Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Type 2 diabetes mellitus is a serious metabolic disease having a high growth rate and becoming a global threat. An unhealthy lifestyle, food intake, and genetic susceptibility are the major factors responsible for this metabolic disorder. This disease results in hyperlipidemia, hyperglycemia, glucose intolerance, restricted insulin synthesis, and insulin resistance. Despite a variety of treatments currently available, cases of diabetes and resulting complications are on the rise. One promising approach to diabetes focuses on gut microflora and their associated metabolites. Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology. This study explores the dysbiosis in the human gut microflora in Type 2 Diabetes Mellitus and how the gut microbiota influences metabolites related to T2DM. It also sheds light on early identification and targeted intervention for this. Understanding these mechanisms could potentially lead to more effective strategies for managing and preventing T2DM. The findings of our literature study are that gut microbiota can serve as biomarkers for early disease detection. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to emphasize the improvement of T2DM progression.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010318580240910061534
2024-09-25
2025-12-18
Loading full text...

Full text loading...

References

  1. KandpalM. IndariO. BaralB. JakhmolaS. TiwariD. BhandariV. PandeyR.K. BalaK. SonawaneA. JhaH.C. Dysbiosis of gut microbiota from the perspective of the gut–brain axis: Role in the provocation of neurological disorders.Metabolites20221211106410.3390/metabo12111064 36355147
    [Google Scholar]
  2. PrakashS. KumarA. Mucormycosis threats: A systemic review.J. Basic Microbiol.202363211912710.1002/jobm.202200334 36333107
    [Google Scholar]
  3. KumariN. SinghS. KumariV. KumarS. KumarV. KumarA. Ouabain potentiates the antimicrobial activity of aminoglycosides against Staphylococcus aureus.BMC Complement. Altern. Med.201919111910.1186/s12906‑019‑2532‑6 31170971
    [Google Scholar]
  4. KumarS. KumarA. KaushalM. KumarP. MukhopadhyayK. KumarA. Fungal-derived xenobiotic exhibits antibacterial and antibiofilm activity against <i>Staphylococcus aureus </i>.Drug Discov. Ther.201812421422310.5582/ddt.2018.01042 30224594
    [Google Scholar]
  5. GhoshS. PramanikS. Structural diversity, functional aspects and future therapeutic applications of human gut microbiome.Arch. Microbiol.202120395281530810.1007/s00203‑021‑02516‑y 34405262
    [Google Scholar]
  6. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202419227529310.1007/s11739‑023‑03374‑w 37505311
    [Google Scholar]
  7. PiccioniA. CovinoM. CandelliM. OjettiV. CapacciA. GasbarriniA. FranceschiF. MerraG. How do diet patterns, single foods, prebiotics and probiotics impact gut microbiota?Microbiol. Res. (Pavia)202314139040810.3390/microbiolres14010030
    [Google Scholar]
  8. ZhengD. LiwinskiT. ElinavE. Interaction between microbiota and immunity in health and disease.Cell Res.202030649250610.1038/s41422‑020‑0332‑7 32433595
    [Google Scholar]
  9. CooneyO.D. NagareddyP.R. MurphyA.J. LeeM.K.S. Healthy gut, healthy bones: Targeting the gut microbiome to promote bone health.Front. Endocrinol. (Lausanne)20211162046610.3389/fendo.2020.620466 33679604
    [Google Scholar]
  10. SilvaY.P. BernardiA. FrozzaR.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication.Front. Endocrinol. (Lausanne)2020112510.3389/fendo.2020.00025 32082260
    [Google Scholar]
