Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

In recent years, bioactive constituents from plants have been investigated as an alternative to synthetic approaches of therapeutics. Mangiferin (MGF) is a xanthone glycoside extracted from and has shown numerous medicinal properties, such as antimicrobial, anti-diarrhoeal, antiviral, anti-inflammatory, antihypertensive, anti-tumours, and anti-diabetic effects. However, there are numerous challenges to its effective therapeutic usage, including its low water solubility, limited absorption, and poor bioavailability. Nano formulation approaches in recent years exhibited potential for the delivery of phytoconstituents with key benefits of high entrapment, sustained release, enhanced solubility, stability, improved pharmacokinetics, and site-specific drug delivery. Numerous techniques have been employed for the fabrication of MGF-loaded Nano formulations, and each technique has its advantages and limitations. The nanocarriers that have been employed to fabricate MGF nanoformulations for various therapeutic purposes include; polymeric nanoparticles, nanostructure, lipid carriers, polymeric micelles, Nano emulsions, microemulsion & self-microemulsifying drug delivery system, solid lipid nanoparticles, gold nanoparticles, carbon nanotubes, transfersomes, nanoliposomes, ethosomes & transethosomes, and glycethosomes. Different biopharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, drug release, drug permeation,, and studies) of the mentioned MGF-loaded nanocarriers have been methodically discussed. Patent reports are also included to further strengthen the potential of MGF in the management of diseases.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318524240907135527
2024-09-23
2025-12-18
Loading full text...

Full text loading...

References

  1. ThiengkaewP. ThanitwatthanasakS. SrisalaS. JittorntrumB. ChunhabunditR. ChitprasertP. Response surface optimization of microfluidic formulations of nanobilosomes for enhancement of aqueous solubility, digestive stability, and cellular antioxidant activity of mangiferin.Food Chem.202135112931510.1016/j.foodchem.2021.129315 33647686
    [Google Scholar]
  2. KhuranaR.K. RaoS. BegS. KatareO.P. SinghB. Systematic development and validation of a thin layer densitometric bioanalytical method for estimation of mangiferin employing analytical quality by design (AQbD) approach.J. Chromatogr. Sci.201654582984110.1093/chromsci/bmw001 26912808
    [Google Scholar]
  3. SarfrazM. KhanA. BatihaG.E.S. AkhtarM.F. SaleemA. AjiboyeB.O. KamalM. AliA. AlotaibiN.M. AaghazS. SiddiqueM.I. ImranM. Nanotechnology-based drug delivery approaches of mangiferin: Promises, reality and challenges in cancer chemotherapy.Cancers (Basel)20231516419410.3390/cancers15164194 37627222
    [Google Scholar]
  4. MatkowskiA. KuśP. GóralskaE. WoźniakD. Mangiferin - A bioactive xanthonoid, not only from mango and not just antioxidant.Mini Rev. Med. Chem.2013133439455 23190031
    [Google Scholar]
  5. JyotshnaK. KhareP. ShankerK. Mangiferin: A review of sources and interventions for biological activities.Biofactors201642550451410.1002/biof.1308 27658353
    [Google Scholar]
  6. KhuranaR.K. KaurR. KaurM. KaurR. KaurJ. KaurH. SinghB. Exploring and validating physicochemical properties of mangiferin through GastroPlus® software.Future Sci. OA201731FSO16710.4155/fsoa‑2016‑0055 28344830
    [Google Scholar]
  7. OchockaR. HeringA. Stefanowicz-HajdukJ. CalK. BarańskaH. The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes.PLoS One2017127e018154210.1371/journal.pone.0181542 28750062
    [Google Scholar]
