48. Thakur R.S. Ahirwar B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. Yao Wu Shi Pin Fen Xi 2019 27 1 231 239 30648576
    [Google Scholar]
  49. Galanty A. Grudzińska M. Paździora W. Paśko P. Erucic acid—both sides of the story: A concise review on its beneficial and toxic properties. Molecules 2023 28 4 1924 10.3390/molecules28041924 36838911
    [Google Scholar]
  50. Mohammed Y.H. Ghaidaa J.M. Imad H.H. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J. Pharmacogn. Phytother. 2016 8 2 8 24 10.5897/JPP2015.0364
    [Google Scholar]
  51. Montenegro I. Moreira J. Ramírez I. Dorta F. Sánchez E. Alfaro J.F. Valenzuela M. Jara-Gutiérrez C. Muñoz O. Alvear M. Werner E. Madrid A. Villena J. Seeger M. Chemical composition, antioxidant and anticancer activities of Leptocarpha rivularis DC flower extracts. Molecules 2020 26 1 67 10.3390/molecules26010067 33375633
    [Google Scholar]
  52. Astudillo A.M. Meana C. Guijas C. Pereira L. Lebrero P. Balboa M.A. Balsinde J. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J. Lipid Res. 2018 59 2 237 249 10.1194/jlr.M079145 29167413
    [Google Scholar]
  53. Bharath B. Perinbam K. Devanesan S. AlSalhi M.S. Saravanan M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT-29 colon cancer cells. J. Mol. Struct. 2021 1235 130229 10.1016/j.molstruc.2021.130229
    [Google Scholar]
  54. Sangpairoj K. Settacomkul R. Siangcham T. Meemon K. Niamnont N. Sornkaew N. Tamtin M. Sobhon P. Vivithanaporn P. Hexadecanoic acid-enriched extract of Halymenia durvillei induces apoptotic and autophagic death of human triple-negative breast cancer cells by upregulating ER stress. Asian Pac. J. Trop. Biomed. 2022 12 3 132 140 10.4103/2221‑1691.338922
    [Google Scholar]
  55. Hameed I.H. Hussein H.M. Ubaid J.M. Analysis of the secondary metabolite products of Ammi majus and evaluation anti-insect activity. Int. J. Pharm. Pharm. Res. 2016 8 8 1403 1411
    [Google Scholar]
  56. Sultana S. Makeen H.A. Alhazmi H.A. Mohan S. Al Bratty M. Najmi A. Homeida H.E. Khuwaja G. Ullah S.N.M.N. Zafar A. Moni S.S. Bioactive principles, antibacterial and anticancer properties of Artemisia arborescens L. Not. Bot. Horti Agrobot. Cluj-Napoca 2023 51 1 13008 10.15835/nbha51113008
    [Google Scholar]
  57. Reza A.S.M.A. Haque M.A. Sarker J. Nasrin M.S. Rahman M.M. Tareq A.M. Khan Z. Rashid M. Sadik M.G. Tsukahara T. Alam A.H.M.K. Antiproliferative and antioxidant potentials of bioactive edible vegetable fraction of Achyranthes ferruginea Roxb. in cancer cell line. Food Sci. Nutr. 2021 9 7 3777 3805 10.1002/fsn3.2343 34262737
    [Google Scholar]
  58. Eldawud R. Wagner A. Dong C. Gupta N. Rojanasakul Y. O’Doherty G. Stueckle T.A. Dinu C.Z. Potential antitumor activity of digitoxin and user-designed analog administered to human lung cancer cells. Biochim. Biophys. Acta, Gen. Subj. 2020 1864 11 129683 10.1016/j.bbagen.2020.129683 32679249
    [Google Scholar]
  59. Raj N.D. Singh D. A critical appraisal on ferulic acid: Biological profile, biopharmaceutical challenges and nano formulations. Health Sci. Rev. (Oxf.) 2022 5 100063 10.1016/j.hsr.2022.100063
    [Google Scholar]
  60. Laila F. Fardiaz D. Yuliana N.D. Damanik M.R.M. Nur Annisa Dewi F. Methanol extract of Coleus amboinicus (Lour) exhibited antiproliferative activity and induced programmed cell death in colon cancer cell WiDr. Int. J. Food Sci. 2020 2020 1 12 10.1155/2020/9068326 32047805
    [Google Scholar]
  61. Alqurashi A.S. Al Masoudi L.M. Hamdi H. Abu Zaid A. Chemical composition and antioxidant, antiviral, antifungal, antibacterial and anticancer potentials of opuntia ficus-indica seed oil. Molecules 2022 27 17 5453 10.3390/molecules27175453 36080220
    [Google Scholar]
  62. Qanash H. Yahya R. Bakri M.M. Bazaid A.S. Qanash S. Shater A.F. T M, A. Anticancer, antioxidant, antiviral and antimicrobial activities of Kei Apple (Dovyalis caffra) fruit. Sci. Rep. 2022 12 1 5914 10.1038/s41598‑022‑09993‑1 35396383
    [Google Scholar]
  63. De Silva S.F. Alcorn J. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals (Basel) 2019 12 2 68 10.3390/ph12020068 31060335
    [Google Scholar]
  64. Sorrenti V. Burò I. Consoli V. Vanella L. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects. Int. J. Mol. Sci. 2023 24 3 2019 10.3390/ijms24032019 36768340
