Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The gut microbiota is a varied population of microorganisms that live in the human gastrointestinal system. Emerging research emphasizes the importance of this microbial ecology in general health and its influence on a variety of disorders. The review explores the synergy between herbal treatment and traditional medicine, emphasizing their cultural significance and therapeutic benefits. It delves into the intricate relationship between herbal remedies, traditional healing practices, and their sustained usage over centuries. The review highlights the pivotal role of the gut microbiota in herbal medicine, elucidating how treatments influence the gastrointestinal microorganisms, impacting overall health. Dietary phytochemicals are underscored for their significance in herbal medicine and nutritional well-being, along with the interdependence of plant extracts and botanicals. The investigation explores the molecular connections between phytoconstituents and gut microbiota, aiming to deepen the understanding of herbal medicine's tailored approach to specific health challenges. The summary concludes by emphasizing herbal treatments' unique ability to regulate gut flora, contributing to overall gastrointestinal well-being. In closing, the review provides a concise overview, serving as a valuable resource for integrative medicine research, with recommendations for future exploration of herbal medicine's potential in healthcare.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010313921240923125946
2024-09-27
2025-12-22
Loading full text...

Full text loading...

References

  1. PeterK.V. Nirmal BabuK Introduction to herbs and spices: Medicinal uses and sustainable production. 2nd ed; Handb Herbs, Spices2012211610.1533/9780857095688.1
    [Google Scholar]
  2. DjordjevicS.M. From medicinal plant raw material to herbal remedies.Aromat. Med. Plants - Back to Nat.201710.5772/66618
    [Google Scholar]
  3. Abdel-AzizS.M. AeronA. KahilT.A. Health benefits and possible risks of herbal medicine.Microbes Food Heal20169711610.1007/978‑3‑319‑25277‑3_6
    [Google Scholar]
  4. BoneK MillsS Principles and practice of phytotherapy: Modern herbal medicine.Princip. Pract. Phytother.201210.1016/C2009‑0‑48725‑7
    [Google Scholar]
  5. FletcherG.F. BaladyG. FroelicherV.F. HartleyL.H. HaskellW.L. PollockM.L. Exercise standards.Circulation199591258061510.1161/01.CIR.91.2.580 7805272
    [Google Scholar]
  6. AhmadS. ZahiruddinS. ParveenB. BasistP. ParveenA. Gaurav; Parveen, R.; Ahmad, M. Indian medicinal plants and formulations and their potential against covid-19–preclinical and clinical research.Front. Pharmacol.20211157897010.3389/fphar.2020.578970 33737875
    [Google Scholar]
  7. AbassS. DarM.I. ZahiruddinS. BegM.A. NagarP. JanB. HusainS.A. AhmadS. Phytochemical and antibacterial analysis of Pistacia integerrima: An integrated in vitro and in silico approach.Process Biochem.202313223624710.1016/j.procbio.2023.07.020
    [Google Scholar]
  8. HusainS.A. AhmadS. AbassS. ParveenR. IrfanM. JanB. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance.Curr. Pharm. Biotechnol.202223131527154010.2174/1389201023666220126115656 35081888
    [Google Scholar]
  9. PatwardhanB. PatwardhanA. Traditional medicine: Modern approach for affordable global health. Comm Intellect Prop Rights IaPHC, World Heal Organ.GenevaWHO2005
    [Google Scholar]
  10. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  11. SnashallD. An occupational perspective of health.Occup. Med.652015176710.1093/occmed/kqv134
    [Google Scholar]
  12. CassellE.J. The nature of healing.Pract. Med.201210.1093/acprof:oso/9780195369052.001.0001
    [Google Scholar]
  13. HoughtonP.J. The role of plants in traditional medicine and current therapy.J. Altern. Complement. Med.19951213114310.1089/acm.1995.1.131 9395610
    [Google Scholar]
  14. GiannenasI. SidiropoulouE. BonosE. ChristakiE. Florou-PaneriP. The history of herbs, medicinal and aromatic plants, and their extracts: Past, current situation and future perspectives.Feed Addit.Aromat. Plants Herbs Anim. Nutr. Heal201911810.1016/B978‑0‑12‑814700‑9.00001‑7
    [Google Scholar]
  15. BalaramnavarV.P. A comprehensive review on turmeric benefits.SAJMMR2021111116917410.5958/2249‑877X.2021.00126.0
    [Google Scholar]
  16. BuellP.D. AndersonE.N. Chinese Medicine, Origins, History.ChinaArab. Med202195310.1163/9789004447288_004
    [Google Scholar]
  17. RehmanF. ur Importance of medicinal plants in human and plant pathology: A review.Int. J. Pharm. Biomed. Res.2021811110.18782/2394‑3726.1110
    [Google Scholar]
  18. ChopraA. DoiphodeV.V. Ayurvedic medicine: Core concept, therapeutic principles, and current relevance.Med. Clin. North Am.20028617589vii10.1016/S0025‑7125(03)00073‑711795092
    [Google Scholar]
  19. MazidM. KhanT.A. MohammadF. Medicinal plants of rural India: A review of use by indian folks.IGJPS20122328630410.35652/IGJPS.2012.35
    [Google Scholar]
  20. WangH. ChenY. WangL. LiuQ. YangS. WangC. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices.Front. Pharmacol.202314126517810.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  21. KlojdováI. MilotaT. SmetanováJ. StathopoulosC. Encapsulation: A strategy to deliver therapeutics and bioactive compounds?Pharmaceuticals202316336210.3390/ph16030362 36986462
    [Google Scholar]
  22. BarnesP.M. Powell-GrinerE. McFannK. NahinR.L. Complementary and alternative medicine use among adults: United States, 2002.Seminars in Integrative Medicine200422547110.1016/j.sigm.2004.07.003 15188733
    [Google Scholar]
  23. ToveyP EasthopeG AdamsJ Mainstreaming complementary and alternative medicine: Studies in social context.1st edLondonRoutledge201710.4324/9780203987902
    [Google Scholar]
  24. AndrewsG.J. AdamsJ. SegrottJ. Complementary and alternative medicine (CAM): Production, consumption, research.A Companion to Health and Medical Geography.Wiley200958760310.1002/9781444314762.ch30
    [Google Scholar]
  25. EllenR. Inventing the indigenous: Local knowledge and natural history in early modern europe.Comp. Stud. Soc. Hist.20085041047104810.1017/S0010417508001163
    [Google Scholar]
  26. EnioutinaE.Y. SalisE.R. JobK.M. GubarevM.I. KrepkovaL.V. SherwinC.M.T. Herbal Medicines: Challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide.Expert Rev. Clin. Pharmacol.201610311210.1080/17512433.2017.1268917 27923318
    [Google Scholar]
  27. CostaM. WeeseJ.S. Methods and basic concepts for microbiota assessment.Vet. J.2019249101510.1016/j.tvjl.2019.05.005 31239159
    [Google Scholar]
  28. BarkoP.C. McMichaelM.A. SwansonK.S. WilliamsD.A. The gastrointestinal microbiome: A review.J. Vet. Intern. Med.201832192510.1111/jvim.14875 29171095
    [Google Scholar]
  29. YadavM. VermaM.K. ChauhanN.S. A review of metabolic potential of human gut microbiome in human nutrition.Arch. Microbiol.2018200220321710.1007/s00203‑017‑1459‑x 29188341
    [Google Scholar]
  30. ZhuB. WangX. LiL. Human gut microbiome: The second genome of human body.Protein Cell20101871872510.1007/s13238‑010‑0093‑z 21203913
    [Google Scholar]
  31. MacfarlaneS. MacfarlaneG.T. Bacterial diversity in the human gut.Adv. Appl. Microbiol.20045426128910.1016/S0065‑2164(04)54010‑8 15251284
    [Google Scholar]
  32. YinR. KuoH.C. HudlikarR. SargsyanD. LiS. WangL. WuR. KongA.N. Gut microbiota, dietary phytochemicals and benefits to human health.Curr. Pharmacol. Rep.20195533234410.1007/s40495‑019‑00196‑3 33224717
    [Google Scholar]
