Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Diabetic neuropathy is a persistent consequence of the biochemical condition known as diabetes mellitus. As of now, the identification and management of diabetic neuropathy continue to be problematic due to problems related to the safety and efficacy of existing therapies. This study examines biomarkers, molecular and cellular events associated with the advancement of diabetic neuropathy, as well as the existing pharmacological and non-pharmacological treatments employed. Furthermore, a holistic and mechanism-centric drug repurposing approach, antioxidant therapy, Gene and Cell therapies, Capsaicin and other spinal cord stimulators and lifestyle interventions are pursued for the identification, treatment and management of diabetic neuropathy. An extensive literature survey was done on databases like PubMed, Elsevier, Science Direct and Springer using the keywords “Diabetic Neuropathy”, “Biomarkers”, “Cellular and Molecular Mechanisms”, and “Novel Therapeutic Targets”. Thus, we may conclude that non-pharmacological therapies along with palliative treatment, may prove to be crucial in halting the onset of neuropathic symptoms and in lessening those symptoms once they have occurred.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316518240924071259
2024-09-27
2025-12-28
Loading full text...

Full text loading...

References

  1. FeldmanE.L. CallaghanB.C. Pop-BusuiR. ZochodneD.W. WrightD.E. BennettD.L. BrilV. RussellJ.W. ViswanathanV. Diabetic neuropathy.Nat. Rev. Dis. Primers2019514110.1038/s41572‑019‑0092‑1 31197153
    [Google Scholar]
  2. CallaghanB.C. ChengH.T. StablesC.L. SmithA.L. FeldmanE.L. Diabetic neuropathy: Clinical manifestations and current treatments.Lancet Neurol.201211652153410.1016/S1474‑4422(12)70065‑0 22608666
    [Google Scholar]
  3. NegiG. NakkinaV. KambleP. SharmaS.S. Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy.Pharmacol. Res.201510215816710.1016/j.phrs.2015.09.014 26432957
    [Google Scholar]
  4. SinghR. KishoreL. KaurN. Diabetic peripheral neuropathy: Current perspective and future directions.Pharmacol. Res.201480213510.1016/j.phrs.2013.12.005 24373831
    [Google Scholar]
  5. GalieroR. CaturanoA. VetranoE. BecciaD. BrinC. AlfanoM. Di SalvoJ. EpifaniR. PiacevoleA. TagliaferriG. RoccoM. IadiciccoI. DocimoG. RinaldiL. SarduC. SalvatoreT. MarfellaR. SassoF.C. Peripheral neuropathy in diabetes mellitus: Pathogenetic mechanisms and diagnostic options.Int. J. Mol. Sci.2023244355410.3390/ijms24043554 36834971
    [Google Scholar]
  6. RajendramR. GyamfiD. PatelV.B. PreedyV.R. Recommended resources for biomarkers in diabetes: Methods, discoveries, and applications.Biomarkers in Diabetes.ChamSpringer20231141115310.1007/978‑3‑031‑08014‑2_58
    [Google Scholar]
  7. BönhofG.J. HerderC. StromA. PapanasN. RodenM. ZieglerD. emerging biomarkers, tools, and treatments for diabetic polyneuropathy.Endocr. Rev.201810.1210/er.2018‑00107 30256929
    [Google Scholar]
  8. FujitaY. MurakamiT. NakamuraA. Recent Advances in Biomarkers and Regenerative Medicine for Diabetic Neuropathy.Int. J. Mol. Sci.2021225230110.3390/ijms22052301 33669048
    [Google Scholar]
  9. RichnerM. FerreiraN. DudeleA. JensenT.S. VaegterC.B. GonçalvesN.P. functional and structural changes of the blood-nerve-barrier in diabetic neuropathy.Front. Neurosci.201912103810.3389/fnins.2018.01038 30692907
    [Google Scholar]
  10. Ristikj-StomnaroskaD. Risteska-NejashmikjV. PapazovaM. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy.Open Access Maced. J. Med. Sci.20197142267227010.3889/oamjms.2019.646 31592273
    [Google Scholar]
  11. JinH.Y. ParkT.S. Role of inflammatory biomarkers in diabetic peripheral neuropathy.J. Diabetes Investig.2018951016101810.1111/jdi.12794 29277966
    [Google Scholar]
  12. SugimotoK. YasujimaM. YagihashiS. Role of advanced glycation end products in diabetic neuropathy.Curr. Pharm. Des.2008141095396110.2174/138161208784139774 18473845
    [Google Scholar]
  13. Collazos-AlemánJ.D. Salazar-OcampoM.P. MendivilC.O. The role of lipids and lipoproteins in peripheral neuropathy.Lipoproteins in Diabetes Mellitus. JenkinsA.J. TothP.P. ChamHumana202310.1007/978‑3‑031‑26681‑2_18
    [Google Scholar]
