Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Proteases, a group of hydrolytic enzymes catalyzing the hydrolysis of peptide bonds, play pivotal roles in various physiological processes and have emerged as key contributors to the pathogenesis of diverse diseases. This work provides an insight into the impact of protease activity on different disease contexts, highlighting their involvement in cancer, inflammatory disorders, cardiovascular diseases, infectious diseases, and neurodegenerative conditions. In cancer, proteases facilitate tumor growth, invasion, and metastasis, while in inflammatory diseases, dysregulated protease activity exacerbates tissue damage and inflammation. Cardiovascular diseases involve proteases in extracellular matrix remodeling, affecting arterial structure. In infectious diseases, proteases play crucial roles in pathogen invasion and immune evasion. Neurodegenerative diseases are characterized by protease dysregulation, contributing to protein misfolding and aggregation. As research progresses, understanding the intricate relationships between proteases and diseases becomes essential for developing targeted therapeutic strategies. This review aims to provide a comprehensive glimpse into the diverse impact of protease activities on various diseases, emphasizing their potential as crucial players in the landscape of disease pathology and potential therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010316162240910103659
2024-09-23
2025-12-18
Loading full text...

Full text loading...

References

  1. AbbenanteG. FairlieD. Protease inhibitors in the clinic.Med. Chem.2005117110410.2174/1573406053402569 16789888
    [Google Scholar]
  2. KumarA. GroverS. SharmaJ. BatishV.K. Chymosin and other milk coagulants: Sources and biotechnological interventions.Crit. Rev. Biotechnol.201030424325810.3109/07388551.2010.483459 20524840
    [Google Scholar]
  3. RG. QB. PL. Bacterial alkaline proteases: Molecular approaches and industrial applications.Appl. Microbiol. Biotechnol.2002591153210.1007/s00253‑002‑0975‑y12073127
    [Google Scholar]
  4. OngI.L.H. YangK.L. Recent developments in protease activity assays and sensors.Analyst (Lond.)2017142111867188110.1039/C6AN02647H 28487913
    [Google Scholar]
  5. ZamolodchikovaT.S. TolpygoS.M. SvirshchevskayaE.V. Cathepsin G not only inflammation: The immune protease can regulate normal physiological processes.Front. Immunol.20201141110.3389/fimmu.2020.00411 32194574
    [Google Scholar]
  6. RaoM.B. TanksaleA.M. GhatgeM.S. DeshpandeV.V. Molecular and biotechnological aspects of microbial proteases.Microbiol. Mol. Biol. Rev.199862359763510.1128/MMBR.62.3.597‑635.1998 9729602
    [Google Scholar]
  7. LaskarA. ChatterjeeA. Protease-revisting the types and potential.Online J. Biotechnol. Res.2009115556
    [Google Scholar]
  8. TurkD. TurkB. Targeting proteases: Successes, failures and future prospects.Nat. Rev. Drug Discov.2009810733748 16955069
    [Google Scholar]
  9. RawlingsN.D. BarrettA.J. FinnR. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors.Nucleic Acids Res.201644D1D343D35010.1093/nar/gkv1118 26527717
    [Google Scholar]
  10. Moo-YoungM. Industrial Enzymes. Comprehen. Biotechnol.20193113
    [Google Scholar]
  11. YangY. HongH. ZhangY. CaiW. Molecular imaging of proteases in cancer.Cancer Growth Metastasis200921327