  33. RobinsonC.J. BohannanB.J.M. YoungV.B. From structure to function: The ecology of host-associated microbial communities.Microbiol. Mol. Biol. Rev.201074345347610.1128/MMBR.00014‑10 20805407
    [Google Scholar]
  34. ForgieA.J. FouhseJ.M. WillingB.P. Diet-microbe-host interactions that affect gut mucosal integrity and infection resistance.Front. Immunol.201910180210.3389/fimmu.2019.01802 31447837
    [Google Scholar]
  35. DiBaiseJ.K. FrankD.N. MathurR. Impact of the gut microbiota on the development of obesity: Current concepts.Am. J. Gastroenterol. Suppl.201211222710.1038/ajgsup.2012.5
    [Google Scholar]
  36. GaoR. ZhuC. LiH. YinM. PanC. HuangL. KongC. WangX. ZhangY. QuS. QinH. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity.Obesity201826235136110.1002/oby.22088 29280312
    [Google Scholar]
  37. ZhangL. VirgousC. SiH. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals.J. Nutr. Biochem.201969193010.1016/j.jnutbio.2019.03.009 31048206
    [Google Scholar]
  38. RupaP. MineY. Recent advances in the role of probiotics in human inflammation and gut health.J. Agric. Food Chem.201260348249825610.1021/jf301903t 22897745
    [Google Scholar]
  39. FarrarW.E., Jr Serious infections due to “non-pathogenic” organisms of the genus bacillus.Am. J. Med.196334113414110.1016/0002‑9343(63)90047‑0 13944444
    [Google Scholar]
  40. GomaaE.Z. Human gut microbiota/microbiome in health and diseases: A review.Antonie van Leeuwenhoek2020113122019204010.1007/s10482‑020‑01474‑7 33136284
    [Google Scholar]
  41. DaveM. HigginsP.D. MiddhaS. RiouxK.P. The human gut microbiome: Current knowledge, challenges, and future directions.Transl. Res.2012160424625710.1016/j.trsl.2012.05.003 22683238
    [Google Scholar]
  42. NagpalR. KumarM. YadavA.K. HemalathaR. YadavH. MarottaF. YamashiroY. Gut microbiota in health and disease: An overview focused on metabolic inflammation.Benef. Microbes20167218119410.3920/bm2015.0062 26645350
    [Google Scholar]
  43. LinL. ZhangJ. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.BMC Immunol.2017181210.1186/s12865‑016‑0187‑3 28061847
    [Google Scholar]
  44. MoszakM. SzulińskaM. BogdańskiP. You are what you eat—the relationship between diet, microbiota, and metabolic disorders— A review.Nutrients2020124109610.3390/nu12041096 32326604
    [Google Scholar]
  45. LauA.W.Y. TanL.T.H. Ab MutalibN.S. WongS.H. LetchumananV. LeeL.H. The chemistry of gut microbiome in health and diseases.Progress In Microbes & Molecular Biology20214110.36877/pmmb.a0000175
    [Google Scholar]
  46. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202310.1007/s11739‑023‑03374‑w 37505311
    [Google Scholar]
  47. FengX. CaoS. QiuF. ZhangB. Traditional application and modern pharmacological research of Artemisia annua L.Pharmacol. Ther.202021610765010.1016/j.pharmthera.2020.107650 32758647
    [Google Scholar]
  48. BiliaA.R. SantomauroF. SaccoC. BergonziM.C. DonatoR. Essential oil of artemisia annua L.: An extraordinary component with numerous antimicrobial properties.Evid. Based Complement. Alternat. Med.20142014115981910.1155/2014/159819 24799936
    [Google Scholar]
  49. ThumannT.A. Pferschy-WenzigE.M. Moissl-EichingerC. BauerR. The role of gut microbiota for the activity of medicinal plants traditionally used in the European Union for gastrointestinal disorders.J. Ethnopharmacol.201924511215310.1016/j.jep.2019.112153 31408679
    [Google Scholar]
  50. HusseinyS. DishishaT. SolimanH.A. AdelekeR. RaslanM. Characterization of growth promoting bacterial endophytes isolated from Artemisia annua L.S. Afr. J. Bot.202114323824710.1016/j.sajb.2021.07.042
    [Google Scholar]
  51. ZhangB. RenD. ZhaoY. LiuY. ZhaiX. YangX. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota.Food Funct.201910128137814810.1039/C9FO01890E 31746883
    [Google Scholar]
  52. IbrahimK.G. MukonowenzouN.C. UsmanD. AdeshinaK.A. ErlwangerK.H. The potential of Artemisia species for use as broad-spectrum agents in the management of metabolic syndrome: A review.Arch. Physiol. Biochem.2023129375277010.1080/13813455.2021.1871761 33569991
    [Google Scholar]
  53. ZhaoT. TangH. XieL. ZhengY. MaZ. SunQ. LiX. Scutellaria baicalensis Georgi. (Lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.J. Pharm. Pharmacol.20197191353136910.1111/jphp.13129 31236960
    [Google Scholar]
  54. WangZ.L. WangS. KuangY. HuZ.M. QiaoX. YeM. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis.Pharm. Biol.201856146548410.1080/13880209.2018.1492620 31070530
    [Google Scholar]
  55. CuiL. GuanX. DingW. LuoY. WangW. BuW. SongJ. TanX. SunE. NingQ. LiuG. JiaX. FengL. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota.Int. J. Biol. Macromol.20211661035104510.1016/j.ijbiomac.2020.10.259 33157130
    [Google Scholar]
  56. PengL.Y. ShiH.T. TanY.R. ShenS.Y. YiP.F. ShenH.Q. FuB.D. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production.Food Funct.20211224126211263310.1039/D1FO02407H 34821232
    [Google Scholar]
  57. GuanY. ChenK. QuanD. KangL. YangD. WuH. YanM. WuS. LvL. ZhangG. The combination of scutellaria baicalensis georgi and Sophora japonica L. ameliorate renal function by regulating gut microbiota in spontaneously hypertensive rats.Front. Pharmacol.20211157529410.3389/fphar.2020.575294 33643031
    [Google Scholar]
  58. AliM MalikAR Sharma, KR Vegetative propagation of Berberis aristata DC. An endangered Himalayan shrub.J. Med.20082
    [Google Scholar]
  59. ChanderV. AswalJ.S. DobhalR. UniyalD.P. A review on pharmacological potential of berberine; An active component of Himalayan Berberis aristata.Journal of Phytopharmacology201761536510.31254/phyto.2017.6108
    [Google Scholar]
  60. PotdarD. HirwaniR.R. DhulapS. Phyto-chemical and pharmacological applications of Berberis aristata.Fitoterapia201283581783010.1016/j.fitote.2012.04.012 22808523
    [Google Scholar]
  61. Shailja Choudhary, Hemlata Kaurav, Madhusudan S, Gitika Chaudhary, Daruharidra (Berberis aristata): Review based upon its Ayurvedic Properties.IJRASB2021829810610.31033/ijrasb.8.2.12
    [Google Scholar]
  62. UllahF. AyazM. SadiqA. UllahF. HussainI. ShahidM. YessimbekovZ. Adhikari-DevkotaA. DevkotaH.P. Potential role of plant extracts and phytochemicals against foodborne pathogens.Appl. Sci.20201013459710.3390/app10134597
    [Google Scholar]
  63. YuM. JinX. LiangC. BuF. PanD. HeQ. MingY. LittleP. DuH. LiangS. HuR. LiC. HuY.J. CaoH. LiuJ. FeiY. Berberine for diarrhea in children and adults: A systematic review and meta-analysis.Therap. Adv. Gastroenterol.20201310.1177/1756284820961299 33149763
    [Google Scholar]
  64. VigneshA. AmalT.C. SelvakumarS. VasanthK. Unraveling the role of medicinal plants and Gut microbiota in colon cancer: Towards microbiota- based strategies for prevention and treatment.Health Sci. Rep.2023910011510.1016/j.hsr.2023.100115
    [Google Scholar]
  65. GaoY. DongY. GuoQ. WangH. FengM. YanZ. BaiD. Study on supramolecules in traditional chinese medicine decoction.Molecules20222710326810.3390/molecules27103268 35630743
    [Google Scholar]
  66. HuangJ. ZhuY. XiaoH. LiuJ. LiS. ZhengQ. TangJ. MengX. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: A promising treatment.Chin. Med.20231816610.1186/s13020‑023‑00764‑2 37280646
    [Google Scholar]
  67. WeeJ.J. ParkK.M. ChungA.S. Biological activities of ginseng and its application to human health.Herb. Med. Biomol. Clin. Asp201115717410.1201/b10787‑9
    [Google Scholar]
  68. KimK.H. LeeD. LeeH.L. KimC.E. JungK. KangK.S. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions.J. Ginseng Res.201842323924710.1016/j.jgr.2017.03.011 29989012