  11. HasanN. YangH. Factors affecting the composition of the gut microbiota, and its modulation.PeerJ20197e750210.7717/peerj.7502 31440436
    [Google Scholar]
  12. SurguchovA. Caveolin: A new link between diabetes and AD.Cell. Mol. Neurobiol.20204071059106610.1007/s10571‑020‑00796‑4 31974905
    [Google Scholar]
  13. AbdullahA. BiswasP. SahabuddinM. MubasharahA. KhanD.A. HossainA. RoyT. RafiN.M.R. DeyD. HasanM.N. BibiS. MoustafaM. ShatiA. HassanH. GargR. Molecular dynamics simulation and pharmacoinformatic integrated analysis of bioactive phytochemicals from azadirachta indica (neem) to treat diabetes mellitus.J. Chem.20232023111910.1155/2023/4170703
    [Google Scholar]
  14. KhanM. PatujoJ. MushtaqI. IshtiaqA. TahirM.N. BibiS. KhanM.S. ullah, N.; Mustafa, G.; Mirza, B.; Badshah, A.; Murtaza, I. Anti-diabetic potential, crystal structure, molecular docking, DFT, and optical-electrochemical studies of new dimethyl and diethyl carbamoyl-N, N′-disubstituted based thioureas.J. Mol. Struct.2022125313220710.1016/j.molstruc.2021.132207
    [Google Scholar]
  15. SuttithumsatidW. ShahM.A. BibiS. PanichayupakaranantP. α-Glucosidase inhibitory activity of cannabidiol, tetrahydrocannabinol and standardized cannabinoid extracts from Cannabis sativa.Curr. Res. Food Sci.202251091109710.1016/j.crfs.2022.07.002 35856057
    [Google Scholar]
  16. BibiS. HasanM.M. HossainM.S. KhanM.S. YousafiQ. IslamF. ChopraH. KamalM.A. Computer-aided drug design-based system pharmacology applications for the treatment of diabetes mellitus.Computational Approaches in Drug Discovery, Development and Systems Pharmacology.AmsterdamElsevier202325528010.1016/B978‑0‑323‑99137‑7.00002‑2
    [Google Scholar]
  17. YeJ. WuZ. ZhaoY. ZhangS. LiuW. SuY. Role of gut microbiota in the pathogenesis and treatment of diabetes mullites: Advanced research-based review.Front. Microbiol.202213102989010.3389/fmicb.2022.1029890 36338058
    [Google Scholar]
  18. RoepB.O. ThomaidouS. van TienhovenR. ZaldumbideA. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?).Nat. Rev. Endocrinol.202117315016110.1038/s41574‑020‑00443‑4 33293704
    [Google Scholar]
  19. GuoX. DaiS. LouJ. MaX. HuX. TuL. CuiJ. LuH. JiangT. XuJ. Distribution characteristics of oral microbiota and its relationship with intestinal microbiota in patients with type 2 diabetes mellitus.Front. Endocrinol. (Lausanne)202314111920110.3389/fendo.2023.1119201 37025407
    [Google Scholar]
  20. LiQ. ChangY. ZhangK. ChenH. TaoS. ZhangZ. Implication of the gut microbiome composition of type 2 diabetic patients from northern China.Sci. Rep.2020101545010.1038/s41598‑020‑62224‑3 32214153
    [Google Scholar]
  21. SaeediP PetersohnI SalpeaP MalandaB KarurangaS UnwinN ColagiuriS GuariguataL MotalaAA OgurtsovaK ShawJE BrightD WilliamsR Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res Clin Pract201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  22. HrncirT. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options.Microorganisms2022103578
    [Google Scholar]
  23. LiuL. ZhangJ. ChengY. ZhuM. XiaoZ. RuanG. WeiY. Gut microbiota: A new target for T2DM prevention and treatment.Front. Endocrinol. (Lausanne)20221395821810.3389/fendo.2022.958218 36034447
    [Google Scholar]
  24. HrncirovaL. HudcovicT. SukovaE. MachovaV. TrckovaE. KrejsekJ. HrncirT. Human gut microbes are susceptible to antimicrobial food additives in vitro.Folia Microbiol. (Praha)201964449750810.1007/s12223‑018‑00674‑z 30656592
    [Google Scholar]