    [Google Scholar]
  12. VerbovšekU. Van NoordenC. J. LahT. T. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Seminars in cancer biologyAcademic PressCambridge, Massachusetts201535718410.1016/j.semcancer.2015.08.010
    [Google Scholar]
  13. RakashS. RanaF. RafiqS. MasoodA. AminS. Role of proteases in cancer: A review.Biotechnol. Mol. Biol. Rev.2012749010110.5897/BMBR11.027
    [Google Scholar]
  14. ZuckerS. CaoJ. ChenW.T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment.Oncogene200019566642665010.1038/sj.onc.1204097 11426650
    [Google Scholar]
  15. VasiljevaO. TurkB. Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion.Biochimie200890238038610.1016/j.biochi.2007.10.004 17991442
    [Google Scholar]
  16. MohamedM.M. SloaneB.F. multifunctional enzymes in cancer.Nat. Rev. Cancer200661076477510.1038/nrc1949 16990854
    [Google Scholar]
  17. TurkB. TurkD. TurkV. Protease signalling: The cutting edge.EMBO J.20123171630164310.1038/emboj.2012.42 22367392
    [Google Scholar]
  18. GochevaV. JoyceJ.A. Cysteine cathepsins and the cutting edge of cancer invasion.Cell Cycle200761606410.4161/cc.6.1.3669 17245112
    [Google Scholar]
  19. JedeszkoC. SloaneB.F. Cysteine cathepsins in human cancer.Biol. Chem.2004385111017102710.1515/BC.2004.132 15576321
    [Google Scholar]
  20. MatarreseP. AscioneB. CiarloL. VonaR. LeonettiC. ScarsellaM. MileoA.M. CatricalàC. PaggiM.G. MalorniW. Cathepsin B inhibition interferes with metastatic potential of human melanoma: An in vitro and in vivo study.Mol. Cancer20109120710.1186/1476‑4598‑9‑207 20684763
    [Google Scholar]
  21. HiraiK. YokoyamaM. AsanoG. TanakaS. Expression of cathepsin B and cystatin C in human colorectal cancer.Hum. Pathol.199930668068610.1016/S0046‑8177(99)90094‑1 10374777
    [Google Scholar]
  22. JoyceJ.A. HanahanD. Multiple roles for cysteine cathepsins in cancer.Cell Cycle20043121516151910.4161/cc.3.12.1289 15539953
    [Google Scholar]
  23. TuC. Ortega-CavaC.F. ChenG. FernandesN.D. Cavallo-MedvedD. SloaneB.F. BandH. Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation.Cancer Res.2009682291479156
    [Google Scholar]
  24. KosJ. Proteases: Role and function in cancer.Int. J. Mol. Sci.2022239463210.3390/ijms23094632 35563022
    [Google Scholar]
  25. SalardaniM. BarcickU. ZelanisA. Proteolytic signaling in cancer.Expert Rev. Proteomics2023201234535510.1080/14789450.2023.2275671 37873978
    [Google Scholar]
  26. ParkK.C. DharmasivamM. RichardsonD.R. The role of extracellular proteases in tumor progression and the development of innovative metal ion chelators that inhibit their activity.Int. J. Mol. Sci.20202118680510.3390/ijms21186805 32948029
    [Google Scholar]
  27. KennedyA.R. TrollW. Protease inhibitors as cancer chemopreventive agents.NetherlandsSpringer Science & Business Media2012
    [Google Scholar]
  28. TrezzaA. CicaloniV. PettiniF. SpigaO. Potential roles of protease inhibitors in anticancer therapy.Cancer-Leading Proteases.Cambridge, MassachusettsAcademic press2020134910.1016/B978‑0‑12‑818168‑3.00002‑4
    [Google Scholar]
  29. YangP. LiZ.Y. LiH.Q. Potential roles of protease inhibitors in cancer progression.Asian Pac. J. Cancer Prev.201616188047805210.7314/APJCP.2015.16.18.8047 26745037
    [Google Scholar]