    [Google Scholar]
  69. RatanZ.A. HaidereM.F. HongY.H. ParkS.H. LeeJ.O. LeeJ. ChoJ.Y. Pharmacological potential of ginseng and its major component ginsenosides.J. Ginseng Res.202145219921010.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  70. SunY. ChenS. WeiR. XieX. WangC. FanS. ZhangX. SuJ. LiuJ. JiaW. WangX. Metabolome and gut microbiota variation with long-term intake of Panax ginseng extracts on rats.Food Funct.2018963547355610.1039/C8FO00025E 29896600
    [Google Scholar]
  71. QuanL.H. ZhangC. DongM. JiangJ. XuH. YanC. LiuX. ZhouH. ZhangH. ChenL. ZhongF.L. LuoZ.B. LamS.M. ShuiG. LiD. JinW. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation.Gut20206971239124710.1136/gutjnl‑2019‑319114 31744910
    [Google Scholar]
  72. SemwalD.K. BadoniR. SemwalR. KothiyalS.K. SinghG.J.P. RawatU. The genus Stephania (Menispermaceae): Chemical and pharmacological perspectives.J. Ethnopharmacol.2010132236938310.1016/j.jep.2010.08.047 20801207
    [Google Scholar]
  73. LiangD. LiQ. DuL. DouG. Pharmacological effects and clinical prospects of cepharanthine.Molecules20222724893310.3390/molecules27248933 36558061
    [Google Scholar]
  74. CheungM.K. YueG.G.L. ChiuP.W.Y. LauC.B.S. A review of the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in colitis and cancer.Front. Pharmacol.20201174410.3389/fphar.2020.00744 32499711
    [Google Scholar]
  75. DoréJ. E06 The commensal intestinal microbiota in health and immune diseases.J. Crohn’s Colitis Suppl.201041510.1016/S1873‑9954(10)70010‑0
    [Google Scholar]
  76. AhmedS. DingX. SharmaA. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update.J. Ethnopharmacol.202127311382910.1016/j.jep.2021.113829 33465446
    [Google Scholar]
  77. LalU.R. JoshiD. BanerjeeS. Anticancer agents: Plants used in Ayurveda. Herbal Med.Back to Future201918121410.2174/9789811411205119030008
    [Google Scholar]
  78. TarasiukA. MosińskaP. FichnaJ. Triphala: Current applications and new perspectives on the treatment of functional gastrointestinal disorders.Chin. Med.20181313910.1186/s13020‑018‑0197‑6 30034512
    [Google Scholar]
  79. KushwahA.S. JoshiY. RaniH. KaurG. KumarM. SindhuR.K. MittalR. Herbal and Ayurvedic plants as remedial approach for viral diseases with focus on COVID-19: A narrative review.Curr. Tradit. Med.202393e22082220785610.2174/2215083808666220822124541
    [Google Scholar]
  80. LiX. LinY. JiangY. WuB. YuY. Aqueous extract of Phyllanthus emblica L. Alleviates functional dyspepsia through regulating gastrointestinal hormones and gut microbiome in vivo.Foods20221110149110.3390/foods11101491 35627061
    [Google Scholar]
  81. SharmaD. NamdeoP. SinghP. Phytochemistry and pharmacological studies of glycyrrhiza glabra: A medicinal plant review.Int. J. Pharm. Sci. Rev. Res.202167118719410.47583/ijpsrr.2021.v67i01.030
    [Google Scholar]
  82. MubarikF. NoreenS. FarooqF. KhanM. KhanA.U PaneY.S. Medicinal uses of licorice (Glycyrrhiza glabra L.): A comprehensive review.Open Access Maced. J. Med. Sci.20219F66867510.3889/oamjms.2021.7526
    [Google Scholar]
  83. ZhangY. XuY. ZhangL. ChenY. WuT. LiuR. SuiW. ZhuQ. ZhangM. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice.Food Res. Int.202215311094510.1016/j.foodres.2022.110945 35227470
    [Google Scholar]
  84. LiuF. TangX. MaoB. ZhangQ. ZhaoJ. CuiS. ChenW. Ethanol extract of licorice alleviates hfd-induced liver fat accumulation in association with modulation of gut microbiota and intestinal metabolites in obesity mice.Nutrients20221419418010.3390/nu14194180 36235833
    [Google Scholar]
  85. KarantonisH.C. TsouprasA. MoranD. ZabetakisI. NasopoulouC. Olive, apple, and grape pomaces with antioxidant and anti-inflammatory bioactivities for functional foods. Funct. Foods their Implic; Heal.Promot202213115910.1016/B978‑0‑12‑823811‑0.00007‑9
    [Google Scholar]
  86. SainiN. GahlawatS.K. LatherV. Flavonoids: A nutraceutical and its role as anti-inflammatory and anticancer agent.Plant Biotechnol. Recent Adv. Dev201725527010.1007/978‑981‑10‑4732‑9_13
    [Google Scholar]
  87. UrbiZ. HossainS. Hafizur RahmanK.M. ZayedT.M. Grape: A medicinal fruit species in the holy Qur’an and its ethnomedinical importance.World Appl. Sci. J.20143025326510.5829/idosi.wasj.2014.30.03.81114
    [Google Scholar]
  88. YangJ. KurniaP. HenningS.M. LeeR. HuangJ. GarciaM.C. SurampudiV. HeberD. LiZ. Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: A pilot study.Nutrients20211311396510.3390/nu13113965 34836220
    [Google Scholar]
  89. NashV. RanadheeraC.S. GeorgousopoulouE.N. MellorD.D. PanagiotakosD.B. McKuneA.J. KellettJ. NaumovskiN. The effects of grape and red wine polyphenols on gut microbiota – A systematic review.Food Res. Int.201811327728710.1016/j.foodres.2018.07.019 30195522
    [Google Scholar]
  90. Rodriguez-LopezP. Rueda-RoblesA. Borrás-LinaresI. Quirantes-PinéR.M. EmanuelliT. Segura-CarreteroA. Lozano-SánchezJ. Grape and grape-based product polyphenols: A systematic review of health properties, bioavailability, and gut microbiota interactions.Horticulturae20228758310.3390/horticulturae8070583
    [Google Scholar]
  91. ThomasP.A. StoneD. La PortaN. Biological Flora of the British Isles: Ulmus glabra.J. Ecol.201810641724176610.1111/1365‑2745.12994
    [Google Scholar]
  92. EdwardsS.E. RochaI da C. WilliamsonE.M. HeinrichM. Slippery Elm.Phytopharmacy201536036210.1002/9781118543436.ch102
    [Google Scholar]
  93. HarunaS. AliyuB.S. BalaA. Plant gum exudates (Karau) and mucilages, their biological sources, properties, uses and potential applications: A review.Bayero J. Pure Appl. Sci.20179215910.4314/bajopas.v9i2.30
    [Google Scholar]
  94. HamidpourR. RashanL. A natural gastroprotective remedy that lowers hyperacidity.Transl. Biomed.20178410.21767/2172‑0479.100129
    [Google Scholar]
  95. CuiX. ShenY. JiangS. QianD. ShangE. ZhuZ. DuanJ. Comparative analysis of the main active components and hypoglycemic effects after the compatibility of Scutellariae Radix and Coptidis Rhizoma.J. Sep. Sci.20194281520152710.1002/jssc.201801204 30734512
    [Google Scholar]
  96. WangZ. WangJ. ChanP. Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs.Evid. Based Complement. Alternat. Med.2013201311710.1155/2013/343594 23737828
    [Google Scholar]
  97. JiL. SongT. GeC. WuQ. MaL. ChenX. ChenT. ChenQ. ChenZ. ChenW. Identification of bioactive compounds and potential mechanisms of scutellariae radix-coptidis rhizoma in the treatment of atherosclerosis by integrating network pharmacology and experimental validation.Biomed. Pharmacother.202316511521010.1016/j.biopha.2023.115210 37499457
    [Google Scholar]
  98. ZhangC. hua; Sheng, J. qing; Sarsaiya, S.; Shu, F. xing; Liu, T. tong; Tu, X. ying The anti-diabetic activities, gut microbiota composition, the anti-inflammatory effects of Scutellaria–coptis herb couple against insulin resistance-model of diabetes involving the toll-like receptor 4 signaling pathway.J. Ethnopharmacol.201923720221410.1016/j.jep.2019.02.040
    [Google Scholar]
  99. HameedI. MasoodiS.R. MirS.A. NabiM. GhazanfarK. GanaiB.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition.World J. Diabetes20156459861210.4239/wjd.v6.i4.598 25987957
    [Google Scholar]
  100. OguntibejuO.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links.Int. J. Physiol. Pathophysiol. Pharmacol.20191134563 31333808
    [Google Scholar]