  25. QiY. WuH. YangZ. ZhouY. JinL. YangM. WangF. New insights into the role of oral microbiota dysbiosis in the pathogenesis of inflammatory bowel disease.Dig. Dis. Sci.2022671425510.1007/s10620‑021‑06837‑2 33527328
    [Google Scholar]
  26. ChoY.D. KimK.H. LeeY.M. KuY. SeolY.J. Oral microbiome and host health: Review on current advances in genome-wide analysis.Appl. Sci. (Basel)2021119405010.3390/app11094050
    [Google Scholar]
  27. QueY. CaoM. HeJ. ZhangQ. ChenQ. YanC. LinA. YangL. WuZ. ZhuD. ChenF. ChenZ. XiaoC. HouK. ZhangB. Gut bacterial characteristics of patients with type 2 diabetes mellitus and the application potential.Front. Immunol.20211272220610.3389/fimmu.2021.722206 34484230
    [Google Scholar]
  28. CrudeleL. GadaletaR.M. CarielloM. MoschettaA. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes.EBioMedicine20239710482110.1016/j.ebiom.2023.104821 37804567
    [Google Scholar]
  29. QinQ. YanS. YangY. ChenJ. LiT. GaoX. YanH. WangY. WangJ. WangS. DingS. A metagenome-wide association study of the gut microbiome and metabolic syndrome.Front. Microbiol.20211268272110.3389/fmicb.2021.682721 34335505
    [Google Scholar]
  30. ZhangL. ChuJ. HaoW. ZhangJ. LiH. YangC. YangJ. ChenX. WangH. Gut microbiota and type 2 diabetes mellitus: Association, mechanism, and translational applications.Mediators Inflamm.20212021111210.1155/2021/5110276 34447287
    [Google Scholar]
  31. SunK. GaoY. WuH. HuangX. The causal relationship between gut microbiota and type 2 diabetes: A two-sample Mendelian randomized study.Front. Public Health202311125505910.3389/fpubh.2023.1255059 37808975
    [Google Scholar]
  32. KurniyatiK. LiC. Genetic Manipulations of Oral Spirochete Treponema denticola.Methods Mol. Biol.202122101523
    [Google Scholar]
  33. PengX. ChengL. YouY. TangC. RenB. LiY. XuX. ZhouX. Oral microbiota in human systematic diseases.Int. J. Oral Sci.20221411410.1038/s41368‑022‑00163‑7 35236828
    [Google Scholar]
  34. CatanzaroJ.R. StraussJ.D. BieleckaA. PortoA.F. LoboF.M. UrbanA. SchofieldW.B. PalmN.W. IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM.Sci. Rep.2019911357410.1038/s41598‑019‑49923‑2 31537840
    [Google Scholar]
  35. CraciunC.I. NeagM.A. CatineanA. MitreA.O. RusuA. BalaC. RomanG. BuzoianuA.D. MunteanD.M. CraciunA.E. The relationships between gut microbiota and diabetes mellitus, and treatments for diabetes mellitus.Biomedicines202210230810.3390/biomedicines10020308 35203519
    [Google Scholar]
  36. WuH. TremaroliV. SchmidtC. LundqvistA. OlssonL.M. KrämerM. GummessonA. PerkinsR. BergströmG. BäckhedF. The gut microbiota in prediabetes and diabetes: A population-based cross-sectional study.Cell Metab.2020323379390.e310.1016/j.cmet.2020.06.011 32652044
    [Google Scholar]
  37. KohA. MolinaroA. StåhlmanM. KhanM.T. SchmidtC. Mannerås-HolmL. WuH. CarrerasA. JeongH. OlofssonL.E. BerghP.O. GerdesV. HartstraA. de BrauwM. PerkinsR. NieuwdorpM. BergströmG. BäckhedF. Microbially produced imidazole propionate impairs insulin signaling through mTORC1.Cell20181754947961.e1710.1016/j.cell.2018.09.055 30401435
    [Google Scholar]
  38. Maldonado-ContrerasA. NoelS.E. WardD.V. VelezM. ManganoK.M. Associations between diet, the gut microbiome, and short-chain fatty acid production among older caribbean latino adults.J. Acad. Nutr. Diet.20201201220472060.e610.1016/j.jand.2020.04.018 32798072
    [Google Scholar]
  39. Palmnäs-BédardM.S.A. CostabileG. VetraniC. ÅbergS. HjalmarssonY. DicksvedJ. RiccardiG. LandbergR. The human gut microbiota and glucose metabolism: A scoping review of key bacteria and the potential role of SCFAs.Am. J. Clin. Nutr.2022116486287410.1093/ajcn/nqac217 36026526
