Current Pharmaceutical Biotechnology - Volume 26, Issue 14, 2025
Volume 26, Issue 14, 2025
-
-
Trojan Horses: A Secret Route for Nanomedicines
More LessAuthors: Zoya Amin, Daniya Nadeem, Huzaifa Shakil, Munsif Ali Jatoi, Rabail Baloch and Raahim AliThe nanoparticles are widely used in various drug delivery applications due to their versatility to encapsulate, cargo loading, and transport of therapeutic agents. Numerous studies have explored the use of nanomedicine-based drug delivery systems for treating various diseases. This research provides a smart and precise review of one of the nanoparticles-based drug delivery approaches, i.e., the Trojan horse strategy which is employed for delivering the drug to the target efficiently and reliably. Furthermore, the applicability of nanomedicines to cancer treatment is discussed, with examples drawn from various systematic studies. The use of different nanomedicine platforms such as liposomes, nanoparticles, spherical nucleic acids, extracellular vesicles, and immune cells acting as Trojan horses is also explored in the context of cancer therapy. Finally, a precise conclusion and future recommendations are provided for future researchers in the field of applied nanotechnology for the pharmaceutical domain.
-
-
-
Emerging Nanotechnology Involved in Skin Cancer: Pathogenesis, Biomarkers, Ethosomal Formulation and Future Perspective
More LessAuthors: Milan Singh Kahlon, Raj Kamal, Amit Kumar, Ankit Awasthi and Manish KumarSkin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today’s population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.
-
-
-
Ampullaviruses: From Extreme Environments to Biotechnological Innovation
More LessAmpullaviruses are unique among viruses. They live in extreme environments and have special bottle-shaped architecture. These features make them useful tools for biotechnology. These viruses have compact genomes. They encode a range of enzymes and proteins. Their natural environment highlights their suitability for industrial applications. Ongoing research explores ways in which these viruses can improve enzyme stability. They are also employed in the creation of new biosensors and the development of new bioremediation techniques. High co-infection rates and the ecology of ampullaviruses at larger scales can also reveal new viral vectors. They can also help improve phage therapy. Here, we have explored the structure and function of ampullaviruses. We have focused on their use in biotechnology. We have also identified their characteristics that could prove to be useful. We have also pointed out key knowledge gaps and bridging them could further extend the biotechnological uses.
-
-
-
Targeting SARS-CoV-2-Induced Cardiovascular Injury: Exploring the Potential of Ponatinib in Mitigating Cardiovascular Necroptosis in COVID-19
More LessThe incidence of Coronavirus Disease 2019 (COVID-19) has increased dramatically in recent years, affecting millions of people worldwide. The primary cause of morbidity and mortality in COVID-19 patients is respiratory illness. However, the disease can also significantly impact the cardiovascular system. SARS-CoV-2, the virus responsible for COVID-19, enters cells using the angiotensin-converting enzyme 2 (ACE-2) receptor. ACE-2 is a component of the renin-angiotensin system (RAS) and plays a crucial role in regulating various pathological processes. The interaction of the virus with ACE-2 in the myocardium can lead to direct heart damage. Several mechanisms may contribute to myocardial damage in COVID-19 patients, including systemic inflammation, myocardial interstitial fibrosis, interferon-mediated immune response, exaggerated cytokine response, T-cell-mediated damage, coronary plaque instability, and hypoxia. There has been concern that ACE inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) may increase vulnerability to SARS-CoV-2 by upregulating ACE-2 expression. However, it may be advisable to continue medications for patients with underlying cardiovascular disorders. The precise mechanisms of cardiomyocyte injury in COVID-19 are not fully understood, but necroptosis appears to play a significant role. Current treatments for cardiac damage in COVID-19 patients include IL-6 blockers and antiplatelet therapy. Ponatinib, a small molecule tyrosine kinase inhibitor designed using computational and structural approaches, has shown the potential to affect cell death through its impact on tyrosine kinase activity. By reviewing studies related to ponatinib’s effects on necroptosis and cell death, we propose a novel approach to potentially reduce the cardiotoxic effects of COVID-19 on cardiomyocytes. Further research is needed to fully elucidate the mechanisms of cardiac injury in COVID-19 and to develop targeted therapies to protect the heart from the devastating effects of this disease.