  30. KoistinenH. KovanenR.M. HollenbergM.D. DufourA. RadiskyE.S. StenmanU.H. BatraJ. ClementsJ. HooperJ.D. DiamandisE. SchillingO. RannikkoA. MirttiT. The roles of proteases in prostate cancer.IUBMB Life202375649351310.1002/iub.2700 36598826
    [Google Scholar]
  31. ParkerB.S. CioccaD.R. BidwellB.N. GagoF.E. FanelliM.A. GeorgeJ. SlavinJ.L. MöllerA. SteelR. PouliotN. EckhardtB.L. HendersonM.A. AndersonR.L. Primary tumour expression of the cysteine cathepsin inhibitor Stefin A inhibits distant metastasis in breast cancer.J. Pathol.2008214333734610.1002/path.2265 17985332
    [Google Scholar]
  32. SinhaA.A. QuastB.J. WilsonM.J. FernandesE.T. ReddyP.K. EwingS.L. SloaneB.F. GleasonD.F. Ratio of cathepsin B to stefin A identifies heterogeneity within Gleason histologic scores for human prostate cancer.Prostate200148427428410.1002/pros.1107 11536307
    [Google Scholar]
  33. ButinarM. PrebandaM.T. RajkovićJ. JeričB. StokaV. PetersC. ReinheckelT. KrügerA. TurkV. TurkB. VasiljevaO. Stefin B deficiency reduces tumor growth via sensitization of tumor cells to oxidative stress in a breast cancer model.Oncogene201433263392340010.1038/onc.2013.314 23955077
    [Google Scholar]
  34. McDonaldS.L. EdingtonH.D. KirkwoodJ.M. BeckerD. Expression analysis of genes identified by molecular profiling of VGP melanomas and MGP melanoma-positive lymph nodes.Cancer Biol. Ther.20043111012010.4161/cbt.3.1.662 14726712
    [Google Scholar]
  35. ShiraishiT. MoriM. TanakaS. SugimachiK. AkiyoshiT. Identification of cystatin B in human esophageal carcinoma, using differential displays in which the gene expression is related to lymph-node metastasis.Int. J. Cancer199879217517810.1002/(SICI)1097‑0215(19980417)79:2<175:AID‑IJC13>3.0.CO;2‑9 9583733
    [Google Scholar]
  36. MitchellB.S. The proteasome--an emerging therapeutic target in cancer.N. Engl. J. Med.2003348262597259810.1056/NEJMp030092 12826633
    [Google Scholar]
  37. AnastasovA. VihinenP. NikkolaJ. PyrhonenS. VlaykovaT. Matrix metalloproteinses in development and progression of skin malignant melanoma.Medicine (Baltimore)201111
    [Google Scholar]
  38. DviriM. LeronE. DreiherJ. MazorM. Shaco-LevyR. Increased matrix metalloproteinases-1,-9 in the uterosacral ligaments and vaginal tissue from women with pelvic organ prolapse.Eur. J. Obstet. Gynecol. Reprod. Biol.2011156111311710.1016/j.ejogrb.2010.12.043 21277671
    [Google Scholar]
  39. FearG. KomarnytskyS. RaskinI. Protease inhibitors and their peptidomimetic derivatives as potential drugs.Pharmacol. Ther.2007113235436810.1016/j.pharmthera.2006.09.001 17098288
    [Google Scholar]
  40. FolguerasA.R. PendásA.M. SánchezL.M. López-OtínC. Matrix metalloproteinases in cancer: From new functions to improved inhibition strategies.Int. J. Dev. Biol.2004485-641142410.1387/ijdb.041811af 15349816
    [Google Scholar]
  41. ρlvarez-Díaz, S.; Valle, N.; García, J.M.; Peña, C.; Freije, J.M.P.; Quesada, V.; Astudillo, A.; Bonilla, F.; López-Otín, C.; Muñoz, A. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells.J. Clin. Invest.200911982343235810.1172/JCI37205 19662683
    [Google Scholar]
  42. YonedaK. IidaH. EndoH. HosonoK. AkiyamaT. TakahashiH. InamoriM. AbeY. YonedaM. FujitaK. KatoS. NozakiY. IchikawaY. UozakiH. FukayamaM. ShimamuraT. KodamaT. AburataniH. MiyazawaC. IshiiK. HosomiN. SagaraM. TakahashiM. IkeH. SaitoH. KusakabeA. NakajimaA. Identification of Cystatin SN as a novel tumor marker for colorectal cancer.Int. J. Oncol.20093513340 19513549