    [Google Scholar]
  40. OrssoC.E. PengY. DeehanE.C. TanQ. FieldC.J. MadsenK.L. WalterJ. PradoC.M. TunH.M. HaqqA.M. Composition and functions of the gut microbiome in pediatric obesity: Relationships with markers of insulin resistance.Microorganisms202197149010.3390/microorganisms9071490 34361925
    [Google Scholar]
  41. Sonkoue LambouJ.C. NoubomM. Djoumsie GomseuB.E. Takougoum MarbouW.J. TamokouJ.D.D. GatsingD. Multidrug-resistant Escherichia coli causing urinary tract infections among controlled and uncontrolled type 2 diabetic patients at laquintinie hospital in douala, cameroon.Can. J. Infect. Dis. Med. Microbiol.20222022111310.1155/2022/1250264 36624799
    [Google Scholar]
  42. VelizarovaM. YanachkovaV. BonevaT. GiragosyanS. MihalevaI. Andreeva-GatevaP. SvinarovD. DimovaI. Relationship between Vitamin D status and microbiome changes in Bulgarian patients with type 2 diabetes mellitus.Biotechnol. Biotechnol. Equip.2023371220966210.1080/13102818.2023.2209662
    [Google Scholar]
  43. PedersenH.K. GudmundsdottirV. NielsenH.B. HyotylainenT. NielsenT. JensenB.A.H. ForslundK. HildebrandF. PriftiE. FalonyG. Le ChatelierE. LevenezF. DoréJ. MattilaI. PlichtaD.R. PöhöP. HellgrenL.I. ArumugamM. SunagawaS. Vieira-SilvaS. JørgensenT. HolmJ.B. TroštK. ConsortiumM.H.I.T. KristiansenK. BrixS. RaesJ. WangJ. HansenT. BorkP. BrunakS. OresicM. EhrlichS.D. PedersenO. Human gut microbes impact host serum metabolome and insulin sensitivity.Nature2016535761237638110.1038/nature18646 27409811
    [Google Scholar]
  44. QinJ. LiY. CaiZ. LiS. ZhuJ. ZhangF. LiangS. ZhangW. GuanY. ShenD. PengY. ZhangD. JieZ. WuW. QinY. XueW. LiJ. HanL. LuD. WuP. DaiY. SunX. LiZ. TangA. ZhongS. LiX. ChenW. XuR. WangM. FengQ. GongM. YuJ. ZhangY. ZhangM. HansenT. SanchezG. RaesJ. FalonyG. OkudaS. AlmeidaM. LeChatelierE. RenaultP. PonsN. BattoJ.M. ZhangZ. ChenH. YangR. ZhengW. LiS. YangH. WangJ. EhrlichS.D. NielsenR. PedersenO. KristiansenK. WangJ. A metagenome-wide association study of gut microbiota in type 2 diabetes.Nature20124907418556010.1038/nature11450 23023125
    [Google Scholar]
  45. RenM. ZhangH. QiJ. HuA. JiangQ. HouY. FengQ. OjoO. WangX. An almond-based low carbohydrate diet improves depression and glycometabolism in patients with type 2 diabetes through modulating gut microbiota and GLP-1: A randomized controlled trial.Nutrients20201210303610.3390/nu12103036 33022991
    [Google Scholar]
  46. JiaW. XieG. JiaW. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis.Nat. Rev. Gastroenterol. Hepatol.201815211112810.1038/nrgastro.2017.119 29018272
    [Google Scholar]
  47. Le ChatelierE. NielsenT. QinJ. PriftiE. HildebrandF. FalonyG. AlmeidaM. ArumugamM. BattoJ.M. KennedyS. LeonardP. LiJ. BurgdorfK. GrarupN. JørgensenT. BrandslundI. NielsenH.B. JunckerA.S. BertalanM. LevenezF. PonsN. RasmussenS. SunagawaS. TapJ. TimsS. ZoetendalE.G. BrunakS. ClémentK. DoréJ. KleerebezemM. KristiansenK. RenaultP. Sicheritz-PontenT. de VosW.M. ZuckerJ.D. RaesJ. HansenT. GuedonE. DelormeC. LayecS. KhaciG. van de GuchteM. VandemeulebrouckG. JametA. DervynR. SanchezN. MaguinE. HaimetF. WinogradskiY. CultroneA. LeclercM. JusteC. BlottièreH. PelletierE. LePaslierD. ArtiguenaveF. BrulsT. WeissenbachJ. TurnerK. ParkhillJ. AntolinM. ManichanhC. CasellasF. BoruelN. VarelaE. TorrejonA. GuarnerF. DenariazG. DerrienM. van Hylckama VliegJ.E.T. VeigaP. OozeerR. KnolJ. RescignoM. BrechotC. M’RiniC. MérieuxA. YamadaT. BorkP. WangJ. EhrlichS.D. PedersenO. Richness of human gut microbiome correlates with metabolic markers.Nature2013500746454154610.1038/nature12506 23985870