  8. MorozkinaS.N. Nhung VuT.H. GeneralovaY.E. SnetkovP.P. UspenskayaM.V. Mangiferin as new potential anti-cancer agent and mangiferin-integrated polymer systems—A novel research direction.Biomolecules20211117910.3390/biom11010079 33435313
    [Google Scholar]
  9. FerreiraF.R. ValentimI.B. RamonesE.L.C. TrevisanM.T.S. Olea-AzarC. Perez-CruzF. de AbreuF.C. GoulartM.O.F. Antioxidant activity of the mangiferin inclusion complex with β-cyclodextrin.Lebensm. Wiss. Technol.201351112913410.1016/j.lwt.2012.09.032
    [Google Scholar]
  10. Núñez SellesA.J. DagliaM. RastrelliL. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti‐angiogenic, apoptopic, and gene regulatory effects.Biofactors201642547549110.1002/biof.1299 27219221
    [Google Scholar]
  11. MaH. ChenH. SunL. TongL. ZhangT. Improving permeability and oral absorption of mangiferin by phospholipid complexation.Fitoterapia201493546110.1016/j.fitote.2013.10.016 24220727
    [Google Scholar]
  12. ZhongY. XuY. TanY. ZhangX. WangR. ChenD. WangZ. ZhongX. Lipidomics of the erythrocyte membrane and network pharmacology to explore the mechanism of mangiferin from Anemarrhenae rhizoma in treating type 2 diabetes mellitus rats.J. Pharm. Biomed. Anal.202323011538610.1016/j.jpba.2023.115386 37044004
    [Google Scholar]
  13. WangR.R. GaoY.D. MaC.H. ZhangX.J. HuangC.G. HuangJ.F. ZhengY.T. Mangiferin, an anti-HIV-1 agent targeting protease and effective against resistant strains.Molecules20111654264427710.3390/molecules16054264 21610656
    [Google Scholar]
  14. Garrido-SuárezB.B. GarridoG. PiñerosO. Delgado-HernándezR. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain.Phytother. Res.202034350552510.1002/ptr.6546 31755173
    [Google Scholar]
  15. NarakiK. RezaeeR. Mashayekhi-SardooH. HayesA.W. KarimiG. Mangiferin offers protection against deleterious effects of pharmaceuticals, heavy metals, and environmental chemicals.Phytother. Res.202135281082210.1002/ptr.6864 32961631
    [Google Scholar]
  16. García-RiveraD. DelgadoR. BougarneN. HaegemanG. Vanden BergheW. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.Cancer Lett.20113051213110.1016/j.canlet.2011.02.011 21420233
    [Google Scholar]
  17. ImranM. ArshadM.S. ButtM.S. KwonJ.H. ArshadM.U. SultanM.T. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders.Lipids Health Dis.20171618410.1186/s12944‑017‑0449‑y 28464819
    [Google Scholar]
  18. DuS. LiuH. LeiT. XieX. WangH. HeX. TongR. WangY. Mangiferin: An effective therapeutic agent against several disorders. (Review)Mol. Med. Rep. 20181864775478610.3892/mmr.2018.9529 30280187
    [Google Scholar]
  19. HouS. WangF. LiY. LiY. WangM. SunD. SunC. Pharmacokinetic study of mangiferin in human plasma after oral administration.Food Chem.2012132128929410.1016/j.foodchem.2011.10.079 26434292
    [Google Scholar]
  20. MeiS. MaH. ChenX. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms.Food Chem. Toxicol.202114911199710.1016/j.fct.2021.111997 33465461
    [Google Scholar]
  21. KhuranaR.K. GasparB.L. WelsbyG. KatareO.P. SinghK.K. SinghB. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems.Drug Deliv. Transl. Res.20188361763210.1007/s13346‑018‑0498‑4 29637488
    [Google Scholar]
  22. DebbarmaA. RoyP.K. LalhriatpuiiT.C. LalhlenmawiaH. Mangiferin loaded nanoparticles for cancer therapy: an approach for improvement of bio-efficacy using nanotechnology.Int. J. Pharm. Sci. Res.202314418191827
    [Google Scholar]
  23. DuttaT. DasT. GopalakrishnanA.V. SahaS.C. GhoraiM. NandyS. KumarM. Radha, GhoshA. MukerjeeN. DeyA. Mangiferin: the miraculous xanthone with diverse pharmacological properties.Naunyn Schmiedebergs Arch. Pharmacol.2023396585186310.1007/s00210‑022‑02373‑6 36656353