  14. GargS.S. GuptaJ. Polyol pathway and redox balance in diabetes.Pharmacol. Res.202218210632610.1016/j.phrs.2022.106326 35752357
    [Google Scholar]
  15. VieiraW.F. MalangeK.F. de MagalhãesS.F. LemesJ.B.P. dos SantosG.G. NishijimaC.M. de OliveiraA.L.R. da Cruz-HöflingM.A. TambeliC.H. ParadaC.A. Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics modulation.Sci. Rep.20221211673010.1038/s41598‑022‑19947‑2 36202956
    [Google Scholar]
  16. QureshiZ. AliM.N. KhalidM. An insight into potential pharmacotherapeutic agents for painful diabetic neuropathy.J. Diabetes Res.2022202211910.1155/2022/9989272
    [Google Scholar]
  17. AkramR. AnwarH. JavedM.S. ImranA. RasulA. MalikS.A. ManzoorM. IslamF. KhanI.U. SajidF. ImanT. ShahM.A. SunT. HussainG. ShahM.A. Natural molecules as promising players against diabetic peripheral neuropathy: an emerging nutraceutical approach.Int. J. Food Prop.202326189491410.1080/10942912.2023.2189569
    [Google Scholar]
  18. BuchA. KaurS. NairR. JainA. Platelet volume indices as predictive biomarkers for diabetic complications in Type 2 diabetic patients.J. Lab Physicians.201792848810.4103/0974‑2727.199625
    [Google Scholar]
  19. FinkelR. BertiniE. MuntoniF. MercuriE. 209th ENMC international workshop: outcome measures and clinical trial readiness in spinal muscular atrophy 7–9 November 2014, Heemskerk, The Netherlands.Neuromuscul. Disord.201525759360210.1016/j.nmd.2015.04.009 26045156
    [Google Scholar]
  20. RossorA.M. ReillyM.M. Blood biomarkers of peripheral neuropathy.Acta Neurol. Scand.2022146432533110.1111/ane.13650 35611606
    [Google Scholar]
  21. ZhuT. MengQ. JiJ. LouX. ZhangL. Toll-like receptor 4 and tumor necrosis factor-alpha as diagnostic biomarkers for diabetic peripheral neuropathy.Neurosci. Lett.2015585283210.1016/j.neulet.2014.11.020 25445373
    [Google Scholar]
  22. Abd El-hafezF.F. Nsr-AllahA.A.e.M. MohamedA.K.A.E. AhmedA.M. MahmoudA.A. MahmoudA.A. Novel biomarker serum calprotectin for early diagnosis of diabetic peripheral neuropathy in Type 2 diabetes patients.Egypt. J. Hosp. Med.202182237938510.21608/ejhm.2021.144904
    [Google Scholar]
  23. AghamiriS.H. KomlakhK. GhaffariM. The crosstalk among TLR2, TLR4 and pathogenic pathways; a treasure trove for treatment of diabetic neuropathy.Inflammopharmacology2022301516010.1007/s10787‑021‑00919‑3 35020096
    [Google Scholar]
  24. ChongZ.Z. MenkesD.L. SouayahN. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes.Drug Discov. Today202429810408710.1016/j.drudis.2024.104087 38969091
    [Google Scholar]
  25. WuJ. LiK. ZhouM. GaoH. WangW. XiaoW. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway.J. Pharm. Anal.202414810094610.1016/j.jpha.2024.01.014
    [Google Scholar]
  26. TerashimaT. KatagiM. OhashiN. Neuronal-hematopoietic cell fusion in diabetic neuropathy.Stem Cells Transl. Med.202312421522010.1093/stcltm/szad015 36976582
    [Google Scholar]
  27. VermaS.K. KishoreJ. KumariU. A comparative study of tnf-alpha and IL-6 as potential biomarkers for patients with diabetic neuropathy.Int. J. Life Sci. Biotechnol. Pharma. Res.202312311321134
    [Google Scholar]
  28. El SheikhW.M. AlahmarI.E. SalemG.M. El-SheikhM.A. Tumor necrosis factor alpha in peripheral neuropathy in type 2 diabetes mellitus.Egypt. J. Neurol. Psychiat. Neurosurg.20195513710.1186/s41983‑019‑0080‑0
    [Google Scholar]
  29. ShiX. ChenY. NadeemL. XuG. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy.J. Neuroinflammation201310183610.1186/1742‑2094‑10‑69 23735240
    [Google Scholar]
  30. MussaB.M. SrivastavaA. Al-HabshiA. MohammedA.K. HalwaniR. AbusnanaS. Inflammatory biomarkers levels in T2DM emirati patients with diabetic neuropathy.Diabetes Metab. Syndr. Obes.2021143389339710.2147/DMSO.S319863 34345175
    [Google Scholar]
  31. QiM. ZhouQ. ZengW. WuL. ZhaoS. ChenW. LuoC. ShenM. ZhangJ. TangC.E. Growth factors in the pathogenesis of diabetic foot ulcers.front. Biosci. (Landmark Ed)201823231031728930549
    [Google Scholar]
  32. VoelkerJ. BergP.H. SheetzM. DuffinK. ShenT. MoserB. GreeneT. BlumenthalS.S. RychlikI. YagilY. ZaouiP. LewisJ.B. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy.J. Am. Soc. Nephrol.201728395396210.1681/ASN.2015111230 27647855
    [Google Scholar]
