Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today’s population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010311407240902050401
2024-09-13
2025-12-18
Loading full text...

Full text loading...

References

  1. SherinF. Ethosome: A novel approach to enhance drug permeation.Int. J. Pharm. Sci. Rev. Res.20195511822
    [Google Scholar]
  2. ElvenyM. KhanA. NakhjiriA.T. AlbadarinA.B. A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment.Arab. J. Chem.2021141010335210.1016/j.arabjc.2021.103352
    [Google Scholar]
  3. MahajanK. SharmaP. AbbotV. ChauhanK. Ethosomes as a carrier for transdermal drug delivery system: methodology and recent developments.J. Liposome Res.2024202411810.1080/08982104.2024.2339896 38676416
    [Google Scholar]
  4. PandeyV. GolhaniD. ShuklaR. Ethosomes: Versatile vesicular carriers for efficient transdermal delivery of therapeutic agents.Drug Deliv.2015228988100210.3109/10717544.2014.889777 24580572
    [Google Scholar]
  5. DhurveR. A holistic review on ethosome: A promising drug delivery system for topical fungal disease.Int. J. Pharm. Biol. Arch.20145051326
    [Google Scholar]
  6. JafariA. DaneshamouzS. GhasemiyehP. Mohammadi-SamaniS. Ethosomes as dermal/transdermal drug delivery systems: Applications, preparation and characterization.J. Liposome Res.2023331345210.1080/08982104.2022.2085742 35695714
    [Google Scholar]
  7. BraicuC. BuseM. BusuiocC. DrulaR. GuleiD. RadulyL. RusuA. IrimieA. AtanasovA.G. SlabyO. IonescuC. Berindan-NeagoeI. A comprehensive review on MAPK: A promising therapeutic target in cancer.Cancers20191110161810.3390/cancers11101618 31652660
    [Google Scholar]
  8. GuoW. WangH. LiC. Signal pathways of melanoma and targeted therapy.Signal Transduct. Target. Ther.20216142410.1038/s41392‑021‑00827‑6 34924562
    [Google Scholar]
  9. ShiS. Targeting cyclin dependent kinase 4/6 for cancer therapy.Transac. Cancer2023412742
    [Google Scholar]
  10. MillettiG. ColicchiaV. CecconiF. Cyclers’ kinases in cell division: From molecules to cancer therapy.Cell Death Differ.20233092035205210.1038/s41418‑023‑01196‑z 37516809
    [Google Scholar]
  11. SunS.Y. CragoA. MDM2 implications for potential molecular pathogenic therapies of soft-tissue tumors.J. Clin. Med.20231211363810.3390/jcm12113638 37297833
    [Google Scholar]
  12. BurottoM. ChiouV.L. LeeJ.M. KohnE.C. The MAPK pathway across different malignancies: A new perspective.Cancer2014120223446345610.1002/cncr.28864 24948110
    [Google Scholar]
  13. ZhouY. NakajimaR. ShirasawaM. FikriyantiM. ZhaoL. IwanagaR. BradfordA.P. KurayoshiK. ArakiK. OhtaniK. Expanding roles of the E2F-RB-p53 pathway in tumor suppression.Biology20231212151110.3390/biology12121511 38132337
    [Google Scholar]
  14. PiipponenM. RiihiläP. NissinenL. KähäriV.M. The role of p53 in progression of cutaneous squamous cell carcinoma.Cancers20211318450710.3390/cancers13184507 34572732
    [Google Scholar]
  15. Di CarloC. A multi-omics approach identifies the pivotal role of cardiolipin remodelling, alpha subunit of the mitochondrial trifunctional protein and long chain fatty acids in stem cells of pancreatic cancer.Sci. Rep.202111113297
    [Google Scholar]
  16. YoshikawaK. HamadaJ. TadaM. KameyamaT. NakagawaK. SuzukiY. IkawaM. Monsur HassanN.M. KitagawaY. MoriuchiT. Mutant p53 R248Q but not R248W enhances in vitro invasiveness of human lung cancer NCI-H1299 cells.Biomed. Res.201031640141110.2220/biomedres.31.401 21187651
    [Google Scholar]
  17. De FromentelC.C. LevreroM. P53 functional loss, stemness and hepatocellular carcinoma.Hepatoma Res.202020208010.20517/2394‑5079.2020.77
    [Google Scholar]