  101. NishizawaK. Low-grade endotoxemia, diet, and gut microbiota – An emphasis on the early events leading to dysfunction of the intestinal epithelial barrier.Biomed. Res. Clin. Pract.201612465710.15761/BRCP.1000110
    [Google Scholar]
  102. MassierL. BlüherM. KovacsP. ChakarounR.M. Impaired intestinal barrier and tissue bacteria: Pathomechanisms for metabolic diseases.Front. Endocrinol.20211261650610.3389/fendo.2021.616506 33767669
    [Google Scholar]
  103. TilgH. ZmoraN. AdolphT.E. ElinavE. The intestinal microbiota fuelling metabolic inflammation.Nat. Rev. Immunol.2020201405410.1038/s41577‑019‑0198‑4 31388093
    [Google Scholar]
  104. OrtegaM.A. Fraile-MartínezO. NayaI. García-HonduvillaN. Álvarez-MonM. BujánJ. AsúnsoloÁ. de la TorreB. Type 2 diabetes mellitus associated with obesity (Diabesity). The central role of gut microbiota and its translational applications.Nutrients2020129274910.3390/nu12092749 32917030
    [Google Scholar]
  105. AlbillosA. de GottardiA. RescignoM. The gut-liver axis in liver disease: Pathophysiological basis for therapy.J. Hepatol.202072355857710.1016/j.jhep.2019.10.003 31622696
    [Google Scholar]
  106. UmirahF. NeohC.F. RamasamyK. LimS.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review.Diabetes Res. Clin. Pract.202117310868910.1016/j.diabres.2021.108689 33549678
    [Google Scholar]
  107. CunninghamA.L. StephensJ.W. HarrisD.A. Gut microbiota influence in type 2 diabetes mellitus (T2DM).Gut Pathog.20211315010.1186/s13099‑021‑00446‑0 34362432
    [Google Scholar]
  108. ManolisA.A. ManolisT.A. MelitaH. ManolisA.S. Gut microbiota and cardiovascular disease: Symbiosis versus dysbiosis.Curr. Med. Chem.202229234050407710.2174/0929867328666211213112949 34961453
    [Google Scholar]
  109. ToppingD.L. Short-chain fatty acids produced by intestinal bacteria.Asia Pac. J. Clin. Nutr.1996511519 24394459
    [Google Scholar]
  110. MeijerinkJ. The intestinal fatty acid-enteroendocrine interplay, emerging roles for olfactory signaling and serotonin conjugates.Molecules2021265141610.3390/molecules26051416 33807994
    [Google Scholar]
  111. PortincasaP. BonfrateL. VaccaM. De AngelisM. FarellaI. LanzaE. KhalilM. WangD.Q.H. SperandioM. Di CiaulaA. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis.Int. J. Mol. Sci.2022233110510.3390/ijms23031105 35163038
    [Google Scholar]
  112. ZhengY. GouX. ZhangL. GaoH. WeiY. YuX. PangB. TianJ. TongX. LiM. Interactions between gut microbiota, host, and herbal medicines: A review of new insights into the pathogenesis and treatment of type 2 diabetes.Front. Cell. Infect. Microbiol.20201036010.3389/fcimb.2020.00360 32766169
    [Google Scholar]
  113. JiaoJ. YuH. YaoL. LiL. YangX. LiuL. Recent insights into the role of gut microbiota in diabetic retinopathy.J. Inflamm. Res.2021146929693810.2147/JIR.S336148 34938095
    [Google Scholar]
  114. MartinR. NautaA. Ben AmorK. KnippelsL. KnolJ. GarssenJ. Early life: Gut microbiota and immune development in infancy.Benef. Microbes20101436738210.3920/BM2010.0027 21831776
    [Google Scholar]
  115. LvH. ZhangL. HanY. WuL. WangB. The development of early life microbiota in human health and disease.Engineering20221210111410.1016/j.eng.2020.12.014
    [Google Scholar]
  116. FrancinoM. Early development of the gut microbiota and immune health.Pathogens20143376979010.3390/pathogens3030769 25438024
    [Google Scholar]
  117. ThaissC.A. ZmoraN. LevyM. ElinavE. The microbiome and innate immunity.Nature20165357610657410.1038/nature18847 27383981
    [Google Scholar]
  118. NochiT. KiyonoH. Innate immunity in the mucosal immune system.Curr. Pharm. Des.200612324203421310.2174/138161206778743457 17100623
    [Google Scholar]
  119. PickardJ.M. ZengM.Y. CarusoR. NúñezG. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease.Immunol. Rev.20172791708910.1111/imr.12567 28856738
    [Google Scholar]
  120. HoeppliR.E. WuD. CookL. LevingsM.K. The environment of regulatory T cell biology: Cytokines, metabolites, and the microbiome.Front. Immunol.201566110.3389/fimmu.2015.00061 25741338
    [Google Scholar]
  121. SinghR.P. HasanS. SharmaS. NagraS. YamaguchiD.T. WongD.T.W. HahnB.H. HossainA. Th17 cells in inflammation and autoimmunity.Autoimmun. Rev.201413121174118110.1016/j.autrev.2014.08.019 25151974
    [Google Scholar]
  122. RossiM. BotA. The Th17 cell population and the immune homeostasis of the gastrointestinal tract.Int. Rev. Immunol.2013325-647147410.3109/08830185.2013.843983 24164337
    [Google Scholar]
  123. TibbsT.N. LopezL.R. ArthurJ.C. The influence of the microbiota on immune development, chronic inflammation, and cancer in the context of aging.Microb. Cell20196832433410.15698/mic2019.08.685 31403049
    [Google Scholar]
  124. UzbayT. Germ-free animal experiments in the gut microbiota studies.Curr. Opin. Pharmacol.20194961010.1016/j.coph.2019.03.016 31051390
    [Google Scholar]
  125. HillD.A. HoffmannC. AbtM.C. DuY. KobuleyD. KirnT.J. BushmanF.D. ArtisD. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis.Mucosal Immunol.20103214815810.1038/mi.2009.132 19940845
    [Google Scholar]
  126. AfzaalM. SaeedF. ShahY.A. HussainM. RabailR. SocolC.T. HassounA. PateiroM. LorenzoJ.M. RusuA.V. AadilR.M. Human gut microbiota in health and disease: Unveiling the relationship.Front. Microbiol.20221399900110.3389/fmicb.2022.999001 36225386
    [Google Scholar]
  127. AndréassonK. AlrawiZ. PerssonA. JönssonG. MarsalJ. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease.Arthritis Res. Ther.201618127810.1186/s13075‑016‑1182‑z 27894337
    [Google Scholar]
  128. ReynoldsA.C. PatersonJ.L. FergusonS.A. StanleyD. WrightK.P.Jr DawsonD. The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease.Sleep Med. Rev.2017343910.1016/j.smrv.2016.06.009 27568341
    [Google Scholar]
  129. KohlK.D. AmayaJ. PassementC.A. DearingM.D. McCueM.D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts.FEMS Microbiol. Ecol.201490388389410.1111/1574‑6941.12442 25319042
    [Google Scholar]
  130. DerrienM. AlvarezA.S. de VosW.M. The gut microbiota in the first decade of life.Trends Microbiol.20192712997101010.1016/j.tim.2019.08.001 31474424
    [Google Scholar]
  131. SubramanianS. HuqS. YatsunenkoT. HaqueR. MahfuzM. AlamM.A. BenezraA. DeStefanoJ. MeierM.F. MueggeB.D. BarrattM.J. VanArendonkL.G. ZhangQ. ProvinceM.A. PetriW.A.Jr AhmedT. GordonJ.I. Persistent gut microbiota immaturity in malnourished Bangladeshi children.Nature2014510750541742110.1038/nature13421 24896187
    [Google Scholar]
  132. SmithMI YatsunenkoT ManaryMJ TrehanI MkakosyaR Cheng, J Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.Science201333954855410.1126/science.1229000
    [Google Scholar]
  133. MaT. ShenX. ShiX. SakandarH.A. QuanK. LiY. JinH. KwokL-Y. ZhangH. SunZ. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review.Trends Food Sci. Technol.202313817819810.1016/j.tifs.2023.06.013
    [Google Scholar]
  134. ReedB. AbunnajaS. The Epidemiology of Obesity; Handb.Metab. Bariatr. Surg2023202610.1002/9781119521686.ch3
    [Google Scholar]
  135. PascaleA. MarchesiN. GovoniS. CoppolaA. GazzarusoC. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: New insights into old diseases.Curr. Opin. Pharmacol.2019491510.1016/j.coph.2019.03.011 31015106
    [Google Scholar]
  136. AminM.N. HussainM.S. SarwarM.S. Rahman MoghalM.M. DasA. HossainM.Z. ChowdhuryJ.A. MillatM.S. IslamM.S. How the association between obesity and inflammation may lead to insulin resistance and cancer.Diabetes Metab. Syndr.20191321213122410.1016/j.dsx.2019.01.041 31336467
    [Google Scholar]