  33. MassaguéJ. TGFβ in cancer.Cell2008134221523010.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  34. AntonelliA. FerrariS.M. CorradoA. FerranniniE. FallahiP. CXCR3, CXCL10 and type 1 diabetes.Cytokine Growth Factor Rev.2014251576510.1016/j.cytogfr.2014.01.006 24529741
    [Google Scholar]
  35. AscasoP. PalancaA. Martinez-HervásS. SanzM.J. AscasoJ.F. PiquerasL. RealJ.T. Peripheral blood levels of CXCL10 are a useful marker for diabetic polyneuropathy in subjects with type 2 diabetes.Int. J. Clin. Pract.2021758e1430210.1111/ijcp.14302 33930221
    [Google Scholar]
  36. GonçalvesN.P. VægterC.B. AndersenH. ØstergaardL. CalcuttN.A. JensenT.S. Schwann cell interactions with axons and microvessels in diabetic neuropathy.Nat. Rev. Neurol.201713313514710.1038/nrneurol.2016.201 28134254
    [Google Scholar]
  37. PaneeJ. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes.Cytokine201260111210.1016/j.cyto.2012.06.018 22766373
    [Google Scholar]
  38. KohlB. FischerS. GrohJ. WessigC. MartiniR. MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-tooth 1A neuropathy.Am. J. Pathol.201017631390139910.2353/ajpath.2010.090694 20093502
    [Google Scholar]
  39. FischerS. WeishauptA. TroppmairJ. MartiniR. Increase of MCP‐1 (CCL2) in myelin mutant Schwann cells is mediated by MEK‐ERK signaling pathway.Glia200856883684310.1002/glia.20657 18383340
    [Google Scholar]
  40. MahmoudA.A. SolimanM.S. MoustafaA. Evaluation of monocyte chemoattractant protein 1 (MCP-1) as a predictor of complications in type 2 diabetes mellitus in Zagazig University Hospital.Egypt. J. Hosp. Med.2021831995100110.21608/ejhm.2021.160038
    [Google Scholar]
  41. KarahmetE. PrnjavoracB. BegoT. SoftićA. BegićL. BegićE. KarahmetE. PrnjavoracL. PrnjavoracI. Clinical use of an analysis of oxidative stress and IL-6 as the promoters of diabetic polyneuropathy.Med. Glas.20211811217 33480229
    [Google Scholar]
  42. CoxA.A. SagotY. HedouG. GrekC. WilkesT. VinikA.I. GhatnekarG. Low-dose pulsatile interleukin-6 as a treatment option for diabetic peripheral neuropathy.Front. Endocrinol. (Lausanne)201788910.3389/fendo.2017.00089 28512447
    [Google Scholar]
  43. ChandaD. RayS. ChakrabortiD. SenS. MitraA. Interleukin-6 levels in patients with diabetic polyneuropathy.Cureus2022142e2195210.7759/cureus.21952 35155045
    [Google Scholar]
  44. ZhouJ. ZhouS. Inflammation: Therapeutic targets for diabetic neuropathy.Mol. Neurobiol.201449153654610.1007/s12035‑013‑8537‑0 23990376
    [Google Scholar]
  45. MureșanA.V. TomacA. OprișD.R. BandiciB.C. CoșarcăC.M. CovalcicD.C. HălmaciuI. Akácsos-SzászO.Z. RădulescuF. LázárK. StoianA. TilincaM.C. Inflammatory markers used as predictors of subclinical atherosclerosis in patients with diabetic polyneuropathy.Life (Basel)2023139186110.3390/life13091861 37763265
    [Google Scholar]
  46. AdkiK.M. KulkarniY.A. Biomarkers in diabetic neuropathy.Arch. Physiol. Biochem.202011610.1080/13813455.2020.1837183 33186087
    [Google Scholar]
  47. SunQ. YanB. YangD. GuoJ. WangC. ZhangQ. ShiY. ShiX. TianG. LiangX. Serum adiponectin levels are positively associated with diabetic peripheral neuropathy in chinese patients with type 2 diabetes.Front. Endocrinol. (Lausanne)20201156795910.3389/fendo.2020.567959 33324342
    [Google Scholar]
  48. Al-DulaimyA.H. Abdul GhafoorK.F. Evaluation of adiponectin serum levels and their association with oxidative stress in individuals with type 2 diabetes mellitus in Iraq.Anaesth. Pain Intensive Care202428355355710.35975/apic.v28i3.2475
    [Google Scholar]
  49. ChistyakovD.A. Savost’anovK.V. ZotovaE.V. NosikovV.V. Polymorphisms in the Mn-SOD and EC-SOD genes and their relationship to diabetic neuropathy in type 1 diabetes mellitus.BMC Med. Genet.200121410.1186/1471‑2350‑2‑4 11299047
    [Google Scholar]
  50. VincentA.M. RussellJ.W. LowP. FeldmanE.L. Oxidative stress in the pathogenesis of diabetic neuropathy.Endocr. Rev.200425461262810.1210/er.2003‑0019 15294884
    [Google Scholar]
  51. TiwariB.K. PandeyK.B. AbidiA.B. RizviS.I. Markers of oxidative stress during diabetes mellitus.J. Biomark.2013201337879010.1155/2013/378790
    [Google Scholar]
  52. DayanandC.D. VegiP.K. KuttyA.V. Protein carbonyl content as a stable oxidative stress marker in type II diabetes.Int. J. Biol. Med. Res.20123423622365