    [Google Scholar]
  48. ZhouZ. SunB. YuD. ZhuC. Gut microbiota: An important player in type 2 diabetes mellitus.Front. Cell. Infect. Microbiol.20221283448510.3389/fcimb.2022.834485 35242721
    [Google Scholar]
  49. ShaoJ. LiuY. WangH. LuoY. ChenL. An integrated fecal microbiome and metabolomics in T2DM rats reveal antidiabetes effects from host-microbial metabolic axis of EtOAc extract from Sophora flavescens.Oxid. Med. Cell. Longev.20202020112510.1155/2020/1805418 32566075
    [Google Scholar]
  50. FuY. LiS. XiaoY. LiuG. FangJ. A metabolite perspective on the involvement of the gut microbiota in type 2 diabetes.Int. J. Mol. Sci.202324191499110.3390/ijms241914991 37834439
    [Google Scholar]
  51. GurungM. LiZ. YouH. RodriguesR. JumpD.B. MorgunA. ShulzhenkoN. Role of gut microbiota in type 2 diabetes pathophysiology.EBioMedicine20205110259010.1016/j.ebiom.2019.11.051 31901868
    [Google Scholar]
  52. LiY. QianF. ChengX. WangD. WangY. PanY. ChenL. WangW. TianY. Dysbiosis of oral microbiota and metabolite profiles associated with type 2 diabetes mellitus.Microbiol. Spectr.2023111e03796e2210.1128/spectrum.03796‑22 36625596
    [Google Scholar]
  53. ZhangC. ZhangM. WangS. HanR. CaoY. HuaW. MaoY. ZhangX. PangX. WeiC. ZhaoG. ChenY. ZhaoL. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice.ISME J.20104223224110.1038/ismej.2009.112 19865183
    [Google Scholar]
  54. QianX. XieR. LiuX. ChenS. TangH. Mechanisms of short-chain fatty acids derived from gut microbiota in alzheimer’s disease.Aging Dis.20221341252126610.14336/AD.2021.1215 35855330
    [Google Scholar]
  55. SannaS. van ZuydamN.R. MahajanA. KurilshikovA. Vich VilaA. VõsaU. MujagicZ. MascleeA.A.M. JonkersD.M.A.E. OostingM. JoostenL.A.B. NeteaM.G. FrankeL. ZhernakovaA. FuJ. WijmengaC. McCarthyM.I. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases.Nat. Genet.201951460060510.1038/s41588‑019‑0350‑x 30778224
    [Google Scholar]
  56. ReschC. ParikhM. AustriaJ.A. ProctorS.D. NetticadanT. BlewettH. PierceG.N. The influence of diet and sex on the gut microbiota of lean and obese JCR:LA-cp rats.Microorganisms202195103710.3390/microorganisms9051037 34066029
    [Google Scholar]
  57. ZsáligD. BertaA. TóthV. SzabóZ. SimonK. FiglerM. PusztafalviH. PolyákÉ. A review of the relationship between gut microbiome and obesity.Appl. Sci. (Basel)202313161010.3390/app13010610
    [Google Scholar]
  58. MuellerN.T. ZhangM. JuraschekS.P. MillerE.R.III AppelL.J. Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: Results from the OmniHeart randomized trial.Am. J. Clin. Nutr.2020111354555410.1093/ajcn/nqz322 31927581
    [Google Scholar]
  59. LiuY. WangH. LiangY. GuoZ. QuL. WangY. ZhangC. SunG. LiY. Dietary intakes of methionine, threonine, lysine, arginine and histidine increased risk of type 2 diabetes in Chinese population: Does the mediation effect of obesity exist?BMC Public Health2023231155110.1186/s12889‑023‑16468‑z 37582714
    [Google Scholar]
  60. DuC. LiuW.J. YangJ. ZhaoS.S. LiuH.X. The role of branched-chain amino acids and branched-chain α-keto acid dehydrogenase kinase in metabolic disorders.Front. Nutr.2022993267010.3389/fnut.2022.932670 35923208
    [Google Scholar]
  61. VanweertF. NeinastM. TapiaE.E. van de WeijerT. HoeksJ. Schrauwen-HinderlingV.B. BlairM.C. BornsteinM.R. HesselinkM.K.C. SchrauwenP. AranyZ. PhielixE. A randomized placebo-controlled clinical trial for pharmacological activation of BCAA catabolism in patients with type 2 diabetes.Nat. Commun.2022131350810.1038/s41467‑022‑31249‑9 35717342