    [Google Scholar]
  24. Ahlin GrabnarP. KristlJ. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers.J. Microencapsul.201128432333510.3109/02652048.2011.569763 21545323
    [Google Scholar]
  25. Razura-CarmonaF.F. Pérez-LariosA. González-SilvaN. Herrera-MartínezM. Medina-TorresL. Sáyago-AyerdiS.G. Sánchez-BurgosJ.A. Mangiferin-loaded polymeric nanoparticles: optical characterization, effect of Anti-Topoisomerase I, and Cytotoxicity.Cancers (Basel)20191112196510.3390/cancers11121965 31817789
    [Google Scholar]
  26. JaiswalM DudheR SharmaPK Nanoemulsion: An advanced mode of drug delivery system.3 Biotech20155212312710.1007/s13205‑014‑0214‑0
    [Google Scholar]
  27. AlkholifiF.K. AlamA. FoudahA.I. YusufogluH.S. Phospholipid-based topical nano-hydrogel of mangiferin: Enhanced topical delivery and improved dermatokinetics.Gels20239317810.3390/gels9030178 36975627
    [Google Scholar]
  28. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  29. SantonocitoD. Vivero-LopezM. LauroM.R. TorrisiC. CastelliF. SarpietroM.G. PugliaC. Design of nanotechnological carriers for ocular delivery of mangiferin: preformulation study.Molecules2022274132810.3390/molecules27041328 35209120
    [Google Scholar]
  30. AllawM. Pleguezuelos-VillaM. MancaM.L. CaddeoC. AroffuM. NacherA. Diez-SalesO. SauríA.R. FerrerE.E. FaddaA.M. ManconiM. Innovative strategies to treat skin wounds with mangiferin: Fabrication of transfersomes modified with glycols and mucin.Nanomedicine (Lond.)202015171671168510.2217/nnm‑2020‑0116 32677507
    [Google Scholar]
  31. NautiyalV. RoyA. SahuR.K. FattepurS. Herbosomes: Impressive tool for better bioavailability and bioactivity of plant extracts and botanicals.Res J Pharm Technol202114147147610.5958/0974‑360X.2021.00086.X
    [Google Scholar]
  32. JainP.K. KharyaM. GajbhiyeA. Pharmacological evaluation of mangiferin herbosomes for antioxidant and hepatoprotection potential against ethanol induced hepatic damage.Drug Dev. Ind. Pharm.201339111840185010.3109/03639045.2012.738685 23167243
    [Google Scholar]
  33. Ebrahim AttiaA.B. OngZ.Y. HedrickJ.L. LeeP.P. EeP.L.R. HammondP.T. YangY.Y. Mixed micelles self-assembled from block copolymers for drug delivery.Curr. Opin. Colloid Interface Sci.201116318219410.1016/j.cocis.2010.10.003
    [Google Scholar]
  34. ThanitwatthanasakS. SagisL.M.C. ChitprasertP. Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: Mixture-design optimization, micellization, and solubilization behavior.J. Mol. Liq.201927422323810.1016/j.molliq.2018.10.089
    [Google Scholar]
  35. KumarA. ZhangX. LiangX.J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system.Biotechnol. Adv.201331559360610.1016/j.biotechadv.2012.10.002 23111203
    [Google Scholar]
  36. ThakorA.S. JokerstJ. ZavaletaC. MassoudT.F. GambhirS.S. Gold nanoparticles: A revival in precious metal administration to patients.Nano Lett.201111104029403610.1021/nl202559p 21846107
    [Google Scholar]
  37. SinghS. Vittala MurthyN.T. PaulS.K. ChauhanH. Polymeric nanoparticles for transdermal delivery of polyphenols.Curr. Drug Deliv.202219218219110.2174/1567201818666210720144851 34288837
    [Google Scholar]
  38. Montoya-YepesD.F. Jiménez-RodríguezA.A. Aldana-PorrasA.E. Velásquez-HolguinL.F. Méndez-ArteagaJ.J. Murillo-ArangoW. Starches in the encapsulation of plant active ingredients: State of the art and research trends.Polym. Bull.202481113516310.1007/s00289‑023‑04724‑6
    [Google Scholar]
  39. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  40. RudramurthyG. SwamyM. SinniahU. GhasemzadehA. Nanoparticles: Alternatives against drug-resistant pathogenic microbes.Molecules201621783610.3390/molecules21070836 27355939