    [Google Scholar]
  65. Friedl P. Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 2009 10 7 445 457 10.1038/nrm2720 19546857
    [Google Scholar]
  66. Ji X. Xu W. Cui J. Ma Y. Zhou S. Goat and buffalo milk fat globule membranes exhibit better effects at inducing apoptosis and reduction the viability of HT-29 cells. Sci. Rep. 2019 9 1 2577 10.1038/s41598‑019‑39546‑y 30796323
    [Google Scholar]
  67. Kumar M. Soni A.K. Shukla S. Kumar A. Chemopreventive potential of Tribulus terrestris against 7,12- dimethylbenz (a) anthracene induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 2006 7 2 289 294 16839225
    [Google Scholar]
  68. Qiblawi S. Al-Hazimi A. Al-Mogbel M. Hossain A. Bagchi D. Chemopreventive effects of cardamom (Elettaria cardamomum L.) on chemically induced skin carcinogenesis in Swiss albino mice. J. Med. Food 2012 15 6 576 580 10.1089/jmf.2011.0266 22404574
    [Google Scholar]
  69. Koul A. Mukherjee N. Gangar S.C. Inhibitory effects of Azadirachta indica on DMBA-induced skin carcinogenesis in Balb/c mice. Mol. Cell. Biochem. 2006 283 1-2 47 55 10.1007/s11010‑006‑2269‑7 16444585
    [Google Scholar]
  70. Padmavathi B. Rath P.C. Rao A.R. Singh R.P. Roots of Withania somnifera inhibit forestomach and skin carcinogenesis in mice. Evid. Based Complement. Alternat. Med. 2005 2 1 99 105 10.1093/ecam/neh064 15841284
    [Google Scholar]
  71. Gopalakrishnan T. Ganapathy S. Veeran V. Namasivayam N. Preventive effect of D-carvone during DMBA induced mouse skin tumorigenesis by modulating xenobiotic metabolism and induction of apoptotic events. Biomed. Pharmacother. 2019 111 178 187 10.1016/j.biopha.2018.12.071 30583225
    [Google Scholar]
  72. El Yaagoubi O.M. Lahmadi A. Bouyahya A. Filali H. Samaki H. El Antri S. Aboudkhil S. Antitumor effect of Inula viscosa extracts on DMBA‐induced skin carcinoma are mediated by proteasome inhibition. BioMed Res. Int. 2021 2021 1 6687589 10.1155/2021/6687589 33855081
    [Google Scholar]
  73. Abdelazez A. Alshehry G. Algarni E. Al Jumayi H. Abdel-Motaal H. Meng X.C. Postbiotic gamma-aminobutyric acid and camel milk intervention as innovative trends against hyperglycemia and hyperlipidemia in streptozotocin-induced C57BL/6J diabetic mice. Front. Microbiol. 2022 13 943930 10.3389/fmicb.2022.943930 35898909
    [Google Scholar]
  74. Zuberu J. Saleh M.I.A. Alhassan A.W. Adamu B.Y. Aliyu M. Iliya B.T. Hepatoprotective effect of camel milk on poloxamer 407 induced hyperlipidaemic wistar rats. Open Access Maced. J. Med. Sci. 2017 5 7 852 858 10.3889/oamjms.2017.158 29362609
    [Google Scholar]
  75. Abdel-Mobdy Y.E. Abdel-Mobdy A.E. AL-Farga, A. Evaluation of therapeutic effects of camel milk against the hepatotoxicity and nephrotoxicity induced by fipronil and lead acetate and their mixture. Environ. Sci. Pollut. Res. Int. 2023 30 15 44746 44755 10.1007/s11356‑022‑25092‑0 36697983
    [Google Scholar]
  76. Bharali R. Azad M.R.H. Tabassum J. Chemopreventive action of Boerhaavia diffusa on DMBA-induced skin carcinogenesis in mice. Indian J. Physiol. Pharmacol. 2003 47 4 459 464 15266960
    [Google Scholar]
  77. Sancheti G. Goyal P. Modulatory influence of Rosemarinus officinalis on DMBA-induced mouse skin tumorigenesis. Asian Pac. J. Cancer Prev. 2006 7 2 331 335 16839234
    [Google Scholar]
  78. Oginga E. Toeri J. Marete E. Arimi J. Potential application of camel milk as a therapeutic ingredient in bath soaps and shampoos. Dermatol. Res. Pract. 2024 2024 1 4846339 10.1155/2024/4846339 39219666
    [Google Scholar]
  79. Yaseen G. Hanee M. A-D. Miraculous properties of camel milk and perspective of modern science. J. Fam. Med. Dis. Prev. 2019 5 1 10.23937/2469‑5793/1510095
    [Google Scholar]
  80. Ebaid H. Al-Tamimi J. Alhazza I.M. Metwalli A. Tissue granulation in cutaneous wound healing is improved by a camel milk peptide in streptozotocin-induced diabetes in rat models. Indian J. Anim. Res. 2023 57 Of 599 605 10.18805/IJAR.BF‑1608
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206409156251001091047
Loading
/content/journals/acamc/10.2174/0118715206409156251001091047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test