    [Google Scholar]
  62. DingY. WangS. LuJ. UnlockingLntial: Amino Acids’ role in predicting and exploring therapeutic avenues for type 2 diabetes mellitus.Metabolites2023139101710.3390/metabo13091017 37755297
    [Google Scholar]
  63. WangS. LiM. LinH. WangG. XuY. ZhaoX. HuC. ZhangY. ZhengR. HuR. ShiL. DuR. SuQ. WangJ. ChenY. YuX. YanL. WangT. ZhaoZ. LiuR. WangX. LiQ. QinG. WanQ. ChenG. XuM. DaiM. ZhangD. TangX. GaoZ. ShenF. LuoZ. QinY. ChenL. HuoY. LiQ. YeZ. ZhangY. LiuC. WangY. WuS. YangT. DengH. ZhaoJ. LaiS. MuY. ChenL. LiD. XuG. NingG. WangW. BiY. LuJ. Amino acids, microbiota-related metabolites, and the risk of incident diabetes among normoglycemic Chinese adults: Findings from the 4C study.Cell Rep. Med.20223910072710.1016/j.xcrm.2022.100727 35998626
    [Google Scholar]
  64. MannG. MoraS. MaduG. AdegokeO.A.J. Branched-chain Amino Acids: Catabolism in skeletal muscle and implications for muscle and whole-body metabolism.Front. Physiol.20211270282610.3389/fphys.2021.702826 34354601
    [Google Scholar]
  65. YarahmadiA. AzarpiraN. Mostafavi-PourZ. Role of mTOR complex 1 signaling pathway in the pathogenesis of diabetes complications; a mini review.Int. J. Mol. Cell. Med.2021103181189 35178356
    [Google Scholar]
  66. OfosuF.K. ElahiF. DaliriE.B.M. AlooS.O. ChelliahR. HanS.I. OhD.H. Fermented sorghum improves type 2 diabetes remission by modulating gut microbiota and their related metabolites in high fat diet-streptozotocin induced diabetic mice.J. Funct. Foods202310710566610.1016/j.jff.2023.105666
    [Google Scholar]
  67. ZaidanN. NazzalL. The microbiome and uremic solutes.Toxins (Basel)202214424510.3390/toxins14040245 35448854
    [Google Scholar]
  68. MorzeJ. WittenbecherC. SchwingshacklL. DanielewiczA. RynkiewiczA. HuF.B. Guasch-FerréM. Metabolomics and type 2 diabetes risk: An updated systematic review and meta-analysis of prospective cohort studies.Diabetes Care20224541013102410.2337/dc21‑1705 35349649
    [Google Scholar]
  69. QiS. LiuL. HeS. WangL. LiJ. SunX. Trimethylamine N-Oxide and related metabolites in the serum and risk of type 2 diabetes in the Chinese Population: A case-control study.Diabetes Metab. Syndr. Obes.20231654755510.2147/DMSO.S398008 36874557
    [Google Scholar]
  70. BallanR. SaadS.M.I. Characteristics of the gut microbiota and potential effects of probiotic supplements in individuals with type 2 diabetes mellitus.Foods20211011252810.3390/foods10112528 34828808
    [Google Scholar]
  71. Constantino-JonapaL.A. Espinoza-PalaciosY. Escalona-MontañoA.R. Hernández-RuizP. Amezcua-GuerraL.M. AmedeiA. Aguirre-GarcíaM.M. Contribution of Trimethylamine N-Oxide (TMAO) to chronic inflammatory and degenerative diseases.Biomedicines202311243110.3390/biomedicines11020431 36830968
    [Google Scholar]
  72. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  73. ShihD.M. WangZ. LeeR. MengY. CheN. CharugundlaS. QiH. WuJ. PanC. BrownJ.M. VallimT. BennettB.J. GrahamM. HazenS.L. LusisA.J. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis.J. Lipid Res.2015561223710.1194/jlr.M051680 25378658
    [Google Scholar]
  74. MiaoJ. LingA.V. ManthenaP.V. GearingM.E. GrahamM.J. CrookeR.M. CroceK.J. EsquejoR.M. ClishC.B. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis.Nat. Commun.201561649810.1038/ncomms7498 25849138
    [Google Scholar]
  75. ZhuangR. GeX. HanL. YuP. GongX. MengQ. ZhangY. FanH. ZhengL. LiuZ. ZhouX. Gut microbe–generated metabolite trimethylamine N ‐oxide and the risk of diabetes: A systematic review and dose‐response meta‐analysis.Obes. Rev.201920688389410.1111/obr.12843 30868721