    [Google Scholar]
  43. LiangY. MaT. ThakurA. YuH. GaoL. ShiP. LiX. RenH. JiaL. ZhangS. LiZ. ChenM. Differentially expressed glycosylated patterns of α-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer.Glycobiology201525333134010.1093/glycob/cwu115 25347993
    [Google Scholar]
  44. Pérez-HolandaS. BlancoI. MenéndezM. RodrigoL. Serum concentration of alpha-1 antitrypsin is significantly higher in colorectal cancer patients than in healthy controls.BMC Cancer201414135510.1186/1471‑2407‑14‑355 24886427
    [Google Scholar]
  45. christensson, A.; Björk, T.; Nilsson, O.; Dahlén, U.; Matikainen, M.T.; Cockett, A.T.K.; Abrahamsson, P.A.; Lilja, H. Serum prostate specific antigen complexed to α 1-antichymotrypsin as an indicator of prostate cancer.J. Urol.1993150110010510.1016/S0022‑5347(17)35408‑3 7685416
    [Google Scholar]
  46. WangN.Q. ZouJ. DiaoY. [Plasmid-mediated expression of kallistatin and its biological activity in lung cancer related cells].Yao Xue Xue Bao2013483359365 23724648
    [Google Scholar]
  47. HuangZ. LiH. HuangQ. ChenD. HanJ. WangL. PanC. ChenW. HouseM.G. NephewK.P. GuoZ. SERPINB2 down‐regulation contributes to chemoresistance in head and neck cancer.Mol. Carcinog.2014531077778610.1002/mc.22033 23661500
    [Google Scholar]
  48. Collie-DuguidE.S.R. SweeneyK. StewartK.N. MillerI.D. SmythE. HeysS.D. SerpinB3, a new prognostic tool in breast cancer patients treated with neoadjuvant chemotherapy.Breast Cancer Res. Treat.2012132380781810.1007/s10549‑011‑1625‑9 21695460
    [Google Scholar]
  49. PrasE. WillemseP.H.B. CanrinusA.A. de BruijnH.W.A. SluiterW.J. ten HoorK.A. AaldersJ.G. SzaboB.G. de VriesE.G.E. Serum squamous cell carcinoma antigen and CYFRA 21-1 in cervical cancer treatment.Int. J. Radiat. Oncol. Biol. Phys.2002521233210.1016/S0360‑3016(01)01805‑3 11777619
    [Google Scholar]
  50. OzakiK. NagataM. SuzukiM. FujiwaraT. MiyoshiY. IshikawaO. OhigashiH. ImaokaS. TakahashiE. NakamuraY. Isolation and characterization of a novel human pancreas-specific gene,pancpin, that is down-regulated in pancreatic cancer cells.Genes Chromosomes Cancer199822317918510.1002/(SICI)1098‑2264(199807)22:3<179:AID‑GCC3>3.0.CO;2‑T 9624529
    [Google Scholar]
  51. EatemadiA. AiyelabeganH.T. NegahdariB. MazlomiM.A. DaraeeH. DaraeeN. EatemadiR. SadroddinyE. Role of protease and protease inhibitors in cancer pathogenesis and treatment.Biomed. Pharmacother.20178622123110.1016/j.biopha.2016.12.021 28006747
    [Google Scholar]
  52. SananesA. CohenI. AllonI. Ben-DavidO. Abu SharebR. YegodayevK.M. StepenskyD. ElkabetsM. PapoN. Serine protease inhibitors decrease metastasis in prostate, breast, and ovarian cancers.Mol. Oncol.202317112337235510.1002/1878‑0261.13513 37609678
    [Google Scholar]
  53. ZhangX. LiuS.S. MaJ. QuW. Secretory leukocyte protease inhibitor (SLPI) in cancer pathophysiology: Mechanisms of action and clinical implications.Pathol. Res. Pract.202324815463310.1016/j.prp.2023.154633 37356220
    [Google Scholar]
  54. HookV.Y.H. Protease pathways in peptide neurotransmission and neurodegenerative diseases.Cell. Mol. Neurobiol.2006264-644746710.1007/s10571‑006‑9047‑7 16724274
    [Google Scholar]
  55. SvarcbahsR. JulkuU. KilpeläinenT. KyyröM. JänttiM. MyöhänenT.T. New tricks of prolyl oligopeptidase inhibitors – A common drug therapy for several neurodegenerative diseases.Biochem. Pharmacol.201916111312010.1016/j.bcp.2019.01.013 30660495