    [Google Scholar]
  53. MizukamiH. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy.Pathol. Int.202474843845310.1111/pin.13458 38888200
    [Google Scholar]
  54. MasengaS.K. KabweL.S. ChakulyaM. KiraboA. Mechanisms of oxidative stress in metabolic syndrome.Int. J. Mol. Sci.2023249789810.3390/ijms24097898 37175603
    [Google Scholar]
  55. KlöppelE. SinzatoY.K. RodriguesT. GallegoF.Q. KarkiB. VolpatoG.T. CorrenteJ.E. RoyS. DamascenoD.C. Benefits of vitamin D supplementation on pregnancy of rats with pregestational diabetes and their offspring.Reprod. Sci.20233041241125610.1007/s43032‑022‑01056‑0 35999443
    [Google Scholar]
  56. SpirlandeliA.L. DeminiceR. JordaoA.A. Plasma malondialdehyde as biomarker of lipid peroxidation: effects of acute exercise.Int. J. Sports Med.20143511418 23771832
    [Google Scholar]
  57. JanickaM. Kot-WasikA. KotJ. NamieśnikJ. Isoprostanes-biomarkers of lipid peroxidation: Their utility in evaluating oxidative stress and analysis.Int. J. Mol. Sci.201011114631465910.3390/ijms11114631 21151461
    [Google Scholar]
  58. Subjects, General Biomarkers of lipid peroxidation in clinical material.Biochim. Biophys. Acta.20141840280981710.1016/j.bbagen.2013.03.020
    [Google Scholar]
  59. ShichiriM. The role of lipid peroxidation in neurological disorders.J. Clin. Biochem. Nutr.201454315116010.3164/jcbn.14‑10 24895477
    [Google Scholar]
  60. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. Drug repurposing: Progress, challenges and recommendations.Nat. Rev. Drug Discov.201810.1038/nrd.2018.168 30310233
    [Google Scholar]
  61. JonkerA.H. O’ConnorD. Cavaller-BellaubiM. FetroC. GogouM. ’T Hoen, P.A.C.; de Kort, M.; Stone, H.; Valentine, N.; Pasmooij, A.M.G. Drug repurposing for rare: Progress and opportunities for the rare disease community.Front. Med. (Lausanne)202411135280310.3389/fmed.2024.1352803 38298814
    [Google Scholar]
  62. OpreaT.I. MestresJ. Drug repurposing: Far beyond new targets for old drugs.AAPS J.201214475976310.1208/s12248‑012‑9390‑1 22826034
    [Google Scholar]
  63. ParvathaneniV. KulkarniN.S. MuthA. GuptaV. Drug repurposing: A promising tool to accelerate the drug discovery process.Drug Discov. Today201924102076208510.1016/j.drudis.2019.06.014 31238113
    [Google Scholar]
  64. CorselloS.M. BittkerJ.A. LiuZ. GouldJ. McCarrenP. HirschmanJ.E. JohnstonS.E. VrcicA. WongB. KhanM. AsieduJ. NarayanR. MaderC.C. SubramanianA. GolubT.R. The Drug Repurposing Hub: a next-generation drug library and information resource.Nat. Med.201723440540810.1038/nm.4306 28388612
    [Google Scholar]
  65. Masoudi-SobhanzadehY. OmidiY. AmanlouM. Masoudi-NejadA. Drug databases and their contributions to drug repurposing.Genomics202011221087109510.1016/j.ygeno.2019.06.021 31226485
    [Google Scholar]
  66. RoesslerH.I. KnoersN.V.A.M. van HaelstM.M. van HaaftenG. Drug repurposing for rare diseases.Trends Pharmacol. Sci.202142425526710.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
  67. SonayeH.V. SheikhR.Y. DoifodeC.A. Drug repurposing: Iron in the fire for older drugs.Biomed. Pharmacother.202114111163810.1016/j.biopha.2021.111638 34153846
    [Google Scholar]
  68. PaulA. KumarM. DasP. GuhaN. RudrapalM. ZamanM.K. Drug repurposing – A search for novel therapy for the treatment of diabetic neuropathy.Biomed. Pharmacother.202215611384610.1016/j.biopha.2022.113846 36228378
    [Google Scholar]
  69. BackonjaM.M. Use of anticonvulsants for treatment of neuropathic pain.Neurology2002595_suppl_2(Suppl. 2), S14-S17.10.1212/WNL.59.5_suppl_2.S1412221151
    [Google Scholar]
  70. RaskinP. DonofrioP.D. RosenthalN.R. HewittD.J. JordanD.M. XiangJ. VinikA.I. Topiramate vs placebo in painful diabetic neuropathy.Neurology200463586587310.1212/01.WNL.0000137341.89781.14 15365138
    [Google Scholar]
  71. AlrashoodS.T. Carbamazepine.Profiles Drug Subst. Excip. Relat. Methodol.20164113332110.1016/bs.podrm.2015.11.001 26940169
    [Google Scholar]
  72. DyongT.M. GessB. DumkeC. RolkeR. DohrnM.F. Carbamazepine for chronic muscle pain: A retrospective assessment of indications, side effects, and treatment response.Brain Sci.202313112310.3390/brainsci13010123 36672104