    [Google Scholar]
  76. CampbellC. KandalgaonkarM.R. GolonkaR.M. YeohB.S. Vijay-KumarM. SahaP. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy.Biomedicines202311229410.3390/biomedicines11020294 36830830
    [Google Scholar]
  77. ChakarounR. MassierL. KovacsP. Gut microbiome, intestinal permeability, and tissue bacteria in metabolic disease: Perpetrators or Bystanders?Nutrients2020124108210.3390/nu12041082 32295104
    [Google Scholar]
  78. PageM.J. KellD.B. PretoriusE. The role of lipopolysaccharide-induced cell signalling in chronic inflammation.Chronic Stress (Thousand Oaks)2022610.1177/24705470221076390 35155966
    [Google Scholar]
  79. SerH.L. LetchumananV. GohB.H. WongS.H. LeeL.H. The use of fecal microbiome transplant in treating human diseases: Too early for poop?Front. Microbiol.20211251983610.3389/fmicb.2021.519836 34054740
    [Google Scholar]
  80. YangY.P. ZhangX.Y. CuiB.T. ZhangH. WuZ.F. TanX. ChengW. ZhuX. ZhangF.M. QinH.L. WeiH. Preclinical safety, effectiveness evaluation, and screening of functional bacteria for fecal microbiota transplantation based on germ-free animals.World J. Metaanal.20219649650410.13105/wjma.v9.i6.496
    [Google Scholar]
  81. JaramilloA.P. AwosusiB.L. AyyubJ. DabhiK.N. GohilN.V. TanveerN. HusseinS. PingiliS. MakkenaV.K. Effectiveness of fecal microbiota transplantation treatment in patients with recurrent clostridium difficile infection, ulcerative colitis, and Crohn’s Disease: A systematic review.Cureus2023157e4212010.7759/cureus.42120 37602044
    [Google Scholar]
  82. ChenL. GuoL. FengS. WangC. CuiZ. WangS. LuQ. ChangH. HangB. SnijdersA.M. MaoJ.H. LuY. DingD. Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice.BMJ Open Diabetes Res. Care2023113e00328210.1136/bmjdrc‑2022‑003282 37253485
    [Google Scholar]
  83. BustamanteJ.M. DawsonT. LoefflerC. MarforiZ. MarchesiJ.R. MullishB.H. ThompsonC.C. CrandallK.A. RahnavardA. AllegrettiJ.R. CummingsB.P. Impact of fecal microbiota transplantation on gut bacterial bile acid metabolism in humans.Nutrients20221424520010.3390/nu14245200 36558359
    [Google Scholar]
  84. KesikaP. SivamaruthiB.S. ChaiyasutC. Do probiotics improve the health status of individuals with diabetes mellitus? A review on outcomes of clinical trials.BioMed Res. Int.20192019111110.1155/2019/1531567 31950031
    [Google Scholar]
  85. HsiehP.S. HoH.H. TsaoS.P. HsiehS.H. LinW.Y. ChenJ.F. KuoY.W. TsaiS.Y. HuangH.Y. Multi-strain probiotic supplement attenuates streptozotocin-induced type-2 diabetes by reducing inflammation and β-cell death in rats.PLoS One2021166e025164610.1371/journal.pone.0251646 34166387
    [Google Scholar]
  86. ToejingP. KhampithumN. SirilunS. ChaiyasutC. LailerdN. Influence of Lactobacillus paracasei HII01 supplementation on glycemia and inflammatory biomarkers in type 2 diabetes: A randomized clinical trial.Foods2021107145510.3390/foods10071455 34201653
    [Google Scholar]
  87. PalaciosT. VitettaL. CoulsonS. MadiganC.D. LamY.Y. ManuelR. BriskeyD. HendyC. KimJ.N. IshoeyT. Soto-GironM.J. SchottE.M. ToledoG. CatersonI.D. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia: A randomised controlled pilot study.Nutrients2020127204110.3390/nu12072041 32660025
    [Google Scholar]
  88. WangY. WuY. SailikeJ. SunX. AbuduwailiN. TuoliuhanH. YusufuM. NabiX. Fourteen composite probiotics alleviate type 2 diabetes through modulating gut microbiota and modifying M1/M2 phenotype macrophage in db/db mice.Pharmacol. Res.202016110515010.1016/j.phrs.2020.105150 32818655