    [Google Scholar]
  41. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  42. DengS. GigliobiancoM.R. CensiR. Di MartinoP. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities.Nanomaterials (Basel)202010584710.3390/nano10050847 32354008
    [Google Scholar]
  43. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  44. LiJ. YuanY. ChenH. JiaL. ZhangN. HeS. ChenR. TaoR. ZhangH. LiJ. Highly stable and nonflammable hydrated salt nanocapsules with inorganic-organic composite shell for sustainable building technology.J. Energy Storage20247911017310.1016/j.est.2023.110173
    [Google Scholar]
  45. FrankL.A. ContriR.V. BeckR.C.R. PohlmannA.R. GuterresS.S. Improving drug biological effects by encapsulation into polymeric nanocapsules.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157562363910.1002/wnan.1334 25641603
    [Google Scholar]
  46. Sofea YusriP.Z. GhazaliN.F. MazlanN.A. LumP.T. Mohd NoorA.A. ManiS. SekarM. Synthesis and characterization of mangiferin loaded n, o-cmc nanoparticles and its cytotoxic effect on osteosarcoma mg-63 cells.Int. J. Pharm. Sci. Res.20201122136214510.26452/ijrps.v11i2.2162
    [Google Scholar]
  47. SamadarsiR. DuttaD. Anti-oxidative effect of mangiferin-chitosan nanoparticles on oxidative stress-induced renal cells.Int. J. Biol. Macromol.2020151364610.1016/j.ijbiomac.2020.02.112 32070742
    [Google Scholar]
  48. WangY. KarmakarT. GhoshN. BasakS. Gopal SahooN. Targeting mangiferin loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis – A case study against diabetes mediated hyperlipidemia in rat.Food Chem.202237013137610.1016/j.foodchem.2021.131376 34662793
    [Google Scholar]
  49. AhmadN. KhanM.F. UllahZ. ChaudharyA.A. AlawamA.S. KhalidM.S. AliM.T. Development and evaluation of polysorbate-80 coated Mangiferin PLGA nanoparticles used in the treatment of cerebral ischemia.Polym. Bull.2023135
    [Google Scholar]
  50. SarwarA.R. IqbalF.M. JamilM.A. AbbasK. Nanocrystals of mangiferin using design expert: Preparation, characterization, and pharmacokinetic evaluation.Molecules20232815591810.3390/molecules28155918 37570887
    [Google Scholar]
  51. TelangeD.R. SohailN.K. HemkeA.T. KharkarP.S. PetheA.M. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: Evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin.Drug Deliv. Transl. Res.20211131056108310.1007/s13346‑020‑00822‑4 32696222
    [Google Scholar]
  52. XiaoW. HouJ. MaJ. YuB. RenJ. JinW. WuJ. ZhengD. FanK. Mangiferin loaded magnetic PCEC microspheres: Preparation, characterization and antitumor activity studies in vitro.Arch. Pharm. Res.20214481710.1007/s12272‑014‑0485‑3 25266232
    [Google Scholar]
  53. MouraJ.U. BarbosaG.M. GenroC. HernándezR.D. IzquierdoS.S. GomesP. FaganS.B. RaffinR.P. Mangiferin-loaded polymeric nanocapsules.J. Nanopharm. Drug Deliv.201421879210.1166/jnd.2014.1040
    [Google Scholar]
  54. BarakatS NasrM MortadaN BadawyS Preparation and characterization of mangiferin-loaded lipid nanocapsules.Arch Pharm Sci Ain Shams Univ202371415910.21608/aps.2023.194792.1109
    [Google Scholar]
  55. FangC.L.A. Al-SuwayehS.A. FangJ.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting.Recent Pat. Nanotechnol.201371415510.2174/187221013804484827 22946628
    [Google Scholar]
  56. SharmaS. HafeezA. UsmaniS.A. Nanoformulation approaches of naringenin- An updated review on leveraging pharmaceutical and preclinical attributes from the bioactive.J. Drug Deliv. Sci. Technol.20227610372410.1016/j.jddst.2022.103724
    [Google Scholar]
  57. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.021 32373485
    [Google Scholar]