    [Google Scholar]
  73. JangH.N. OhT.J. Pharmacological and nonpharmacological treatments for painful diabetic peripheral neuropathy.Diabetes Metab. J.202347674375610.4093/dmj.2023.0018 37670573
    [Google Scholar]
  74. RussoM. GrahamB. SantarelliD.M. Gabapentin — Friend or foe?Pain Pract.2023231636910.1111/papr.13165 36300903
    [Google Scholar]
  75. ChangM.C. YangS. Diabetic peripheral neuropathy essentials: A narrative review.Ann. Palliat. Med.202312239039810.21037/apm‑22‑693 36786097
    [Google Scholar]
  76. MokhtarN. DolyS. CourteixC. Diabetic neuropathic pain and serotonin: What is new in the last 15 years?Biomedicines2023117192410.3390/biomedicines11071924 37509563
    [Google Scholar]
  77. GylfadottirS.S. FinnerupN.B. Characteristics and treatment of painful diabetic neuropathy.In: Diabetic Neuropathy.ChamHumana Press2023;44145210.1007/978‑3‑031‑15613‑7_25
    [Google Scholar]
  78. MicheliL. RajamoniJ. Di Cesare MannelliL. RajagopalanP. GhelardiniC. RajagopalanR. DDD-028: A potent, neuroprotective, non-opioid compound for the treatment of diabetic neuropathy.Bioorg. Med. Chem. Lett.20239512947210.1016/j.bmcl.2023.129472 37690597
    [Google Scholar]
  79. SagarT.V. YatishB. Safety and efficacy of duloxetine versus gabapentin in painful diabetic polyneuropathy.IP Int. J. Compr. Adv. Pharmacol.202274223227
    [Google Scholar]
  80. NugrohoA. IrfanaL. TriastutiN. IndrawatiN.D. Effectiveness of anticonvulsants compared to antidepressants in reducing pain in diabetic neuropathy complications.Borneo Rev. Med. Sci.202341311
    [Google Scholar]
  81. ChangK.C. PaiY.W. LinC.H. LeeI.T. ChangM.H. The association between hyperlipidemia, lipid-lowering drugs and diabetic peripheral neuropathy in patients with type 2 diabetes mellitus.PLoS One2023186e028737310.1371/journal.pone.0287373 37319238
    [Google Scholar]
  82. EidS.A. RumoraA.E. BeirowskiB. BennettD.L. HurJ. SavelieffM.G. FeldmanE.L. New perspectives in diabetic neuropathy.Neuron2023111172623264110.1016/j.neuron.2023.05.003 37263266
    [Google Scholar]
  83. LaaksoM. Fernandes SilvaL. Statins and risk of type 2 diabetes: Mechanism and clinical implications.Front. Endocrinol. (Lausanne)202314123933510.3389/fendo.2023.1239335 37795366
    [Google Scholar]
  84. GohJ.K. KohL. Evaluating treatment options for cardiovascular autonomic neuropathy in patients with diabetes mellitus: A systematic review.Diabetol. Int.202314322424210.1007/s13340‑023‑00629‑x 37397902
    [Google Scholar]
  85. CohenS.D. FaselisC. Blood pressure lowering and microvascular complications of diabetes.In: Blood Pressure Disorders in Diabetes Mellitus.ChamSpringer202332733510.1007/978‑3‑031‑13009‑0_19
    [Google Scholar]
  86. ManciaG. SeravalleG. GrassiG. Diabetogenic effects of antihypertensive drugs and statins.Blood Pressure Disorders in Diabetes Mellitus421435SpringerCham202310.1007/978‑3‑031‑13009‑0_26
    [Google Scholar]
  87. ChoiJ.S. ZhangL. Dib-HajjS.D. HanC. TyrrellL. LinZ. WangX. YangY. WaxmanS.G. Mexiletine-responsive erythromelalgia due to a new Nav1.7 mutation showing use-dependent current fall-off.Exp. Neurol.2009216238338910.1016/j.expneurol.2008.12.012 19162012
    [Google Scholar]
  88. WangQ. YeY. YangL. XiaoL. LiuJ. ZhangW. DuG. Painful diabetic neuropathy: The role of ion channels.Biomed. Pharmacother.202417311641710.1016/j.biopha.2024.116417 38490158
    [Google Scholar]
  89. ChenY.F. ChenY.T. ChiuW.T. ShenM.R. Remodeling of calcium signaling in tumor progression.J. Biomed. Sci.20132012310.1186/1423‑0127‑20‑23 23594099
    [Google Scholar]
  90. SisignanoM. GribbonP. GeisslingerG. Drug repurposing to target neuroinflammation and sensory neuron-dependent pain.Drugs202282435737310.1007/s40265‑022‑01689‑0 35254645
    [Google Scholar]
  91. BenniciG. AlmahasheerH. AlghrablyM. ValensinD. KolaA. KokotidouC. LachowiczJ. JaremkoM. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions.RSC Advances20241425174481746010.1039/D4RA02349H 38813124
    [Google Scholar]
  92. ChianeseD. BonoraM. SambataroM. SambatoL. PaolaL.D. TremoliE. CappucciI.P. ScattoM. PintonP. PicariM. FerroniL. ZavanB. Exploring mitochondrial interactions with pulsed electromagnetic fields: An insightful inquiry into strategies for addressing neuroinflammation and oxidative stress in diabetic neuropathy.Int. J. Mol. Sci.20242514778310.3390/ijms25147783 39063025