  137. DavisC.D. The gut microbiome and its role in obesity.Nutr. Today201651416717410.1097/NT.0000000000000167 27795585
    [Google Scholar]
  138. SocolC.T. ChiraA. Martinez-SanchezM.A. Nuñez-SanchezM.A. MaerescuC.M. MierlitaD. RusuA.V. Ruiz-AlcarazA.J. TrifM. Ramos-MolinaB. Leptin signaling in obesity and colorectal cancer.Int. J. Mol. Sci.2022239471310.3390/ijms23094713 35563103
    [Google Scholar]
  139. CaoS.Y. ZhaoC.N. XuX.Y. TangG.Y. CorkeH. GanR.Y. LiH-B. Dietary plants, gut microbiota, and obesity: Effects and mechanisms.Trends Food Sci. Technol.20199219420410.1016/j.tifs.2019.08.004
    [Google Scholar]
  140. DayibM. LarsonJ. SlavinJ. Dietary fibers reduce obesity-related disorders: mechanisms of action.Curr. Opin. Clin. Nutr. Metab. Care202023644545010.1097/MCO.0000000000000696 32925180
    [Google Scholar]
  141. KhanM.J. GerasimidisK. EdwardsC.A. ShaikhM.G. Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature.J. Obes.2016201612710.1155/2016/7353642 27703805
    [Google Scholar]
  142. XuJ. WhiteA.J. NiehoffN.M. O’BrienK.M. SandlerD.P. Airborne metals exposure and risk of hypertension in the Sister Study.Environ. Res.202019111014410.1016/j.envres.2020.110144 32898563
    [Google Scholar]
  143. HunterR.W. DhaunN. BaileyM.A. The impact of excessive salt intake on human health.Nat. Rev. Nephrol.202218532133510.1038/s41581‑021‑00533‑0 35058650
    [Google Scholar]
  144. BoothF.W. RobertsC.K. LayeM.J. Lack of exercise is a major cause of chronic diseases.Compr. Physiol.2012221143121110.1002/cphy.c110025 23798298
    [Google Scholar]
  145. YangC. FeiY. QinY. LuoD. YangS. KouX. ZiY. DengT. JinM. Bacterial flora changes in conjunctiva of rats with streptozotocin-induced type i diabetes.PLoS One2015107e013302110.1371/journal.pone.0133021 26176548
    [Google Scholar]
  146. KarbachS.H. SchönfelderT. BrandãoI. WilmsE. HörmannN. JäckelS. SchülerR. FingerS. KnorrM. LagrangeJ. BrandtM. WaismanA. KossmannS. SchäferK. MünzelT. ReinhardtC. WenzelP. Gut microbiota promote angiotensin II–induced arterial hypertension and vascular dysfunction.J. Am. Heart Assoc.201659e00369810.1161/JAHA.116.003698 27577581
    [Google Scholar]
  147. XiongR.G. ZhouD.D. WuS.X. HuangS.Y. SaimaitiA. YangZ.J. ShangA. ZhaoC.N. GanR.Y. LiH.B. Health benefits and side effects of short-chain fatty acids.Foods20221118286310.3390/foods11182863 36140990
    [Google Scholar]
  148. MishimaE. AbeT. Role of the microbiota in hypertension and antihypertensive drug metabolism.Hypertens. Res.202245224625310.1038/s41440‑021‑00804‑0 34887530
    [Google Scholar]
  149. Gómez-GuzmánM. ToralM. RomeroM. JiménezR. GalindoP. SánchezM. ZarzueloM.J. OlivaresM. GálvezJ. DuarteJ. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats.Mol. Nutr. Food Res.201559112326233610.1002/mnfr.201500290 26255877
    [Google Scholar]
  150. KennedyP.J. CryanJ.F. DinanT.G. ClarkeG. Irritable bowel syndrome: A microbiome-gut-brain axis disorder?World J. Gastroenterol.20142039141051412510.3748/wjg.v20.i39.14105 25339800
    [Google Scholar]
  151. SahaL. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine.World J. Gastroenterol.201420226759677310.3748/wjg.v20.i22.6759 24944467
    [Google Scholar]
  152. BlackC.J. FordA.C. Global burden of irritable bowel syndrome: trends, predictions and risk factors.Nat. Rev. Gastroenterol. Hepatol.202017847348610.1038/s41575‑020‑0286‑8 32296140
    [Google Scholar]
  153. SalemA.E. SinghR. AyoubY.K. KhairyA.M. MullinG.E. The gut microbiome and irritable bowel syndrome: State of art review.Arab J. Gastroenterol.201819313614110.1016/j.ajg.2018.02.008 29935865
    [Google Scholar]
  154. MousaW.K. ChehadehF. HusbandS. Microbial dysbiosis in the gut drives systemic autoimmune diseases.Front. Immunol.20221390625810.3389/fimmu.2022.906258 36341463
    [Google Scholar]
  155. MeyerJ. DaviesJ. Inflammatory Bowel Disease; Textb.Emerg. Gen. Surg. Trauma. Non-traumatic Surg. Emergencies20231187120610.1007/978‑3‑031‑22599‑4_82
    [Google Scholar]
  156. QiuP. IshimotoT. FuL. ZhangJ. ZhangZ. LiuY. The gut microbiota in inflammatory bowel disease.Front. Cell. Infect. Microbiol.20221273399210.3389/fcimb.2022.733992 35273921
    [Google Scholar]
  157. HillsR.Jr PontefractB. MishconH. BlackC. SuttonS. ThebergeC. Gut microbiome: Profound implications for diet and disease.Nutrients2019117161310.3390/nu11071613 31315227
    [Google Scholar]
  158. KonstantinidisT. TsigalouC. KarvelasA. StavropoulouE. VoidarouC. BezirtzoglouE. Effects of antibiotics upon the gut microbiome: A review of the literature.Biomedicines202081150210.3390/biomedicines8110502 33207631
    [Google Scholar]
  159. SinghS. BolandB.S. JessT. MooreA.A. Management of inflammatory bowel diseases in older adults.Lancet Gastroenterol. Hepatol.20238436838210.1016/S2468‑1253(22)00358‑2 36669515
    [Google Scholar]
  160. NiJ. WuG.D. AlbenbergL. TomovV.T. Gut microbiota and IBD: Causation or correlation?Nat. Rev. Gastroenterol. Hepatol.2017141057358410.1038/nrgastro.2017.88 28743984
    [Google Scholar]
  161. SchulbergJ. De CruzP. Characterisation and therapeutic manipulation of the gut microbiome in inflammatory bowel disease.Intern. Med. J.201646326627310.1111/imj.13003 26968595
    [Google Scholar]
  162. AnanthakrishnanA.N. BernsteinC.N. IliopoulosD. MacphersonA. NeurathM.F. AliR.A.R. VavrickaS.R. FiocchiC. Environmental triggers in IBD: A review of progress and evidence.Nat. Rev. Gastroenterol. Hepatol.2018151394910.1038/nrgastro.2017.136 29018271
    [Google Scholar]
  163. KarmausW. ZiyabA.H. MukherjeeN. Epigenetics of allergic diseases allergies, eczema, asthma, and rhinitis.Epigenetics in Human Disease.Epigenetics in Human Disease201857360610.1016/B978‑0‑12‑812215‑0.00019‑4
    [Google Scholar]
  164. Gür Çeti̇nkayaP. Murat Şahi̇nerÜ. Childhood atopic dermatitis: Current developments, treatment approaches, and future expectations.Turk. J. Med. Sci.201949496398410.3906/sag‑1810‑105 31408293
    [Google Scholar]
  165. ThomsenS.F. Atopic dermatitis: Natural history, diagnosis, and treatment.ISRN Allergy201420141710.1155/2014/354250 25006501
    [Google Scholar]
  166. NarlaS. SilverbergJ.I. The role of environmental exposures in atopic dermatitis.Curr. Allergy Asthma Rep.202020127410.1007/s11882‑020‑00971‑z 33047271
    [Google Scholar]
  167. AbrahamssonT.R. JakobssonH.E. AnderssonA.F. BjörksténB. EngstrandL. JenmalmM.C. Low diversity of the gut microbiota in infants with atopic eczema.J. Allergy Clin. Immunol.20121292434440e2, 440.e1-440.e2.10.1016/j.jaci.2011.10.02522153774
    [Google Scholar]
  168. BisgaardH. HalkjærL.B. HingeR. GiwercmanC. PalmerC. SilveiraL. StrandM. Risk analysis of early childhood eczema.J. Allergy Clin. Immunol.2009123613551360.e510.1016/j.jaci.2009.03.046 19501236
    [Google Scholar]
  169. YaoH. FanC. FanX. LuY. WangY. WangR. TangT. QiK. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice.Br. J. Nutr.2020124439640610.1017/S0007114520001117 32213218
    [Google Scholar]
  170. StojanovS. BerlecA. ŠtrukeljB. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease.Microorganisms2020811171510.3390/microorganisms8111715 33139627
    [Google Scholar]
  171. StančákováA. LaaksoM. Genetics of type 2 diabetes.Endocr. Dev.20163120322010.1159/000439418 26824439
    [Google Scholar]
  172. YangG. WeiJ. LiuP. ZhangQ. TianY. HouG. MengL. XinY. JiangX. Role of the gut microbiota in type 2 diabetes and related diseases.Metabolism202111715471210.1016/j.metabol.2021.154712 33497712
    [Google Scholar]