  58. SantonocitoD. BarbagalloI. DistefanoA. SferrazzoG. Vivero-LopezM. SarpietroM.G. PugliaC. Nanostructured lipid carriers aimed to the ocular delivery of mangiferin: In vitro evidence.Pharmaceutics202315395110.3390/pharmaceutics15030951 36986812
    [Google Scholar]
  59. LiuR. LiuZ. ZhangC. ZhangB. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: Improving in vivo ocular bioavailability.J. Pharm. Sci.2012101103833384410.1002/jps.23251 22767401
    [Google Scholar]
  60. KhuranaR.K. BansalA.K. BegS. BurrowA.J. KatareO.P. SinghK.K. SinghB. Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation.Int. J. Pharm.20175181-228930610.1016/j.ijpharm.2016.12.044 28025072
    [Google Scholar]
  61. CagelM. TesanF.C. BernabeuE. SalgueiroM.J. ZubillagaM.B. MorettonM.A. ChiappettaD.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives.Eur. J. Pharm. Biopharm.201711321122810.1016/j.ejpb.2016.12.019 28087380
    [Google Scholar]
  62. PerumalS. AtchudanR. LeeW. A review of polymeric micelles and their applications.Polymers (Basel)20221412251010.3390/polym14122510 35746086
    [Google Scholar]
  63. BezerraF.W.A. FechineL.M.U.D. LopesK.P.S. de SousaA.F. do NascimentoG.O. AmaralH.H.S. LealL.K.A.M. TrevisanM.T.S. RibeiroM.E.N.P. RicardoN.M.P.S. α-Glucosidase inhibitory activity of mangiferin-loaded F127/PEG micellar system.Mater. Lett.201925512652210.1016/j.matlet.2019.126522
    [Google Scholar]
  64. McClementsD.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities.Soft Matter201171793509356
    [Google Scholar]
  65. AliA. AnsariV. AhmadU. AkhtarJ. JahanA. Nanoemulsion: An advanced vehicle for efficient drug delivery.Drug Res. (Stuttg.)2017671161763110.1055/s‑0043‑115124 28738427
    [Google Scholar]
  66. WilsonR.J. LiY. YangG. ZhaoC.X. Nanoemulsions for drug delivery.Particuology202264859710.1016/j.partic.2021.05.009
    [Google Scholar]
  67. AkhtarJ. SiddiquiH.H. FareedS. Badruddeen, KhalidM. AqilM. Nanoemulsion: for improved oral delivery of repaglinide.Drug Deliv.20162362026203410.3109/10717544.2015.1077290 27187792
    [Google Scholar]
  68. BhattP. MadhavS. A detailed review on nanoemulsion drug delivery system.Int. J. Pharm. Sci. Res.20112102482
    [Google Scholar]
  69. Pleguezuelos-VillaM. NácherA. HernándezM.J. Ofelia Vila BusoM.A. Ruiz SauriA. Díez-SalesO. Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration.Int. J. Pharm.201956429930710.1016/j.ijpharm.2019.04.056 31015007
    [Google Scholar]
  70. XingY. LiR. XueL. ChenM. LuX. DuanZ. ZhouW. LiJ. Double emulsion (W/O/W) gel stabilised by polyglycerol polyricinoleate and calcium caseinate as mangiferin carrier: Insights on formulation and stability properties.Int. J. Food Sci. Technol.20225785268527910.1111/ijfs.15856
    [Google Scholar]
  71. SinghP.K. IqubalM.K. ShuklaV.K. ShuaibM. Microemulsions: Current trends in novel drug delivery systems.J Pharm Chem Biol Sci2014113951
    [Google Scholar]
  72. SuhailN. AlzahraniA.K. BashaW.J. KizilbashN. ZaidiA. AmbreenJ. KhachfeH.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery.Front. Nanotechnol.2021375488910.3389/fnano.2021.754889
    [Google Scholar]
  73. XuanX.Y. WangY.J. TianH. PiJ.X. SunS.Z. ZhangW.L. Study on prescription of self-microemulsifying drug delivery system of mangiferin phospholipid complex.Zhong Yao Cai201235915081511 23451508
    [Google Scholar]
  74. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  75. AkandaM. MithuM.D.S.H. DouroumisD. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment.J. Drug Deliv. Sci. Technol.20238610470910.1016/j.jddst.2023.104709
    [Google Scholar]
  76. ZhouQ. HouK. FuZ. Transferrin-modified mangiferin-loaded SLNs: Preparation, characterization, and application in A549 lung cancer cell.Drug Des. Devel. Ther.2022161767177810.2147/DDDT.S366531 35707686