    [Google Scholar]
  56. SimoninY. CharronY. SondereggerP. VassalliJ.D. KatoA.C. An inhibitor of serine proteases, neuroserpin, acts as a neuroprotective agent in a mouse model of neurodegenerative disease.J. Neurosci.20062641106141061910.1523/JNEUROSCI.3582‑06.2006 17035547
    [Google Scholar]
  57. BeherD. GrahamS.L. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease.Expert Opin. Investig. Drugs200514111385140910.1517/13543784.14.11.1385 16255678
    [Google Scholar]
  58. LeungD. AbbenanteG. FairlieD.P. Protease inhibitors: Current status and future prospects.J. Med. Chem.200043330534110.1021/jm990412m 10669559
    [Google Scholar]
  59. GhoshA.K. BrindisiM. TangJ. Developing β‐secretase inhibitors for treatment of Alzheimer’s disease.J. Neurochem.2012120s1Suppl. 1718310.1111/j.1471‑4159.2011.07476.x 22122681
    [Google Scholar]
  60. HookG HookVYH KindyM Cysteine protease inhibitors reduce brain β-amyloid and β-secretase activity in vivo and are potential Alzheimer’s disease therapeutics.Biol Chem2007388997998310.1515/BC.2007.11717696783
    [Google Scholar]
  61. CummingsJ. LeeG. NahedP. KambarM.E.Z.N. ZhongK. FonsecaJ. TaghvaK. Alzheimer’s disease drug development pipeline: 2022.Alzheimers Dement. (N. Y.)202281e1229510.1002/trc2.12295 35516416
    [Google Scholar]
  62. YangM.H. HoT.C. ChangC.C. SuY.S. YuanC.H. ChuangK.P. TyanY.C. Utilizing proteomic approaches to uncover the neuroprotective effects of ACE inhibitors: Implications for Alzheimer’s Disease Treatment.Molecules20232816593810.3390/molecules28165938 37630190
    [Google Scholar]
  63. Plun-FavreauH. KlupschK. MoisoiN. GandhiS. KjaerS. FrithD. HarveyK. DeasE. HarveyR.J. McDonaldN. WoodN.W. MartinsL.M. DownwardJ. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1.Nat. Cell Biol.20079111243125210.1038/ncb1644 17906618
    [Google Scholar]
  64. AlmonteA.G. SweattJ.D. Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synaptic function and behavior.Brain Res.2011140710712210.1016/j.brainres.2011.06.042 21782155
    [Google Scholar]
  65. HurleyM.J. DurrenbergerP.F. GentlemanS.M. WallsA.F. DexterD.T. Altered expression of brain proteinase-activated receptor-2, trypsin-2 and serpin proteinase inhibitors in Parkinson’s disease.J. Mol. Neurosci.2015571486210.1007/s12031‑015‑0576‑8 25982926
    [Google Scholar]
  66. MansourH.M. MohamedA.F. El-KhatibA.S. KhattabM.M. Kinases control of regulated cell death revealing druggable targets for Parkinson’s disease.Ageing Res. Rev.20238510184110.1016/j.arr.2022.101841 36608709
    [Google Scholar]
  67. KulkarniA. PreetiK. TryphenaK.P. SrivastavaS. SinghS.B. KhatriD.K. Proteostasis in Parkinson’s disease: Recent development and possible implication in diagnosis and therapeutics.Ageing Res. Rev.20238410181610.1016/j.arr.2022.101816 36481490
    [Google Scholar]
  68. AgbowuroA.A. HustonW.M. GambleA.B. TyndallJ.D.A. Proteases and protease inhibitors in infectious diseases.Med. Res. Rev.20183841295133110.1002/med.21475 29149530
    [Google Scholar]
  69. BraunE. SauterD. Furin‐mediated protein processing in infectious diseases and cancer.Clin. Transl. Immunology201988e107310.1002/cti2.1073 31406574
    [Google Scholar]