  173. BlaakE.E. CanforaE.E. TheisS. FrostG. GroenA.K. MithieuxG. NautaA. ScottK. StahlB. van HarsselaarJ. van TolR. VaughanE.E. VerbekeK. Short chain fatty acids in human gut and metabolic health.Benef. Microbes202011541145510.3920/BM2020.0057 32865024
    [Google Scholar]
  174. FernandesJ. SuW. Rahat-RozenbloomS. WoleverT.M.S. ComelliE.M. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans.Nutr. Diabetes201446e12110.1038/nutd.2014.23 24979150
    [Google Scholar]
  175. YooJ. GroerM. DutraS. SarkarA. McSkimmingD. Gut microbiota and immune system interactions.Microorganisms2020810158710.3390/microorganisms8101587 33076307
    [Google Scholar]
  176. MartíA. MarcosA. MartínezJ.A. Obesity and immune function relationships.Obes. Rev.20012213114010.1046/j.1467‑789x.2001.00025.x 12119664
    [Google Scholar]
  177. CardingS. VerbekeK. VipondD.T. CorfeB.M. OwenL.J. Dysbiosis of the gut microbiota in disease.Microb. Ecol. Health Dis.20152602619110.3402/mehd.v26.26191 25651997
    [Google Scholar]
  178. Pferschy-WenzigE.M. PausanM.R. Ardjomand-WoelkartK. RöckS. AmmarR.M. KelberO. Moissl-EichingerC. BauerR. Medicinal plants and their impact on the gut microbiome in mental health: A systematic review.Nutrients20221410211110.3390/nu14102111 35631252
    [Google Scholar]
  179. AbdulP. IftikharM. FaizA. AmanF. IjazA. IqbalS. A comprehensive review on antidiabetic properties of turmeric.Life Sci. J.2020172639
    [Google Scholar]
  180. PlutaR. JanuszewskiS. Ułamek-KoziołM. Mutual two-way interactions of curcumin and gut microbiota.Int. J. Mol. Sci.2020213105510.3390/ijms21031055 32033441
    [Google Scholar]
  181. MakarewiczM. DrożdżI. TarkoT. Duda-ChodakA. The interactions between polyphenols and microorganisms, especially gut microbiota.Antioxidants202110218810.3390/antiox10020188 33525629
    [Google Scholar]
  182. YangF. GaoR. LuoX. LiuR. XiongD. Berberine influences multiple diseases by modifying gut microbiota.Front. Nutr.202310118771810.3389/fnut.2023.1187718 37599699
    [Google Scholar]
  183. VuksanV. SungM.K. SievenpiperJ.L. StavroP.M. JenkinsA.L. Di BuonoM. LeeK.S. LeiterL.A. NamK.Y. ArnasonJ.T. ChoiM. NaeemA. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety.Nutr. Metab. Cardiovasc. Dis.2008181465610.1016/j.numecd.2006.04.003 16860976
    [Google Scholar]
  184. ShaoJ.W. JiangJ.L. ZouJ.J. YangM.Y. ChenF.M. ZhangY.J. JiaL. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials.J. Funct. Foods20206410363010.1016/j.jff.2019.103630
    [Google Scholar]
  185. ZhouS.S. XuJ. ZhuH. WuJ. XuJ.D. YanR. LiX.Y. LiuH.H. DuanS.M. WangZ. ChenH.B. ShenH. LiS.L. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction.Sci. Rep.2016612247410.1038/srep22474 26932472
    [Google Scholar]
  186. PanW. XueB. YangC. MiaoL. ZhouL. ChenQ. CaiQ. LiuY. LiuD. HeH. ZhangY. YinT. TangX. Biopharmaceutical characters and bioavailability improving strategies of ginsenosides.Fitoterapia201812927228210.1016/j.fitote.2018.06.001 29883635
    [Google Scholar]
  187. YangL. ZouH. GaoY. LuoJ. XieX. MengW. ZhouH. TanZ. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities.Drug Metab. Rev.202052112513810.1080/03602532.2020.1714645 31984805
    [Google Scholar]
  188. ChopraP. ChhillarH. KimY.J. JoI.H. KimS.T. GuptaR. Phytochemistry of ginsenosides: Recent advancements and emerging roles.Crit. Rev. Food Sci. Nutr.202363561364010.1080/10408398.2021.1952159 34278879
    [Google Scholar]
  189. DraganS. AndricaF. SerbanM.C. TimarR. Polyphenols-rich natural products for treatment of diabetes.Curr. Med. Chem.2014221142210.2174/0929867321666140826115422 25174925
    [Google Scholar]
  190. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑5 12550068
    [Google Scholar]
  191. Di PedeG. BrescianiL. CalaniL. PetrangoliniG. RivaA. AllegriniP. Del RioD. MenaP. The human microbial metabolism of quercetin in different formulations: An in vitro evaluation.Foods202098112110.3390/foods9081121 32823976
    [Google Scholar]
  192. KimD.H. KimS.Y. ParkS.Y. HanM.J. Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities.Biol. Pharm. Bull.199922774975110.1248/bpb.22.749 10443478
    [Google Scholar]
  193. SuH. MoJ. NiJ. KeH. BaoT. XieJ. XuY. XieL. ChenW. Andrographolide Exerts Antihyperglycemic Effect through Strengthening Intestinal Barrier Function and Increasing Microbial Composition of Akkermansia muciniphila.Oxid. Med. Cell. Longev.2020202012010.1155/2020/6538930 32774682
    [Google Scholar]
  194. WuH. WuX. HuangL. RuanC. LiuJ. ChenX. LiuJ. LuoH. Effects of Andrographolide on Mouse Intestinal Microflora Based on High-Throughput Sequence Analysis.Front. Vet. Sci.2021870288510.3389/fvets.2021.702885 34485430
    [Google Scholar]
  195. RivaA. KolimárD. SpittlerA. WisgrillL. HerboldC.W. AbrankóL. BerryD. Conversion of rutin, a prevalent dietary flavonol, by the human gut microbiota.Front. Microbiol.20201158542810.3389/fmicb.2020.585428 33408702
    [Google Scholar]
  196. LiuY. HuangW. JiS. WangJ. LuoJ. LuB. Sophora japonica flowers and their main phytochemical, rutin, regulate chemically induced murine colitis in association with targeting the NF-κB signaling pathway and gut microbiota.Food Chem.202239313339510.1016/j.foodchem.2022.133395 35691061
    [Google Scholar]
  197. GuoX. TangR. YangS. LuY. LuoJ. LiuZ. Rutin and its combination with inulin attenuate gut dysbiosis, the inflammatory status and endoplasmic reticulum stress in Paneth cells of obese mice induced by high-fat diet.Front. Microbiol.20189265110.3389/fmicb.2018.02651 30455677
    [Google Scholar]
  198. HuY. ChenD. ZhengP. YuJ. HeJ. MaoX. YuB. The bidirectional interactions between resveratrol and gut microbiota: An insight into oxidative stress and inflammatory bowel disease therapy.BioMed Res. Int.201920191910.1155/2019/5403761 31179328
    [Google Scholar]
  199. CaiT.T. YeX.L. LiR.R. ChenH. WangY.Y. YongH.J. PanM.L. LuW. TangY. MiaoH. SnijdersA.M. MaoJ.H. LiuX.Y. LuY.B. DingD.F. Resveratrol modulates the gut microbiota and inflammation to protect against diabetic nephropathy in mice.Front. Pharmacol.202011124910.3389/fphar.2020.01249 32973502
    [Google Scholar]
  200. WangP. LiD. KeW. LiangD. HuX. ChenF. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice.Int. J. Obes.202044121322510.1038/s41366‑019‑0332‑1 30718820
    [Google Scholar]
  201. LiF. HanY. CaiX. GuM. SunJ. QiC. GouletteT. SongM. LiZ. XiaoH. Dietary resveratrol attenuated colitis and modulated gut microbiota in dextran sulfate sodium-treated mice.Food Funct.20201111063107310.1039/C9FO01519A 31825043
    [Google Scholar]
  202. HeJ. LeQ. WeiY. YangL. CaiB. LiuY. Effect of piperine on the mitigation of obesity associated with gut microbiota alteration.Curr. Res. Food Sci.202210.1016/j.crfs.2022.08.018
    [Google Scholar]
  203. HuX. YuL. LiY. LiX. ZhaoY. XiongL. Piperine improves levodopa availability in the 6-OHDA-lesioned rat model of Parkinson’s disease by suppressing gut bacterial tyrosine decarboxylase.CNS Neurosci. Ther.202310.1111/cns.14383 37528534
    [Google Scholar]
  204. BianS. WanH. LiaoX. WangW. Inhibitory effects of apigenin on tumor carcinogenesis by altering the gut microbiota.Mediators Inflamm.202020201910.1155/2020/7141970 33082711
    [Google Scholar]
  205. WangM. FirrmanJ. ZhangL. Arango-ArgotyG. TomasulaP. LiuL. XiaoW. YamK. Apigenin impacts the growth of the gut microbiota and alters the gene expression of enterococcus.Molecules2017228129210.3390/molecules22081292 28771188
    [Google Scholar]
  206. FuR. WangL. MengY. XueW. LiangJ. PengZ. MengJ. ZhangM. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis.Front. Nutr.20229106296110.3389/fnut.2022.1062961 36590200