    [Google Scholar]
  77. HafeezA. KhanM.J. SiddiquiM.A. Nanocarrier based delivery of berberine: A critical review on pharmaceutical and preclinical characteristics of the bioactive.Curr. Pharm. Biotechnol.202324111449146410.2174/1389201024666230112141330 36635907
    [Google Scholar]
  78. DykmanL.A. KhlebtsovN.G. Gold nanoparticles in biology and medicine: Recent advances and prospects.Acta Nat. (Engl. Ed.)201132345510.32607/20758251‑2011‑3‑2‑34‑55 22649683
    [Google Scholar]
  79. DeviL. KushwahaP. AnsariT.M. KumarA. RaoA. Recent trends in biologically synthesized metal nanoparticles and their biomedical applications: A review.Biol. Trace Elem. Res.2023117 37878232
    [Google Scholar]
  80. BaiX. WangY. SongZ. FengY. ChenY. ZhangD. FengL. The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment.Int. J. Mol. Sci.2020217248010.3390/ijms21072480 32260051
    [Google Scholar]
  81. KoW.C. WangS.J. HsiaoC.Y. HungC.T. HsuY.J. ChangD.C. HungC.F. Pharmacological role of functionalized gold nanoparticles in disease applications.Molecules2022275155110.3390/molecules27051551 35268651
    [Google Scholar]
  82. Al-YasiriA.Y. KhoobchandaniM. CutlerC.S. WatkinsonL. CarmackT. SmithC.J. KuchukM. LoyalkaS.K. LugãoA.B. KattiK.V. Mangiferin functionalized radioactive gold nanoparticles (MGF- 198 AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy.Dalton Trans.20174642145611457110.1039/C7DT00383H 28440368
    [Google Scholar]
  83. VinesJ.B. YoonJ.H. RyuN.E. LimD.J. ParkH. Gold nanoparticles for photothermal cancer therapy.Front Chem.2019716710.3389/fchem.2019.00167 31024882
    [Google Scholar]
  84. LehmanJ.H. TerronesM. MansfieldE. HurstK.E. MeunierV. Evaluating the characteristics of multiwall carbon nanotubes.Carbon20114982581260210.1016/j.carbon.2011.03.028
    [Google Scholar]
  85. PorwalM. RastogiV. KumarA. An overview on carbon nanotubes.MOJ Bioequiv Availab201735114116
    [Google Scholar]
  86. CheJ. ÇaginT. GoddardW.A.III Thermal conductivity of carbon nanotubes.Nanotechnology2000112656910.1088/0957‑4484/11/2/305
    [Google Scholar]
  87. SchnorrJ.M. SwagerT.M. Emerging applications of carbon nanotubes.Chem. Mater.201123364665710.1021/cm102406h
    [Google Scholar]
  88. HarshaP.J. ThotakuraN. KumarM. SharmaS. MittalA. KhuranaR.K. SinghB. NegiP. RazaK. A novel PEGylated carbon nanotube conjugated mangiferin: An explorative nanomedicine for brain cancer cells.J. Drug Deliv. Sci. Technol.20195310118610.1016/j.jddst.2019.101186
    [Google Scholar]
  89. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  90. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  91. PotisuwanS. ApichatwatanaN. RujivipatS. Improved skin permeation of transferosomes containing Eulophia macrobulbon extract.Colloids Surf. B Biointerfaces202322911347410.1016/j.colsurfb.2023.113474 37540959
    [Google Scholar]
  92. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: A novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  93. WaglewskaE. Pucek-KaczmarekA. BazylińskaU. Self-assembled bilosomes with stimuli-responsive properties as bioinspired dual-tunable nanoplatform for pH/temperature-triggered release of hybrid cargo.Colloids Surf. B Biointerfaces202221511252410.1016/j.colsurfb.2022.112524 35500532
    [Google Scholar]
  94. AbdelbaryA.A. Abd-ElsalamW.H. Al-mahallawiA.M. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: In vitro characterization, ex vivo permeation and in vivo safety assessment.Int. J. Pharm.20165131-268869610.1016/j.ijpharm.2016.10.006 27717916
    [Google Scholar]