  70. LvZ. ChuY. WangY. HIV protease inhibitors: A review of molecular selectivity and toxicity.HIV AIDS (Auckl.)20157104195
    [Google Scholar]
  71. VoshavarC. Protease inhibitors for the treatment of HIV/AIDS: Recent advances and future challenges.Curr. Top. Med. Chem.201919181571159810.2174/1568026619666190619115243 31237209
    [Google Scholar]
  72. MótyánJ.A. MahdiM. HoffkaG. TőzsérJ. Potential resistance of SARS-CoV-2 main protease (Mpro) against protease inhibitors: Lessons learned from HIV-1 protease.Int. J. Mol. Sci.2022237350710.3390/ijms23073507 35408866
    [Google Scholar]
  73. CowdellI. BeckK. PortwoodC. SextonH. KumarendranM. BrandonZ. KirtleyS. HemelaarJ. Adverse perinatal outcomes associated with protease inhibitor-based antiretroviral therapy in pregnant women living with HIV: A systematic review and meta-analysis.EClinicalMedicine20224610136810.1016/j.eclinm.2022.101368 35521067
    [Google Scholar]
  74. TomlinsonS. MalmstromR. WatowichS. New approaches to structure-based discovery of dengue protease inhibitors.Infect. Disord. Drug Targets20099332734310.2174/1871526510909030327 19519486
    [Google Scholar]
  75. TomlinsonS.M. MalmstromR.D. RussoA. MuellerN. PangY.P. WatowichS.J. Structure-based discovery of dengue virus protease inhibitors.Antiviral Res.200982311011410.1016/j.antiviral.2009.02.190 19428601
    [Google Scholar]
  76. WuH. BockS. SnitkoM. BergerT. WeidnerT. HollowayS. KanitzM. DiederichW.E. SteuberH. WalterC. HofmannD. WeißbrichB. SpannausR. AcostaE.G. BartenschlagerR. EngelsB. SchirmeisterT. BodemJ. Novel dengue virus NS2B/NS3 protease inhibitors.Antimicrob. Agents Chemother.20155921100110910.1128/AAC.03543‑14 25487800
    [Google Scholar]
  77. NitscheC. HollowayS. SchirmeisterT. KleinC.D. Biochemistry and medicinal chemistry of the dengue virus protease.Chem. Rev.201411422113481138110.1021/cr500233q 25268322
    [Google Scholar]
  78. LinK.H. AliA. RusereL. SoumanaD.I. Kurt YilmazN. SchifferC.A. Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side.J. Virol.20179110e00045e1710.1128/JVI.00045‑17 28298600
    [Google Scholar]
  79. KühlN. GrafD. BockJ. BehnamM.A.M. LeutholdM.M. KleinC.D. A new class of dengue and West Nile virus protease inhibitors with submicromolar activity in reporter gene DENV-2 protease and viral replication assays.J. Med. Chem.202063158179819710.1021/acs.jmedchem.0c00413 32605372
    [Google Scholar]
  80. SamratS.K. XuJ. LiZ. ZhouJ. LiH. Antiviral agents against flavivirus protease: Prospect and future direction.Pathogens202211329310.3390/pathogens11030293 35335617
    [Google Scholar]
  81. LeeM.F. WuY.S. PohC.L. Molecular Mechanisms of Antiviral Agents against Dengue Virus.Viruses202315370510.3390/v15030705 36992414
    [Google Scholar]
  82. RosenthalP.J. Cysteine proteases of malaria parasites.Int. J. Parasitol.20043413-141489149910.1016/j.ijpara.2004.10.003 15582526
    [Google Scholar]
  83. ShahF. MukherjeeP. DesaiP. AveryM. Computational approaches for the discovery of cysteine protease inhibitors against malaria and SARS.Curr. Computeraided Drug Des.20106112310.2174/157340910790980142 20370692
    [Google Scholar]
  84. AndrewsK.T. FairlieD.P. MadalaP.K. RayJ. WyattD.M. HiltonP.M. MelvilleL.A. BeattieL. GardinerD.L. ReidR.C. StoermerM.J. Skinner-AdamsT. BerryC. McCarthyJ.S. Potencies of human immunodeficiency virus protease inhibitors in vitro against Plasmodium falciparum and in vivo against murine malaria.Antimicrob. Agents Chemother.200650263964810.1128/AAC.50.2.639‑648.2006 16436721