  18. KaurR.P. VasudevaK. KumarR. MunshiA. Role of p53 gene in breast cancer: Focus on mutation spectrum and therapeutic strategies.Curr. Pharm. Des.201824303566357510.2174/1381612824666180926095709 30255744
    [Google Scholar]
  19. Molavi PordanjaniS. Jalal HosseinimehrS. The role of NF-κB inhibitors in cell response to radiation.Curr. Med. Chem.201623343951396310.2174/0929867323666160824162718 27554808
    [Google Scholar]
  20. HaydenM.S. GhoshS. Signaling to NF-κB.Genes Dev.200418182195222410.1101/gad.1228704 15371334
    [Google Scholar]
  21. HotA. LeniefV. MiossecP. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells.Ann. Rheum. Dis.201271576877610.1136/annrheumdis‑2011‑200468 22258491
    [Google Scholar]
  22. ShiP. XuJ. CuiH. The recent research progress of nf-κb signaling on the proliferation, migration, invasion, immune escape and drug resistance of glioblastoma.Int. J. Mol. Sci.202324121033710.3390/ijms241210337 37373484
    [Google Scholar]
  23. WuD. TianS. ZhuW. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: Mechanisms and perspectives.Expert Opin. Ther. Targets202327650351510.1080/14728222.2023.2225767 37314372
    [Google Scholar]
  24. DingL. CaoJ. LinW. ChenH. XiongX. AoH. YuM. LinJ. CuiQ. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer.Int. J. Mol. Sci.2020216196010.3390/ijms21061960 32183020
    [Google Scholar]
  25. CapeceD. VerzellaD. FlatiI. ArborettoP. CorniceJ. FranzosoG. NF-κB: blending metabolism, immunity, and inflammation.Trends Immunol.202243975777510.1016/j.it.2022.07.004 35965153
    [Google Scholar]
  26. AhmadA. Nanomedicine as potential cancer therapy via targeting dysregulated transcription factors.Semin. Cancer Biol.202389110010.1016/j.semcancer.2023.01.002
    [Google Scholar]
  27. RoyS. MondruA.K. ChakrabortyT. DasA. DasguptaS. Apple polyphenol phloretin complexed with ruthenium is capable of reprogramming the breast cancer microenvironment through modulation of PI3K/Akt/mTOR/VEGF pathways.Toxicol. Appl. Pharmacol.202243411582210.1016/j.taap.2021.115822 34896434
    [Google Scholar]
  28. RamburA. Lours-CaletC. BeaudoinC. BuñayJ. VialatM. MirouseV. TroussonA. RenaudY. LobaccaroJ.M. BaronS. MorelL. de JoussineauC. Sequential Ras/MAPK and PI3K/AKT/mTOR pathways recruitment drives basal extrusion in the prostate-like gland of Drosophila.Nat. Commun.2020111230010.1038/s41467‑020‑16123‑w 32385236
    [Google Scholar]
  29. JiangN. DaiQ. SuX. FuJ. FengX. PengJ. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior.Mol. Biol. Rep.20204764587462910.1007/s11033‑020‑05435‑1 32333246
    [Google Scholar]
  30. WeiM. HeX. LiuN. DengH. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin.Cell Div.2024191110.1186/s13008‑024‑00107‑z 38217019
    [Google Scholar]
  31. SokolovD. ShardaN. BanerjeeA. DenisenkoK. BasaliousE.B. ShuklaH. WaddellJ. HamdyN.M. BanerjeeA. Differential signaling pathways in medulloblastoma: nano-biomedicine targeting non-coding epigenetics to improve current and future therapeutics.Curr. Pharm. Des.2024301314710.2174/0113816128277350231219062154 38151840
    [Google Scholar]
  32. BlagodatskiA. PoteryaevD. KatanaevV.L. Targeting the Wnt pathways for therapies.Mol. Cell. Ther.2014212810.1186/2052‑8426‑2‑28 26056595
    [Google Scholar]
  33. KrishnamurthyN. KurzrockR. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.Cancer Treat. Rev.201862506010.1016/j.ctrv.2017.11.002 29169144
    [Google Scholar]