    [Google Scholar]
  93. LiJ. MaJ. LacagninaM.J. LorcaS. OdemM.A. WaltersE.T. KavelaarsA. GraceP.M. Oral dimethyl fumarate reduces peripheral neuropathic pain in rodents via NFE2L2 antioxidant signaling.Anesthesiology2020132234335610.1097/ALN.0000000000003077 31939850
    [Google Scholar]
  94. AzizN. DashB. WalP. KumariP. JoshiP. WalA. New horizons in diabetic neuropathies: An updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches.Curr. Diabetes Rev.202310.2174/0115733998242299231011181615 37867268
    [Google Scholar]
  95. ZhuJ. HuZ. LuoY. LiuY. LuoW. DuX. LuoZ. HuJ. PengS. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment.Front. Endocrinol. (Lausanne)202414126537210.3389/fendo.2023.1265372 38264279
    [Google Scholar]
  96. ChenW. WuJ.Y. FanY.Y. LiB.L. YuanH.B. ZhaoX. Purpurin ameliorated neuropathic allodynia and hyperalgesia by modulating neuronal mitochondrial bioenergetics and redox status in type 1 diabetic mice.Eur. J. Pharmacol.202497817674910.1016/j.ejphar.2024.176749 38897444
    [Google Scholar]
  97. GoodwinB. ChiplunkarM. SalernoR. CoombsK. SannohU. ShahV. AverellN. Al-ShebabU. JanoraD. Topical capsaicin for the management of painful diabetic neuropathy: A narrative systematic review.Pain Manag. (Lond.)202313530931610.2217/pmt‑2023‑0006 37435696
    [Google Scholar]
  98. ZhangW. ZhangY. FanJ. FengZ. SongX. Pharmacological activity of capsaicin: Mechanisms and controversies(Review).Mol. Med. Rep.20242933810.3892/mmr.2024.13162 38240083
    [Google Scholar]
  99. LiangW. LanY. ChenC. SongM. XiaoJ. HuangQ. CaoY. HoC.T. LuM. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism.Crit. Rev. Food Sci. Nutr.202363193634365210.1080/10408398.2021.1991883 34657531
    [Google Scholar]
  100. AttalN. BouhassiraD. ColvinL. Advances and challenges in neuropathic pain: A narrative review and future directions.Br. J. Anaesth.20231311799210.1016/j.bja.2023.04.021 37210279
    [Google Scholar]
  101. HassanA.I. Revolutionary approaches to managing neuropathies: A review of innovative therapies.Neurodegener. Dis. Cur. Res.2023311810.53043/NDCR‑3‑004
    [Google Scholar]
  102. PușcașuC. ZanfirescuA. NegreșS. Recent progress in gels for neuropathic pain.Gels20239541710.3390/gels9050417 37233008
    [Google Scholar]
  103. ThorntonT. MillsD. BlissE. Capsaicin: A Potential treatment to improve cerebrovascular function and cognition in obesity and ageing.Nutrients2023156153710.3390/nu15061537 36986266
    [Google Scholar]
  104. Managing pain after stroke: A review of the literature.Available from: http://ochsner-craft.s3.amazonaws.com/education/static/Hanyu-Deutmeyer-Treating-Pain-in-Stroke-Patients-A-Review-Stroke-and-Pain.pdf
  105. de GeusT.J. FrankenG. JoostenE.A. Conventional, high frequency and differential targeted multiplexed spinal cord stimulation in experimental painful diabetic peripheral neuropathy: Pain behavior and role of the central inflammatory balance.Mol. Pain2023191744806923119336810.1177/17448069231193368 37488684
    [Google Scholar]
  106. GrigsbyE. SlangenR. JohanekL. LaRueM. de VosC. MurphyM.ID 215433 the history of spinal cord stimulation to treat painful diabetic peripheral neuropathy.Neuromodulation2023264S6110.1016/j.neurom.2023.04.105
    [Google Scholar]
  107. AmorizzoE. De SanctisF. BaldeschiG.C. Fast-acting sub-perception spinal cord stimulation for a case of painful diabetic polyneuropathy.Anesth. Pain Med.2023132e13490110.5812/aapm‑134901
    [Google Scholar]
  108. AmorizzoE. De SanctisF. BaldeschiG.C. Fast-acting sub-perception spinal cord stimulation for a case of painful diabetic polyneuropathy: A case report.Anesth. Pain Med.2023132 37529140
    [Google Scholar]
  109. ChenJ. CastellanosJ. ReddyR. FurnishT. HalterK. AzaldeR. FrizziK. CalcuttN.ID 212826 investigation of 10khz spinal cord stimulation on small fiber painful diabetic neuropathy (PDN).Neuromodulation2023264S13510.1016/j.neurom.2023.04.236
    [Google Scholar]
  110. AkpovesoO.O.P. UbahE.E. ObasanmiG. Antioxidant phytochemicals as potential therapy for diabetic complications.Antioxidants202312112310.3390/antiox12010123 36670985