    [Google Scholar]
  85. SharmaA. EapenA. SubbaraoS.K. Parasite killing in Plasmodium vivax malaria by nitric oxide: Implication of aspartic protease inhibition.J. Biochem.2004136332933410.1093/jb/mvh128 15598889
    [Google Scholar]
  86. LeeB.J. SinghA. ChiangP. KempS.J. GoldmanE.A. WeinhouseM.I. VlasukG.P. RosenthalP.J. Antimalarial activities of novel synthetic cysteine protease inhibitors.Antimicrob. Agents Chemother.200347123810381410.1128/AAC.47.12.3810‑3814.2003 14638488
    [Google Scholar]
  87. SojkaD. ŠnebergerováP. RobbertseL. Protease inhibition an established strategy to combat infectious diseases.Int. J. Mol. Sci.20212211576210.3390/ijms22115762 34071206
    [Google Scholar]
  88. SharmaPP KumarS KaushikK SinghA SinghIK GrishinaM PandeyKC SinghP PotemkinV Poonam SinghG RathiB In silico validation of novel inhibitors of malarial aspartyl protease, plasmepsin V and antimalarial efficacy predictionJ Biomol Struct Dyn202240188352836410.1080/07391102.2021.191185533870856
    [Google Scholar]
  89. LuanB. HuynhT. ChengX. LanG. WangH.R. Targeting proteases for treating COVID-19.J. Proteome Res.202019114316432610.1021/acs.jproteome.0c00430 33090793
    [Google Scholar]
  90. GioiaM. CiaccioC. CalligariP. De SimoneG. SbardellaD. TundoG. FasciglioneG.F. Di MasiA. Di PierroD. BocediA. AscenziP. ColettaM. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches.Biochem. Pharmacol.202018211422510.1016/j.bcp.2020.114225 32956643
    [Google Scholar]
  91. HuffS. KummethaI.R. TiwariS.K. HuanteM.B. ClarkA.E. WangS. BrayW. SmithD. CarlinA.F. EndsleyM. RanaT.M. Discovery and mechanism of SARS-CoV-2 main protease inhibitors.J. Med. Chem.20226542866287910.1021/acs.jmedchem.1c00566 34570513
    [Google Scholar]
  92. HoffmannM. Hofmann-WinklerH. SmithJ.C. KrügerN. AroraP. SørensenL.K. SøgaardO.S. HasselstrømJ.B. WinklerM. HempelT. RaichL. OlssonS. DanovO. JonigkD. YamazoeT. YamatsutaK. MizunoH. LudwigS. NoéF. KjolbyM. BraunA. SheltzerJ.M. PöhlmannS. Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity.EBioMedicine20216510325510.1016/j.ebiom.2021.103255 33676899
    [Google Scholar]
  93. RutW. LvZ. ZmudzinskiM. PatchettS. NayakD. SnipasS.J. OlsenS.K. Activity profiling and structures of inhibitor-bound SARS-CoV-2-PLpro protease provides a framework for anti-COVID-19 drug design.BioRxiv202010.1101/2020.04.29.068890
    [Google Scholar]
  94. AminS.A. BanerjeeS. GhoshK. GayenS. JhaT. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors.Bioorg. Med. Chem.20212911586010.1016/j.bmc.2020.115860 33191083
    [Google Scholar]
  95. De LucaV. AngeliA. NocentiniA. GratteriP. PratesiS. TaniniD. CarginaleV. CapperucciA. SupuranC.T. CapassoC. Leveraging SARS-CoV-2 Main Protease (Mpro) for COVID-19 Mitigation with Selenium-Based Inhibitors.Int. J. Mol. Sci.202425297110.3390/ijms25020971 38256046
    [Google Scholar]
  96. RyomL. LundgrenJ.D. El-SadrW. ReissP. KirkO. LawM. PhillipsA. WeberR. FontasE. d’Arminio MonforteA. De WitS. DabisF. HatlebergC.I. SabinC. MocroftA. Cardiovascular disease and use of contemporary protease inhibitors: The D:A:D international prospective multicohort study.Lancet HIV201856e291e30010.1016/S2352‑3018(18)30043‑2 29731407
    [Google Scholar]