-
-
-
Aspects of β-sitosterol's Pharmacology, Nutrition and Analysis
More LessPhytosterols are bioactive substances found naturally in the cell membranes of plants and have an arrangement of molecules similar to that of fat, which is produced by mammalian cells. They are widely distributed as dietary sources of lipids in plants, such as nuts, seeds, olive oil, and legumes. This review provides a summary of the efficacy of BS in treating lifestyle problems, as well as an appraisal of previous research. Data was collected from PubMed, ScienceDirect, Scopus, and Google scholar (1968 -2024) using standard keywords “β-sitosterol,” “Classification,” “Biosynthesis,” “Pharmacokinetics,” “Herbal nutraceutical,” “Analytical,” “Structure,” “Pharmacological effect.” A total of 222 studies were included in this review. Numerous in vitro and in vivo investigations have shown that BSs exhibit several biological properties such as calming and anxiolytic effects; narcotic and immune-stimulating effects; antibacterial, antineoplastic, inflammation-causing, lipid-lowering, and hepatoprotective effects; and antioxidant, anti-diabetic, and wound-healing effects in contrast to respiratory and non-alcoholic fatty liver disease illnesses. β-sitosterol is a promising natural substance for the management of cholesterol and inflammation. However, further studies are needed to understand its pharmacological consequences and determine its best use in clinical applications. β-Sitosterol, also known as “plant sterol ester,” is often present in plants and has several applications, notably in medicine and the food industry. Experimental research on β-sitosterol provides unequivocal evidence that phytosterol can be supplemented with other methods to combat serious illnesses. Such a high potential identifies this substance as a noteworthy medication for the future based on its composition. Although β-sitosterol has anticancer and anti-inflammatory properties and is useful in human clinical trials for enlarged prostates, its mechanism of action remains unclear.
-
-
-
Proteases: Role in Various Human Diseases
More LessAuthors: Ogireddy Sri Apoorva, Khyati Shukla, Aakash Khurana and Nidhee ChaudharyProteases, a group of hydrolytic enzymes catalyzing the hydrolysis of peptide bonds, play pivotal roles in various physiological processes and have emerged as key contributors to the pathogenesis of diverse diseases. This work provides an insight into the impact of protease activity on different disease contexts, highlighting their involvement in cancer, inflammatory disorders, cardiovascular diseases, infectious diseases, and neurodegenerative conditions. In cancer, proteases facilitate tumor growth, invasion, and metastasis, while in inflammatory diseases, dysregulated protease activity exacerbates tissue damage and inflammation. Cardiovascular diseases involve proteases in extracellular matrix remodeling, affecting arterial structure. In infectious diseases, proteases play crucial roles in pathogen invasion and immune evasion. Neurodegenerative diseases are characterized by protease dysregulation, contributing to protein misfolding and aggregation. As research progresses, understanding the intricate relationships between proteases and diseases becomes essential for developing targeted therapeutic strategies. This review aims to provide a comprehensive glimpse into the diverse impact of protease activities on various diseases, emphasizing their potential as crucial players in the landscape of disease pathology and potential therapeutic interventions.
-
-
-
Nanocarrier-based Delivery Approaches of Mangiferin: An Updated Review on Leveraging Biopharmaceutical Characteristics of the Bioactive
More LessIn recent years, bioactive constituents from plants have been investigated as an alternative to synthetic approaches of therapeutics. Mangiferin (MGF) is a xanthone glycoside extracted from Mangifera indica and has shown numerous medicinal properties, such as antimicrobial, anti-diarrhoeal, antiviral, anti-inflammatory, antihypertensive, anti-tumours, and anti-diabetic effects. However, there are numerous challenges to its effective therapeutic usage, including its low water solubility, limited absorption, and poor bioavailability. Nano formulation approaches in recent years exhibited potential for the delivery of phytoconstituents with key benefits of high entrapment, sustained release, enhanced solubility, stability, improved pharmacokinetics, and site-specific drug delivery. Numerous techniques have been employed for the fabrication of MGF-loaded Nano formulations, and each technique has its advantages and limitations. The nanocarriers that have been employed to fabricate MGF nanoformulations for various therapeutic purposes include; polymeric nanoparticles, nanostructure, lipid carriers, polymeric micelles, Nano emulsions, microemulsion & self-microemulsifying drug delivery system, solid lipid nanoparticles, gold nanoparticles, carbon nanotubes, transfersomes, nanoliposomes, ethosomes & transethosomes, and glycethosomes. Different biopharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, in vitro drug release, ex vivo drug permeation,, and in vivo studies) of the mentioned MGF-loaded nanocarriers have been methodically discussed. Patent reports are also included to further strengthen the potential of MGF in the management of diseases.