    [Google Scholar]
  111. Pérez-ZabalaE. BasterretxeaA. CastroB. AizpuruA. AranconJ.A. MorenoC. ZubizarretaA. LarizgoitiaZ. YsaA. LobatoM. LarrazabalA. New antioxidant therapy for hard-to-heal neuroischaemic diabetic foot ulcers with deep exposure.J. Wound Care202332423824610.12968/jowc.2023.32.4.238 37029973
    [Google Scholar]
  112. RahmanM. IbrahimF.S. AmomZ. AmranA.A The antioxidant mechanism in the prevention of type 2 diabetes and its complications: A narrative review.J. Health Transl. Med.2023210.22452/jummec.sp2023no2.45
    [Google Scholar]
  113. TomahS. ZhangH. Al-BadriM. SalahT. DhaverS. KhaterA. TasabehjiM.W. HamdyO. Long-term effect of intensive lifestyle intervention on cardiometabolic risk factors and microvascular complications in patients with diabetes in real-world clinical practice: A 10-year longitudinal study.BMJ Open Diabetes Res. Care2023113e00317910.1136/bmjdrc‑2022‑003179 37217237
    [Google Scholar]
  114. EndersJ. WrightD.E. Lifestyle and dietary modifications: Relevance in the management of diabetic neuropathy. Diabetic neuropathy. TesfayeS. GibbonsC.H. MalikR.A. VevesA. ChamHumana202310.1007/978‑3‑031‑15613‑7_22
    [Google Scholar]
  115. EndersJ. ElliottD. WrightD.E. Emerging nonpharmacologic interventions to treat diabetic peripheral neuropathy.Antioxid. Redox Signal.20233813-15989100010.1089/ars.2022.0158 36503268
    [Google Scholar]
  116. WyattC.R. The effects of dietary and lifestyle management on diabetic neuropathy.Thesis, Liberty University2023
    [Google Scholar]
  117. D’EgidioF. LombardozziG. Kacem Ben Haj M’BarekH.E. MastroiacovoG. AlfonsettiM. CiminiA. The influence of dietary supplementations on neuropathic pain.Life (Basel)2022128112510.3390/life12081125 36013304
    [Google Scholar]
  118. SmithS. NormahaniP. LaneT. Hohenschurz-SchmidtD. OliverN. DaviesA.H. Prevention and management strategies for diabetic neuropathy.Life (Basel)2022128118510.3390/life12081185 36013364
    [Google Scholar]
  119. SudhanP. SubbiahB. RajagopalanN. SukumaranR. JanakiG. AnanthanB. Effect of yoga therapy on neurological characteristics in diabetic peripheral neuropathy: Neuro health perspective. J. ReAttach Therapy Develop.Diversit.2023610s(2)10711078
    [Google Scholar]
  120. SudhanP SubbiahB SukumaranR JanakiG NageshP KalpanaL. Efficacy of yoga therapy on psychological variables in male persons with diabetic peripheral neuropathy (DPN).Int. J. Life Sci. Pharma Res.2023131L230L244
    [Google Scholar]
  121. Syuhada.; Anggadiredja, K; Kurniati, NF; Akrom. The Potential of Nigella sativa oil on clinical output improvement of diabetic neuropathy.J. Appl. Pharm. Sci.139202391710.7324/JAPS.2023.141927
    [Google Scholar]
  122. SugandhF.N.U. ChandioM. RaveenaF.N.U. KumarL. KarishmaF.N.U. KhuwajaS. MemonU.A. BaiK. KashifM. VarrassiG. KhatriM. KumarS. Advances in the management of diabetes mellitus: A focus on personalized medicine.Cureus2023158e4369710.7759/cureus.43697 37724233
    [Google Scholar]
  123. SimonatoM. BennettJ. BoulisN.M. CastroM.G. FinkD.J. GoinsW.F. GrayS.J. LowensteinP.R. VandenbergheL.H. WilsonT.J. WolfeJ.H. GloriosoJ.C. Progress in gene therapy for neurological disorders.Nat. Rev. Neurol.20139527729110.1038/nrneurol.2013.56 23609618
    [Google Scholar]
  124. ElsabahyM. NazaraliA. FoldvariM. Non-viral nucleic acid delivery: Key challenges and future directions.Curr. Drug Deliv.20118323524410.2174/156720111795256174 21291381
    [Google Scholar]
  125. den HollanderA.I. BlackA. BennettJ. CremersF.P.M. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies.J. Clin. Invest.201012093042305310.1172/JCI42258 20811160
    [Google Scholar]
  126. FarrarG.J. Millington-WardS. ChaddertonN. HumphriesP. KennaP.F. Gene-based therapies for dominantly inherited retinopathies.Gene Ther.201219213714410.1038/gt.2011.172 22089493
    [Google Scholar]
  127. IsnerJ.M. RopperA. HirstK. VEGF gene transfer for diabetic neuropathy.Hum. Gene Ther.2001121215931594 11529248
    [Google Scholar]
  128. SahenkZ. NagarajaH.N. McCrackenB.S. KingW.M. FreimerM.L. CedarbaumJ.M. MendellJ.R. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients.Neurology200565568168910.1212/01.WNL.0000171978.70849.c5 16157899
    [Google Scholar]