    [Google Scholar]
  207. SunW.L. LiX.Y. DouH.Y. WangX.D. LiJ.D. ShenL. JiH.F. Myricetin supplementation decreases hepatic lipid synthesis and inflammation by modulating gut microbiota.Cell Rep.202136910964110.1016/j.celrep.2021.109641 34469716
    [Google Scholar]
  208. ZhaoZ. ChenY. LiX. ZhuL. WangX. LiL. SunH. HanX. LiJ. Myricetin relieves the symptoms of type 2 diabetes mice and regulates intestinal microflora.Biomed. Pharmacother.202215311353010.1016/j.biopha.2022.113530 36076610
    [Google Scholar]
  209. ZhaoJ. YuanW. WangS. ZhangH. ChenD. NiuX. LiuX. LiuL. GaoJ. Comparative pharmacokinetics and tissue distribution of M10 and its metabolite myricetin in normal and dextran-sodium-sulfate-induced colitis mice.Molecules20222723814010.3390/molecules27238140 36500233
    [Google Scholar]
  210. WuZ. ShenJ. XuQ. XiangQ. ChenY. LvL. ZhengB. WangQ. WangS. LiL. Epigallocatechin-3-gallate improves intestinal gut microbiota homeostasis and ameliorates Clostridioides difficile infection.Nutrients20221418375610.3390/nu14183756 36145133
    [Google Scholar]
  211. NaitoY. UshirodaC. MizushimaK. InoueR. YasukawaZ. AbeA. TakagiT. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids.J. Clin. Biochem. Nutr.20206712910.3164/jcbn.20‑39 32801462
    [Google Scholar]
  212. ParkJ.M. ShinY. KimS.H. JinM. ChoiJ.J. Dietary epigallocatechin-3-gallate alters the gut microbiota of obese diabetic db/db mice: Lactobacillus is a putative target.J. Med. Food202023101033104210.1089/jmf.2020.4700 33054538
    [Google Scholar]
  213. UnnoT. IchitaniM. Epigallocatechin-3-gallate decreases plasma and urinary levels of p -cresol by modulating gut microbiota in mice.ACS Omega2022744400344004110.1021/acsomega.2c04731 36385823
    [Google Scholar]
  214. ChenL. WangX. ChenJ. YangJ. LingLin CaiX.B ChenY. Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism.Diabetol Metab Syndr20231513710.1186/s13098‑023‑00993‑3 36890514
    [Google Scholar]
  215. HegdeS. ShiD.W. JohnsonJ.C. GeesalaR. ZhangK. LinY.M. ShiX.Z. Mechanistic study of coffee effects on gut microbiota and motility in rats.Nutrients20221422487710.3390/nu14224877 36432563
    [Google Scholar]
  216. JanssensP.L.H.R. PendersJ. HurselR. BuddingA.E. SavelkoulP.H.M. Westerterp-PlantengaM.S. Long-Term green tea supplementation does not change the human gut microbiota.PLoS One2016114e015313410.1371/journal.pone.0153134 27054321
    [Google Scholar]
  217. GuX. ZhangS. MaW. WangQ. LiY. XiaC. XuY. ZhangT. YangL. ZhouM. The impact of instant coffee and decaffeinated coffee on the gut microbiota and depression-like behaviors of sleep-deprived rats.Front. Microbiol.20221377851210.3389/fmicb.2022.778512 35283829
    [Google Scholar]
  218. LiuZ.Y. WangX.L. OuS.Q. HouD.X. HeJ.H. Sanguinarine modulate gut microbiome and intestinal morphology to enhance growth performance in broilers.PLoS One2020156e023492010.1371/journal.pone.0234920 32559224
    [Google Scholar]
  219. LiX. WuX. WangQ. XuW. ZhaoQ. XuN. HuX. YeZ. YuS. LiuJ. HeX. ShiF. ZhangQ. LiW. Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice.Phytomedicine202210415432110.1016/j.phymed.2022.154321 35843190
    [Google Scholar]
  220. ShiY. LiuY. XieK. ZhangJ. WangY. HuY. ZhongL. Sanguinarine improves intestinal health in grass carp fed high-fat diets: Involvement of antioxidant, physical and immune barrier, and intestinal microbiota.Antioxidants2023127136610.3390/antiox12071366 37507906
    [Google Scholar]
  221. ZhangR. WangX.W. ZhuJ.Y. LiuL.L. LiuY.C. ZhuH. Dietary sanguinarine affected immune response, digestive enzyme activity and intestinal microbiota of Koi carp (cryprinus carpiod).Aquaculture2019502727910.1016/j.aquaculture.2018.12.010
    [Google Scholar]
  222. YangK. ZhangL. LiaoP. XiaoZ. ZhangF. SindayeD. XinZ. TanC. DengJ. YinY. DengB. Impact of gallic acid on gut health: Focus on the gut microbiome, immune response, and mechanisms of action.Front. Immunol.20201158020810.3389/fimmu.2020.580208 33042163
    [Google Scholar]
  223. YangK. DengX. JianS. ZhangM. WenC. XinZ. ZhangL. TongA. YeS. LiaoP. XiaoZ. HeS. ZhangF. DengJ. ZhangL. DengB. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome–metabolomics analysis.Front. Immunol.20221281389010.3389/fimmu.2021.813890 35095912
    [Google Scholar]
  224. ClarkM. CentnerA.M. UkhanovV. NagpalR. SalazarG. Gallic acid ameliorates atherosclerosis and vascular senescence and remodels the microbiome in a sex-dependent manner in ApoE−/− mice.J. Nutr. Biochem.202211010913210.1016/j.jnutbio.2022.109132 36028099
    [Google Scholar]
  225. SunL. GuoL. XuG. LiZ. AppiahM.O. YangL. LuW. Quercetin reduces inflammation and protects gut microbiota in broilers.Molecules20222710326910.3390/molecules27103269 35630745
    [Google Scholar]
  226. NieJ. ZhangL. ZhaoG. DuX. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites.J. Appl. Microbiol.201912761824183410.1111/jam.14441 31509634
    [Google Scholar]
  227. XuB. QinW. XuY. YangW. ChenY. HuangJ. ZhaoJ. MaL. [Retracted] dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets.Oxid. Med. Cell. Longev.202120211622101210.1155/2021/6221012 34950418
    [Google Scholar]
  228. LanH. HongW. QianD. PengF. LiH. LiangC. DuM. GuJ. MaiJ. BaiB. PengG. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis.Bioengineered20211216240625010.1080/21655979.2021.1969194 34486477
    [Google Scholar]
  229. AppannaVD Human microbes - The power within: Health, healing and beyond.Springer201810.1007/978‑981‑10‑7684‑8
    [Google Scholar]
  230. HoffmannA.R. ProctorL.M. SuretteM.G. SuchodolskiJ.S. The Microbiome.Vet. Pathol.2016531102110.1177/0300985815595517 26220947
    [Google Scholar]
  231. BauerE. WilliamsB.A. SmidtH. VerstegenM.W.A. MosenthinR. Influence of the gastrointestinal microbiota on development of the immune system in young animals.Curr. Issues Intest. Microbiol.2006723551 16875418
    [Google Scholar]
  232. LiX. LiuL. CaoZ. LiW. LiH. LuC. YangX. LiuY. Gut microbiota as an “invisible organ” that modulates the function of drugs.Biomed. Pharmacother.202012110965310.1016/j.biopha.2019.109653 31810138
    [Google Scholar]
  233. YuD. MengX. de VosW.M. WuH. FangX. MaitiA.K. Implications of gut microbiota in complex human diseases.Int. J. Mol. Sci.202122231266110.3390/ijms222312661 34884466
    [Google Scholar]
  234. ShreinerA.B. KaoJ.Y. YoungV.B. The gut microbiome in health and in disease.Curr. Opin. Gastroenterol.2015311697510.1097/MOG.0000000000000139 25394236
    [Google Scholar]
  235. RamirezJ. GuarnerF. Bustos FernandezL. MaruyA. SdepanianV.L. CohenH. Antibiotics as major disruptors of gut microbiota.Front. Cell. Infect. Microbiol.20201057291210.3389/fcimb.2020.572912 33330122
    [Google Scholar]
  236. ChenY. ZhouJ. WangL. Role and mechanism of gut microbiota in human disease.Front. Cell. Infect. Microbiol.20211162591310.3389/fcimb.2021.625913 33816335
    [Google Scholar]
  237. MonjotinN. AmiotM.J. FleurentinJ. MorelJ.M. RaynalS. Clinical evidence of the benefits of phytonutrients in human healthcare.Nutrients2022149171210.3390/nu14091712 35565680
    [Google Scholar]
  238. MorowitzM.J. CarlisleE.M. AlverdyJ.C. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill.Surg. Clin. North Am.2011914771785viii10.1016/j.suc.2011.05.00121787967
    [Google Scholar]
  239. ZhangX. HanY. HuangW. JinM. GaoZ. The influence of the gut microbiota on the bioavailability of oral drugs.Acta Pharm. Sin. B20211171789181210.1016/j.apsb.2020.09.013 34386321
    [Google Scholar]