-
-
-
Dysbiosis and Regulation of Gut Microbiota in Type 2 Diabetes Mellitus
More LessAuthors: Minakshi, Hemlata Kumari, Shaurya Prakash and Antresh KumarType 2 diabetes mellitus is a serious metabolic disease having a high growth rate and becoming a global threat. An unhealthy lifestyle, food intake, and genetic susceptibility are the major factors responsible for this metabolic disorder. This disease results in hyperlipidemia, hyperglycemia, glucose intolerance, restricted insulin synthesis, and insulin resistance. Despite a variety of treatments currently available, cases of diabetes and resulting complications are on the rise. One promising approach to diabetes focuses on gut microflora and their associated metabolites. Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology. This study explores the dysbiosis in the human gut microflora in Type 2 Diabetes Mellitus and how the gut microbiota influences metabolites related to T2DM. It also sheds light on early identification and targeted intervention for this. Understanding these mechanisms could potentially lead to more effective strategies for managing and preventing T2DM. The findings of our literature study are that gut microbiota can serve as biomarkers for early disease detection. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to emphasize the improvement of T2DM progression.
-
-
-
Correlation of Neuroinflammation and Therapeutic Targets in Perioperative Neurocognitive Disorders
More LessAuthors: Fahad Khan, Meenakshi Verma, Indra Rautela, Vijay Jagdish Upadhye, Pratibha Pandey and Rahul KumarPerioperative Neurocognitive (PND) disorders represent a prevalent complication among geriatric patients, manifested in diverse forms of cognitive impairment following anesthesia and surgical procedures. Even though the exact origin of PND disorders is still unknown, neuroinflammation has been identified as a significant contributing factor, particularly in older patients. Hence, this review aims to provide a deeper insight into the underlying mechanism and associated potent therapeutic targets for the efficient management of perioperative neurocognitive disorders. Many factors, such as PRRs, chemokine receptors, immunoglobulin superfamily receptors, and purinergic receptors, are involved in the development and occurrence of perioperative neurocognitive disorders to varying degrees and may be valuable biomarkers for their effective management. Here, we present a comprehensive overview of the involvement of neuroinflammation in PND disorders, including their onset and possible therapeutic targets. This review would benefit future researchers in elucidating a better therapeutic approach for the management of perioperative neurocognitive disorders. We have also briefly outlined the clinical trials associated with Postoperative neurocognitive disorders in the last section of the review. Altogether, this review would help the researchers investigate better therapeutics for the management of PND disorders.
-
-
-
Biomarkers and Novel Therapies of Diabetic Neuropathy: An Updated Review
More LessDiabetic neuropathy is a persistent consequence of the biochemical condition known as diabetes mellitus. As of now, the identification and management of diabetic neuropathy continue to be problematic due to problems related to the safety and efficacy of existing therapies. This study examines biomarkers, molecular and cellular events associated with the advancement of diabetic neuropathy, as well as the existing pharmacological and non-pharmacological treatments employed. Furthermore, a holistic and mechanism-centric drug repurposing approach, antioxidant therapy, Gene and Cell therapies, Capsaicin and other spinal cord stimulators and lifestyle interventions are pursued for the identification, treatment and management of diabetic neuropathy. An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer using the keywords “Diabetic Neuropathy”, “Biomarkers”, “Cellular and Molecular Mechanisms”, and “Novel Therapeutic Targets”. Thus, we may conclude that non-pharmacological therapies along with palliative treatment, may prove to be crucial in halting the onset of neuropathic symptoms and in lessening those symptoms once they have occurred.