  129. AkterS. ChoubeyM. MohibM.M. ArbeeS. SagorM.A.T. MohiuddinM.S. Stem cell therapy in diabetic polyneuropathy: Recent advancements and future directions.Brain Sci.202313225510.3390/brainsci13020255 36831798
    [Google Scholar]
  130. ProcházkaV. GumulecJ. ChmelováJ. KlementP. KlementG.L. JonsztaT. CzernýD. KrajcaJ. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot.Vnitr. Lek.2009553173178 19378841
    [Google Scholar]
  131. CuendeN. RicoL. HerreraC. Concise review: Bone marrow mononuclear cells for the treatment of ischemic syndromes: Medicinal product or cell transplantation?Stem Cells Transl. Med.20121540340810.5966/sctm.2011‑0064 23197819
    [Google Scholar]
  132. Ushio-FukaiM. RehmanJ. Redox and metabolic regulation of stem/progenitor cells and their niche.Antioxid. Redox Signal.201421111587159010.1089/ars.2014.5931 25133592
    [Google Scholar]
  133. WalP. AzizN. PrajapatiH. SoniS. WalA. current landscape of various techniques and methods of gene therapy through CRISPR Cas9 along with its pharmacological and interventional therapies in the treatment of type 2 diabetes mellitus.Curr. Diabetes Rev.2023 37867274
    [Google Scholar]
  134. PittengerM.F. MackayA.M. BeckS.C. JaiswalR.K. DouglasR. MoscaJ.D. MoormanM.A. SimonettiD.W. CraigS. MarshakD.R. Multilineage potential of adult human mesenchymal stem cells.Science1999284541114314710.1126/science.284.5411.143 10102814
    [Google Scholar]
  135. KinnairdT. StabileE. BurnettM.S. ShouM. LeeC.W. BarrS. FuchsS. EpsteinS.E. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.Circulation2004109121543154910.1161/01.CIR.0000124062.31102.57 15023891
    [Google Scholar]
  136. JeongJ.O. HanJ.W. KimJ.M. ChoH.J. ParkC. LeeN. KimD.W. YoonY.S. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy.Circ. Res.2011108111340134710.1161/CIRCRESAHA.110.239848 21493893
    [Google Scholar]
  137. ParkT.S. BhuttoI. ZimmerlinL. HuoJ.S. NagariaP. MillerD. ZambidisE.T. Vascular progenitors from cord blood-derived iPSC possess augmented capacity for regenerating ischemic retinal vasculature.Circulation201412935937210.1161/CIRCULATIONAHA.113.003000 24163065
    [Google Scholar]
  138. OkawaT. KamiyaH. HimenoT. KatoJ. SeinoY. FujiyaA. KondoM. TsunekawaS. NaruseK. HamadaY. OzakiN. ChengZ. KitoT. SuzukiH. ItoS. OisoY. NakamuraJ. IsobeK.I. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice.Cell Transplant.201322101767178310.3727/096368912X657710 23051637
    [Google Scholar]
  139. TimmermansF. PlumJ. YöderM.C. IngramD.A. VandekerckhoveB. CaseJ. Endothelial progenitor cells: Identity defined?J. Cell. Mol. Med.20091318710210.1111/j.1582‑4934.2008.00598.x 19067770
    [Google Scholar]
  140. ShiQ. RafiiS. WuM.H.D. WijelathE.S. YuC. IshidaA. FujitaY. KothariS. MohleR. SauvageL.R. MooreM.A.S. StorbR.F. HammondW.P. Evidence for circulating bone marrow-derived endothelial cells.Blood199892236236710.1182/blood.V92.2.362 9657732
    [Google Scholar]
  141. BasileD.P. YoderM.C. Circulating and tissue resident endothelial progenitor cells.J. Cell. Physiol.201422911016 23794280
    [Google Scholar]
  142. O’NeillT.J.IV WamhoffB.R. OwensG.K. SkalakT.C. Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells.Circ. Res.200597101027103510.1161/01.RES.0000189259.69645.25 16210550
    [Google Scholar]
  143. BelvisiM.G. DubuisE. BirrellM.A. Transient receptor potential A1 channels: Insights into cough and airway inflammatory disease.Chest201114041040104710.1378/chest.10‑3327 21972382
    [Google Scholar]
  144. BaskaranP. KrishnanV. RenJ. ThyagarajanB. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel‐dependent mechanisms.Br. J. Pharmacol.2016173152369238910.1111/bph.13514 27174467
    [Google Scholar]
  145. ChungM.K. CampbellJ. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations.Pharmaceuticals (Basel)2016946610.3390/ph9040066 27809268
    [Google Scholar]
  146. WuN. NishiokaW.K. DereckiN.C. MaherM.P. High-throughput-compatible assays using a genetically-encoded calcium indicator.Sci. Rep.2019911269210.1038/s41598‑019‑49070‑8 31481721
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316518240924071259
Loading
/content/journals/cpb/10.2174/0113892010316518240924071259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test