  97. LundgrenJ. MocroftA. RyomL. Contemporary protease inhibitors and cardiovascular risk.Curr. Opin. Infect. Dis.201831181310.1097/QCO.0000000000000425 29232276
    [Google Scholar]
  98. AgewallS. Matrix metalloproteinases and cardiovascular disease.Eur. Heart J.200627212112210.1093/eurheartj/ehi639 16272213
    [Google Scholar]
  99. HuaY. NairS. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications.Biochim. Biophys. Acta Mol. Basis Dis.20151852219520810.1016/j.bbadis.2014.04.032 24815358
    [Google Scholar]
  100. LiuC.L. GuoJ. ZhangX. SukhovaG.K. LibbyP. ShiG.P. Cysteine protease cathepsins in cardiovascular disease: From basic research to clinical trials.Nat. Rev. Cardiol.201815635137010.1038/s41569‑018‑0002‑3 29679024
    [Google Scholar]
  101. PejlerG. RönnbergE. WaernI. WernerssonS. Mast cell proteases: Multifaceted regulators of inflammatory disease.Blood2010115244981499010.1182/blood‑2010‑01‑257287 20233968
    [Google Scholar]
  102. MariauleV. KriaaA. SoussouS. RhimiS. BoudayaH. HernandezJ. MaguinE. LesnerA. RhimiM. Digestive inflammation: Role of proteolytic dysregulation.Int. J. Mol. Sci.2021226281710.3390/ijms22062817 33802197
    [Google Scholar]
  103. MeijerM.J.W. Mieremet-OomsM.A.C. van der ZonA.M. van DuijnW. van HogezandR.A. SierC.F.M. HommesD.W. LamersC.B.H.W. VerspagetH.W. Increased mucosal matrix metalloproteinase-1, -2, -3 and -9 activity in patients with inflammatory bowel disease and the relation with Crohn’s disease phenotype.Dig. Liver Dis.200739873373910.1016/j.dld.2007.05.010 17602907
    [Google Scholar]
  104. JørgensenI. KosJ. KrašovecM. TroelsenL. KlarlundM. JensenT.W. HansenM.S. JacobsenS. Serum cysteine proteases and their inhibitors in rheumatoid arthritis: Relation to disease activity and radiographic progression.Clin. Rheumatol.201130563363810.1007/s10067‑010‑1585‑1 20924627
    [Google Scholar]
  105. BianY. XiangZ. WangY. RenQ. ChenG. XiangB. WangJ. ZhangC. PeiS. GuoS. XiaoL. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis.Front. Pharmacol.202314128545510.3389/fphar.2023.1285455 38035026
    [Google Scholar]
  106. Denadai-SouzaA. BonnartC. TapiasN.S. MarcellinM. GilmoreB. AlricL. BonnetD. Burlet-SchiltzO. HollenbergM.D. VergnolleN. DeraisonC. Functional proteomic profiling of secreted serine proteases in health and inflammatory bowel disease.Sci. Rep.201881783410.1038/s41598‑018‑26282‑y 29777136
    [Google Scholar]
  107. DudzińskaE. StracheckaA. Gil-KulikP. KockiJ. BoguckiJ. ShemedyukN. GryzinskaM. Influence of the treatment used in inflammatory bowel disease on the protease activities.Int. J. Gen. Med.2020131633164210.2147/IJGM.S267036 33380821
    [Google Scholar]
  108. JablaouiA. KriaaA. MkaouarH. AkermiN. SoussouS. WysockaM. WołoszynD. AmouriA. GargouriA. MaguinE. LesnerA. RhimiM. Fecal serine protease profiling in inflammatory bowel diseases.Front. Cell. Infect. Microbiol.2020102110.3389/fcimb.2020.00021 32117798
    [Google Scholar]
  109. HouJ.J. DingL. YangT. YangY.F. JinY.P. ZhangX.P. MaA.H. QinY.H. The proteolytic activity in inflammatory bowel disease: Insight from gut microbiota.Microb. Pathog.202418810656010.1016/j.micpath.2024.106560 38272327
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010316162240910103659
Loading
/content/journals/cpb/10.2174/0113892010316162240910103659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test