-
-
-
The Gut Health Revolution: Herbs and Dietary Phytochemicals in Balancing Gut Microbiota for Optimal Human Health
More LessThe gut microbiota is a varied population of microorganisms that live in the human gastrointestinal system. Emerging research emphasizes the importance of this microbial ecology in general health and its influence on a variety of disorders. The review explores the synergy between herbal treatment and traditional medicine, emphasizing their cultural significance and therapeutic benefits. It delves into the intricate relationship between herbal remedies, traditional healing practices, and their sustained usage over centuries. The review highlights the pivotal role of the gut microbiota in herbal medicine, elucidating how treatments influence the gastrointestinal microorganisms, impacting overall health. Dietary phytochemicals are underscored for their significance in herbal medicine and nutritional well-being, along with the interdependence of plant extracts and botanicals. The investigation explores the molecular connections between phytoconstituents and gut microbiota, aiming to deepen the understanding of herbal medicine's tailored approach to specific health challenges. The summary concludes by emphasizing herbal treatments' unique ability to regulate gut flora, contributing to overall gastrointestinal well-being. In closing, the review provides a concise overview, serving as a valuable resource for integrative medicine research, with recommendations for future exploration of herbal medicine's potential in healthcare.
-
-
-
The Effect of Erythromycin in Macrolide-resistant Bordetella pertussis: Inhibitory Effect on Growth, Toxin Expression, and Virulence
More LessAuthors: Kaichong Jiang, Yang Luan, Wei Wang, Da Xue, Shuyue Tang, Xiaokang Peng, Xiaoguai Liu and Zengguo WangIntroductionThe macrolide-resistant Bordetella pertussis (MRBp) has appeared in Asia and has even been prevalent in China. Since the antibiotic sensitivity test is not carried out in the clinical setting, macrolide is still the first choice of antibiotic in MRBp infection. Further, the macrolide therapy for pertussis needs to be revised. Macrolide has always shown a positive effect on other macrolide-resistant bacterium infections in clinical applications. However, the mechanism of macrolide on MRBp remains unclear.
ObjectiveThe objective of this study was to investigate the effect of virulence of MRBp under the sub-MIC erythromycin.
MethodsThis study evaluated a representative isolate BP19147 (ptxP1/fhaB3-MRBp) under a series of sub-inhibitory concentrations of erythromycin. We measured the growth curve, biofilm formation, and autoaggregation assay under Stainer and Scholte (SS) broth. The relative gene expression was detected by RT-qPCR.
ResultsThe proteomics was detected by label-fee DIA. The growth ability and virulence factors of MR isolate BP19147 were inhibited by sub-MIC of erythromycin and had a concentration-dependent effect. From the proteomics results, the pertussis toxin, filamentous haemagglutinin, and pertactin did not show a statistical difference (p >0.05). Other virulence factors (including dermonecrotic toxin, Invasive Adenylate cyclase/haemolysin. etc) showed a statistical difference (p <0.05). In the KEGG enrichment, the BvgAS system, biofilm formation, and some adaptive systems were inhibited by erythromycin.
ConclusionThe sub-MIC of erythromycin may reduce the virulence of MRBp, which will provide a theoretical basis for the rational use of erythromycin for MRBp infection and help the development of new antibiotics.
-
-
-
DDP Induced Cytotoxicity through miR-215-5p/COL5A1/FSTL1 Axis to Regulate Autophagy in Lung Adenocarcinoma Cells
More LessAuthors: Xinguo Zhao, Hongming Zhang, Longqiang Gu, Hailin Zhang and Honggang CaoBackgroundCisplatin (DDP) resistance remains a major challenge in the treatment of lung adenocarcinoma (LUAD). Autophagy is an important mechanism to generate drug resistance. It has been established that COL5A1 has been shown to accelerate LUAD metastasis and affect cellular processes.
MethodsWe investigated the role of COL5A1 in DDP resistance using the H1299/DDP and A549/DDP cell lines. Flow cytometry, CCK8, and western blot assays were used to detect apoptosis, cell viability, and autophagy. In addition, upstream miRNAs were screened using bioinformatics methods. MS2-RIP assay and luciferase reporter gene assay were used to validate miRNA interaction with COL5A1. Transfection experiments and western blot experiments were performed to investigate miRNA targeting to COL5A1 and its regulation of autophagy through FSTL1. The role of miRNA and COL5A1 in LUAD cisplatin resistance was also verified in vivo.
ResultsThe down-regulation of COL5A1 significantly reduced the survival and autophagy of DDP-resistant cells while enhancing apoptosis. MiR-215-5p was found to be a direct regulator of COL5A1, which affects autophagy through FSTL1.
ConclusionThe present study demonstrated that miR-215-5p regulated COL5A1 to modulate FSTL1 and autophagy, thereby attenuating LUAD resistance to DDP. These findings deepen the understanding of LUAD pathogenesis and provide potential insights into therapeutic strategies.
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month