  95. NemrA.A. El-MahroukG.M. BadieH.A. Hyaluronic acid-enriched bilosomes: An approach to enhance ocular delivery of agomelatine via D-optimal design: Formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits.Drug Deliv.20222912343235610.1080/10717544.2022.2100513 35869684
    [Google Scholar]
  96. BhairyS. PitchikaS. MauryaS. PatilJ. Stability and in-vivo efficacy of bile salts containing vesicles (bilosomes) for oral delivery of vaccines and poorly soluble active drug molecules.Indo Am J Pharm Res2020101013261344
    [Google Scholar]
  97. VermaP. PathakK. Therapeutic and cosmeceutical potential of ethosomes: An overview.J. Adv. Pharm. Technol. Res.20101327428210.4103/0110‑5558.72415 22247858
    [Google Scholar]
  98. GodinB TouitouE Ethosomes: New prospects in transdermal delivery.Crit Rev Ther Drug Carrier Syst20032016310210.1615/critrevtherdrugcarriersyst.v20.i1.20
    [Google Scholar]
  99. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.2017145613633 27199229
    [Google Scholar]
  100. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.004 22205066
    [Google Scholar]
  101. EspositoE. CalderanL. GalvanA. CappellozzaE. DrechslerM. MarianiP. PepeA. SguizzatoM. VigatoE. Dalla PozzaE. MalatestaM. Ex vivo evaluation of ethosomes and transethosomes applied on human skin: A comparative study.Int. J. Mol. Sci.202223231511210.3390/ijms232315112 36499432
    [Google Scholar]
  102. KalvaS RaoPS SundariBT DiwanPV Preparation and evaluation of Mangifera indica loaded ethosomal gel for antiinflammatory activity in animal model.Int J Ayurvedic Herb2018813089309810.18535/ijahm/v8i1.06
    [Google Scholar]
  103. AdinS.N. GuptaI. RashidM.A. AlhamhoomY. AqilM. MujeebM. Nanotransethosomes for enhanced transdermal delivery of mangiferin against rheumatoid arthritis: Formulation, characterization, invivo pharmacokinetic and pharmacodynamic evaluation.Drug Deliv.2023301217333810.1080/10717544.2023.2173338 36729134
    [Google Scholar]
  104. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox10050768 34066018
    [Google Scholar]
  105. AbdallahM.H. El-HoranyH.E.S. El-NahasH.M. IbrahimT.M. Tailoring risperidone-loaded glycethosomal in situ gels using box–behnken design for treatment of schizophrenia-induced rats via intranasal route.Pharmaceutics20231511252110.3390/pharmaceutics15112521 38004501
    [Google Scholar]
  106. Angelova-FischerI. RippkeF. RichterD. FilbryA. ArrowitzC. WeberT. FischerT. ZillikensD. Stand-alone emollient treatment reduces flares after discontinuation of topical steroid treatment in atopic dermatitis: A double-blind, randomized, vehicle-controlled, left-right comparison study.Acta Derm. Venereol.201898551752310.2340/00015555‑2882 29335742
    [Google Scholar]
  107. ZhangY. LiangR. LiuC. YangC. Improved stability and skin penetration through glycethosomes loaded with glycyrrhetinic acid.Int. J. Cosmet. Sci.202244224926110.1111/ics.12771 35303372
    [Google Scholar]
  108. Pleguezuelos-VillaM. Diez-SalesO. MancaM.L. ManconiM. SauriA.R. Escribano-FerrerE. NácherA. Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis.Int. J. Pharm.202057311884410.1016/j.ijpharm.2019.118844 31751638
    [Google Scholar]
  109. PrabhuS. PunithavathiA. andhyaV. AtulS.C. Entrapment of mangiferin polyphenol in poly lactic-co-glycolic acid nanoparticles for treatment of lung cancer.IN2019410368822021
  110. JianqinL. YuqiangW. JiagangD. ZhipingW. XuejianL. WannaX. JianjunH. Multi-element mangiferin solid dispersion as well as preparation method and application thereof.CN1044738752015
  111. BingfangH. XuemingW. chu JianlinC. BinW. SenZ. PingkaiO. Fructosylated mangiferin and preparation method therefor and use thereof.EP26572452013