  240. RowlandI. GibsonG. HeinkenA. ScottK. SwannJ. ThieleI. TuohyK. Gut microbiota functions: Metabolism of nutrients and other food components.Eur. J. Nutr.201857112410.1007/s00394‑017‑1445‑8 28393285
    [Google Scholar]
  241. SanthiravelS. BekhitA.E.D.A. MendisE. JacobsJ.L. DunsheaF.R. RajapakseN. PonnampalamE.N. The impact of plant phytochemicals on the gut microbiota of humans for a balanced life.Int. J. Mol. Sci.20222315812410.3390/ijms23158124 35897699
    [Google Scholar]
  242. GuinaneC.M. CotterP.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ.Therap. Adv. Gastroenterol.20136429530810.1177/1756283X13482996 23814609
    [Google Scholar]
  243. AnandU. Jacobo-HerreraN. AltemimiA. LakhssassiN. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery.Metabolites201991125810.3390/metabo9110258 31683833
    [Google Scholar]
  244. NasimN. SandeepI.S. MohantyS. Plant-derived natural products for drug discovery: Current approaches and prospects.Nucleus202265339941110.1007/s13237‑022‑00405‑3
    [Google Scholar]
  245. QiuS. CaiY. YaoH. LinC. XieY. TangS. ZhangA. Small molecule metabolites: Discovery of biomarkers and therapeutic targets.Signal Transduct. Target. Ther.20238113210.1038/s41392‑023‑01399‑3 36941259
    [Google Scholar]
  246. GrgićJ. ŠeloG. PlaninićM. TišmaM. Bucić-KojićA. Role of the encapsulation in bioavailability of phenolic compounds.Antioxidants202091092310.3390/antiox9100923 32993196
    [Google Scholar]
  247. MirmohammadaliS.N. RosenkranzS.K. Dietary phytochemicals, gut microbiota composition, and health outcomes in human and animal models.Biosci. Microbiota Food Health202342315217110.12938/bmfh.2022‑078
    [Google Scholar]
  248. PuccettiM. ParianoM. SchoubbenA. GiovagnoliS. RicciM. Biologics, theranostics, and personalized medicine in drug delivery systems.Pharmacol. Res.202420110708610.1016/j.phrs.2024.107086 38295917
    [Google Scholar]
  249. OttS.J. MusfeldtM. WenderothD.F. HampeJ. BrantO. FölschU.R. TimmisK.N. SchreiberS. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease.Gut200453568569310.1136/gut.2003.025403 15082587
    [Google Scholar]
  250. BrittonR.A. YoungV.B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile.Gastroenterology201414661547155310.1053/j.gastro.2014.01.059 24503131
    [Google Scholar]
  251. FujimuraK.E. DemoorT. RauchM. FaruqiA.A. JangS. JohnsonC.C. BousheyH.A. ZorattiE. OwnbyD. LukacsN.W. LynchS.V. House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection.Proc. Natl. Acad. Sci. USA2014111280581010.1073/pnas.1310750111 24344318
    [Google Scholar]
  252. ScheperjansF. AhoV. PereiraP.A.B. KoskinenK. PaulinL. PekkonenE. HaapaniemiE. KaakkolaS. Eerola-RautioJ. PohjaM. KinnunenE. MurrosK. AuvinenP. Gut microbiota are related to Parkinson’s disease and clinical phenotype.Mov. Disord.201530335035810.1002/mds.26069 25476529
    [Google Scholar]
  253. MinterM.R. HinterleitnerR. MeiselM. ZhangC. LeoneV. ZhangX. Oyler-CastrilloP. ZhangX. MuschM.W. ShenX. JabriB. ChangE.B. TanziR.E. SisodiaS.S. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease.Sci. Rep.2017711041110.1038/s41598‑017‑11047‑w 28874832
    [Google Scholar]
  254. MaJ. LiH. The role of gut microbiota in atherosclerosis and hypertension.Front. Pharmacol.20189108210.3389/fphar.2018.01082 30319417
    [Google Scholar]
  255. VallianouN. StratigouT. ChristodoulatosG.S. DalamagaM. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives.Curr. Obes. Rep.20198331733210.1007/s13679‑019‑00352‑2 31175629
    [Google Scholar]
  256. LeeN.Y. ShinM.J. YounG.S. YoonS.J. ChoiY.R. KimH.S. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steato-sis.Clin. Mol. Hepatol.202010.3350/cmh.2020.0125 33317254
    [Google Scholar]
  257. DeGruttolaA.K. LowD. MizoguchiA. MizoguchiE. Current understanding of dysbiosis in disease in human and animal models.Inflamm. Bowel Dis.20162251137115010.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  258. WosińskaA. PazikD. ŁopuszyńskaI. KoseckaK. RudzińskiP. CieślikA. Akkermansia muciniphila – multifunctional bacteria.J Educ Heal Sport202310.12775/JEHS.2023.21.01.009
    [Google Scholar]
  259. HsiehY.Y. TungS.Y. PanH.Y. YenC.W. XuH.W. LinY.J. DengY.F. HsuW.T. WuC.S. LiC. Increased abundance of clostridium and fusobacterium in gastric microbiota of patients with gastric cancer in taiwan.Sci. Rep.20188115810.1038/s41598‑017‑18596‑0 29317709
    [Google Scholar]
  260. ScherJ.U. SczesnakA. LongmanR.S. SegataN. UbedaC. BielskiC. RostronT. CerundoloV. PamerE.G. AbramsonS.B. HuttenhowerC. LittmanD.R. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis.eLife20132e0120210.7554/eLife.01202 24192039
    [Google Scholar]
  261. KimJ.S. ParkJ.E. LeeK.C. ChoiS.H. OhB.S. YuS.Y. EomM.K. KangS.W. HanK.I. SuhM.K. LeeD.H. YoonH. KimB.Y. YangS.J. LeeJ.H. LeeJ.S. ParkS.H. Blautia faecicola sp. nov., isolated from faeces from a healthy human.Int. J. Syst. Evol. Microbiol.20207032059206510.1099/ijsem.0.004015 32100703
    [Google Scholar]
  262. ZhaoY. ZhongX. YanJ. SunC. ZhaoX. WangX. Potential roles of gut microbes in biotransformation of natural products: An overview.Front. Microbiol.20221395637810.3389/fmicb.2022.956378 36246222
    [Google Scholar]
  263. SunC. ChenL. ShenZ. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice.Saudi Pharm. J.20192781146115610.1016/j.jsps.2019.09.011 31885474
    [Google Scholar]
  264. BessE.N. BisanzJ.E. YarzaF. BustionA. RichB.E. LiX. KitamuraS. WaligurskiE. AngQ.Y. AlbaD.L. SpanogiannopoulosP. NayfachS. KoliwadS.K. WolanD.W. FrankeA.A. TurnbaughP.J. Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria.Nat. Microbiol.201951566610.1038/s41564‑019‑0596‑1 31686027
    [Google Scholar]
  265. KimB.G. JungW.D. MokH. AhnJ.H. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates.Microb. Cell Fact.20131211510.1186/1475‑2859‑12‑15 23383718
    [Google Scholar]
  266. KidaH. AkaoT. MeselhyM. HattoriM. Enzymes responsible for the metabolism of saikosaponins from Eubacterium sp. A-44, a human intestinal anaerobe.Biol. Pharm. Bull.199720121274127810.1248/bpb.20.1274 9448103
    [Google Scholar]
  267. NakamuraK. ZhuS. KomatsuK. HattoriM. IwashimaM. Deglycosylation of the isoflavone C-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3-oxo-glucose.Appl. Environ. Microbiol.20208614e006072010.1128/AEM.00607‑20 32385077
    [Google Scholar]
  268. LiJ.S. BarberC.C. ZhangW. Natural products from anaerobes.J. Ind. Microbiol. Biotechnol.2019463-437538310.1007/s10295‑018‑2086‑5 30284140
    [Google Scholar]
  269. WlodarskaM. LuoC. KoldeR. d’HennezelE. AnnandJ.W. HeimC.E. KrastelP. SchmittE.K. OmarA.S. CreaseyE.A. GarnerA.L. MohammadiS. O’ConnellD.J. AbubuckerS. ArthurT.D. FranzosaE.A. HuttenhowerC. MurphyL.O. HaiserH.J. VlamakisH. PorterJ.A. XavierR.J. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation.Cell Host Microbe20172212537.e610.1016/j.chom.2017.06.007 28704649
    [Google Scholar]
  270. Rodríguez-DazaM.C. Pulido-MateosE.C. Lupien-MeilleurJ. GuyonnetD. DesjardinsY. RoyD. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further.Front. Nutr.2021868945610.3389/fnut.2021.689456 34268328
    [Google Scholar]
  271. PengR. HanP. FuJ. ZhangZ.W. MaS.R. PanL.B. XiaY.Y. YuH. XuH. LiuC.X. WangY. Esterases from bifidobacteria exhibit the conversion of albiflorin in gut microbiota.Front. Microbiol.20221388011810.3389/fmicb.2022.880118 35464989
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010313921240923125946
Loading
/content/journals/cpb/10.2174/0113892010313921240923125946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test