    [Google Scholar]
  89. BamigbadeG.B. SubhashA.J. Kamal-EldinA. NyströmL. AyyashM. An updated review on prebiotics: Insights on potentials of food seeds waste as source of potential prebiotics.Molecules20222718594710.3390/molecules27185947 36144679
    [Google Scholar]
  90. JiJ. JinW. LiuS.J. JiaoZ. LiX. Probiotics, prebiotics, and postbiotics in health and disease.MedComm202346e42010.1002/mco2.420 37929014
    [Google Scholar]
  91. MiaoM. DaiY. RuiC. FanY. WangX. FanC. MuJ. HouW. DongZ. LiP. SunG. ZengX. Dietary supplementation of inulin alleviates metabolism disorders in gestational diabetes mellitus mice via RENT/AKT/IRS/GLUT4 pathway.Diabetol. Metab. Syndr.202113115010.1186/s13098‑021‑00768‑8 34952629
    [Google Scholar]
  92. BockP.M. TeloG.H. RamalhoR. SbarainiM. LeivasG. MartinsA.F. SchaanB.D. The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: A systematic review and meta-analysis.Diabetologia2021641264110.1007/s00125‑020‑05295‑1 33047170
    [Google Scholar]
  93. SilamiķeleL. SilamiķelisI. UstinovaM. KalniņaZ. ElbereI. PetrovskaR. KalniņaI. KloviņšJ. Metformin Strongly Affects Gut Microbiome Composition in High-Fat Diet-Induced Type 2 Diabetes Mouse Model of Both Sexes.Front. Endocrinol. (Lausanne)20211262635910.3389/fendo.2021.626359 33815284
    [Google Scholar]
  94. ZhangQ. HuN. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus.Diabetes Metab. Syndr. Obes.2020135003501410.2147/DMSO.S286430 33364804
    [Google Scholar]
  95. ShangJ. LiuF. ZhangB. DongK. LuM. JiangR. XuY. DiaoL. ZhaoJ. TangH. Liraglutide-induced structural modulation of the gut microbiota in patients with type 2 diabetes mellitus.PeerJ20219e1112810.7717/peerj.11128 33850659
    [Google Scholar]
  96. Hupa-BreierK.L. DywickiJ. HartlebenB. WellhönerF. HeidrichB. TaubertR. MederackeY.S.E. LieberM. IordanidisK. MannsM.P. WedemeyerH. Hardtke-WolenskiM. JaeckelE. Dulaglutide alone and in combination with empagliflozin attenuate inflammatory pathways and microbiome dysbiosis in a non-diabetic mouse model of NASH.Biomedicines20219435310.3390/biomedicines9040353 33808404
    [Google Scholar]
  97. HuY. DingM. SampsonL. WillettW.C. MansonJ.E. WangM. RosnerB. HuF.B. SunQ. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies.BMJ2020370m220610.1136/bmj.m2206 32641435
    [Google Scholar]
  98. OjoO. FengQ.Q. OjoO.O. WangX.H. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomised controlled trials.Nutrients20201211323910.3390/nu12113239 33113929
    [Google Scholar]
  99. RinottE. MeirA.Y. TsabanG. ZelichaH. KaplanA. KnightsD. TuohyK. ScholzM.U. KorenO. StampferM.J. WangD.D. ShaiI. YoungsterI. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: A randomized controlled trial.Genome Med.20221412910.1186/s13073‑022‑01015‑z 35264213
    [Google Scholar]
  100. ZhangL. LiuY. WangX. ZhangX. Physical Exercise and diet: Regulation of gut microbiota to prevent and treat metabolic disorders to maintain health.Nutrients2023156153910.3390/nu15061539 36986268
    [Google Scholar]
  101. MotianiK.K. ColladoM.C. EskelinenJ.J. VirtanenK.A. LöyttyniemiE. SalminenS. NuutilaP. KalliokoskiK.K. HannukainenJ.C. Exercise training modulates gut microbiota profile and improves endotoxemia.Med. Sci. Sports Exerc.20205219410410.1249/MSS.0000000000002112 31425383
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010318580240910061534
Loading
/content/journals/cpb/10.2174/0113892010318580240910061534
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test