  112. YangL. GuanhuaD. QiZ. ShiyingY. LiZ. YingZ. QimengZ. HaiguangY. Mangiferin crystal form-VI matter as well as preparation method, composition and use thereof.CN1082390802018
  113. ClementI. O. Mangiferin as a protective agent against mitochondrial DNA damage and skin-care compositions comprising same.EP37461272020
  114. ZouY. ChenJ. Mangiferin and preparation method thereof.US202203803982022
  115. KatteshK. CathyC. MenkaC. KavitaK. Mangiferin encapsulated gold nanoparticles, fabrication methods and cancer therapeutic methods.US201902905942019
  116. JiagangD. HuixueH. KeY. QiuyunL. Mangiferin injection and preparation method thereof.CN1039329802014
  117. YinghuiW. LiyanL. SiminW. Mangiferin micromolecular hydrogel as well as preparation method and application thereof.CN1125691802021
  118. LingbingS. ChenX. FajunN. HaoZ. YanZ. ChenyuZ. RenxiangT. YangX. JiaL. HongsenL. JihongZ. Nanjing University application of mangiferin in treating type II diabetes and vitro trial model thereof.CN1012840012008
  119. RajputS. SharmaP.K. MalviyaR. Herbal drugs inducing autophagy for the management of cancer: Mechanism and utilization.Curr. Pharm. Biotechnol.202310.2174/1389201024666230428114740 37132135
    [Google Scholar]
  120. HopN.Q. SonN.T. Genus Knema: An extensive review on traditional uses, phytochemistry, and pharmacology.Curr. Pharm. Biotechnol.202324121524155310.2174/1389201024666230201115303 36722485
    [Google Scholar]
  121. HaniU. GowdaB.H.J. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  122. PandeyS. ShamimA. ShaifM. KushwahaP. Development and evaluation of Resveratrol-loaded liposomes in hydrogel-based wound dressing for diabetic foot ulcer.Naunyn Schmiedebergs Arch. Pharmacol.202339681811182510.1007/s00210‑023‑02441‑5 36862150
    [Google Scholar]
  123. SinghM. DeviS. RanaV.S. MishraB.B. KumarJ. AhluwaliaV. Delivery of phytochemicals by liposome cargos: Recent progress, challenges and opportunities.J. Microencapsul.201936321523510.1080/02652048.2019.1617361 31092084
    [Google Scholar]
  124. Davatgaran TaghipourY. HajialyaniM. NaseriR. HesariM. MohammadiP. StefanucciA. MollicaA. FarzaeiM.H. AbdollahiM. Nanoformulations of natural products for management of metabolic syndrome.Int. J. Nanomedicine2019145303532110.2147/IJN.S213831 31406461
    [Google Scholar]
  125. MittalS. IqubalM.K. IqbalB. GuptaM.M. AliJ. BabootaS. A pervasive scientific overview on mangiferin in the prevention and treatment of various diseases with preclinical and clinical updates.J. Complement. Integr. Med.202118192110.1515/jcim‑2019‑0250 32427121
    [Google Scholar]
  126. YueY. ChenX. QinJ. YaoX. Characterization of the mangiferin–human serum albumin complex by spectroscopic and molecular modeling approaches.J. Pharm. Biomed. Anal.200949375375910.1016/j.jpba.2008.12.017 19157745
    [Google Scholar]
  127. Al-ZahraniK.S. FaqeehA.A. AbdulghaniZ.R. ThomasS.P. A review on the physicochemical properties and utilization of date seeds in value-added engineering products.Polym. Bull.20227912104331049010.1007/s00289‑021‑04048‑3
    [Google Scholar]
  128. FangZ. ChenP. JiQ. YanC. GongA. Stimuli-responsive hydrogel for disease therapy.Polym. Bull.20248131981200010.1007/s00289‑023‑04862‑x
    [Google Scholar]
  129. SellamuthuP.S. ArulselvanP. MuniappanB.P. FakuraziS. KandasamyM. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats.J. Med. Food201316871972710.1089/jmf.2012.2480 23957355
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010318524240907135527
Loading
/content/journals/cpb/10.2174/0113892010318524240907135527
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test