  34. MohammedO.A. DoghishA.S. SalehL.A. AlghamdiM. AlamriM.M. AlfaifiJ. AdamM.I. AlharthiM.H. AlshahraniA.M. AlhalafiA.H. BinAfif, W.F.; Rezigalla, A.A.; Abdel-Reheim, M.A.; El-wakeel, H.S.; Attia, M.A.; Elmorsy, E.A.; AL-Noshokaty, T.M.; Nomier, Y.; Saber, S. Itraconazole halts hepatocellular carcinoma progression by modulating sonic hedgehog signaling in rats: A novel therapeutic approach.Pathol. Res. Pract.202425315508610.1016/j.prp.2023.155086 38176308
    [Google Scholar]
  35. XuZ. HanX. OuD. LiuT. LiZ. JiangG. LiuJ. ZhangJ. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy.Appl. Microbiol. Biotechnol.2020104257558710.1007/s00253‑019‑10257‑8 31832711
    [Google Scholar]
  36. ul Islam, B.; Suhail, M.; Khan, M.S.; Ahmad, A.; Zughaibi, T.A.; Husain, F.M.; Rehman, M.T.; Tabrez, S. Flavonoids and PI3K/Akt/mTOR signaling cascade: a potential crosstalk in anticancer treatment.Curr. Med. Chem.202128398083809710.2174/1875533XMTE3iMDAs3 34348607
    [Google Scholar]
  37. DoghishA.S. El-HusseinyA.A. AbdelmaksoudN.M. El-MahdyH.A. ElsakkaE.G. Abdel MageedS.S. MahmoudA.M. RaoufA.A. ElballalM.S. El-DakrouryW.A. AbdelRazekM.M. NoshyM. El-HusseinyH.M. AbulsoudA.I. The interplay of signaling pathways and miRNAs in the pathogenesis and targeted therapy of esophageal cancer.Pathol. Res. Pract.202324615452910.1016/j.prp.2023.154529 37196470
    [Google Scholar]
  38. De SantisM.C. Targeting PI3K signaling in cancer: Challenges and advances. Biochimica et Biophysica Acta (BBA)-.Rev. Can.201918712361366
    [Google Scholar]
  39. ZhangM. CeyhanY. KaftanovskayaE.M. VasquezJ.L. VacherJ. KnopF.K. NathansonL. AgoulnikA.I. IttmannM.M. AgoulnikI.U. INPP4B protects from metabolic syndrome and associated disorders.Commun. Biol.20214141610.1038/s42003‑021‑01940‑6 33772116
    [Google Scholar]
  40. ArafehR. SamuelsY. PIK3CA in cancer: the past 30 years.Semin. Cancer Biol.201956364910.1016/j.semcancer.2019.02.002
    [Google Scholar]
  41. BhatA.A. NisarS. SinghM. AshrafB. MasoodiT. PrasadC.P. SharmaA. MaachaS. KaredathT. HashemS. YasinS.B. BaggaP. ReddyR. FrennauxM.P. UddinS. DhawanP. HarisM. MachaM.A. Cytokine‐ and chemokine‐induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy.Cancer Commun.202242868971510.1002/cac2.12295 35791509
    [Google Scholar]
  42. WangX. ZhangY. WangS. NiH. ZhaoP. ChenG. XuB. YuanL. The role of CXCR3 and its ligands in cancer.Front. Oncol.202212102268810.3389/fonc.2022.1022688 36479091
    [Google Scholar]
  43. ChoileáinS.N. KleinewietfeldM. RaddassiK. HaflerD.A. RuffW.E. LongbrakeE.E. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome.J. Transl. Autoimmun.2020310003210.1016/j.jtauto.2019.100032 32743517
    [Google Scholar]
  44. LadányiA. Prognostic and predictive significance of immune cells infiltrating cutaneous melanoma. Pig. Cell Mela.Res.201528549050010.1111/pcmr.12371 25818762
    [Google Scholar]
  45. KudryavtsevI. ZinchenkoY. StarshinovaA. SerebriakovaM. MalkovaA. AkishevaT. KudlayD. GlushkovaA. YablonskiyP. ShoenfeldY. Circulating regulatory t cell subsets in patients with sarcoidosis.Diagnostics2023138137810.3390/diagnostics13081378 37189479
    [Google Scholar]
  46. DepledgeM.H. The rational basis for the use of biomarkers as ecotoxicological tools.Nondestructive biomarkers in vertebrates.CRC Press202027129510.1201/9780367813703‑20
    [Google Scholar]
  47. SavvaK.V. KawkaM. VadhwanaB. PenumakaR. PattonI. KhanK. PerrottC. DasS. GiotM. MavroveliS. HannaG.B. NiM.Z. PetersC.J. The Biomarker Toolkit — an evidence-based guideline to predict cancer biomarker success and guide development.BMC Med.202321138310.1186/s12916‑023‑03075‑3 37794461
    [Google Scholar]
  48. AdrianaT.L. LiangL. LarisaG. Molecular mechanisms and biomarkers of skin photocarcinogenesis.Human Skin Cancers - Pathways, Mechanisms, Targets and TreatmentsIntechOpen2017
    [Google Scholar]
  49. NaikP.P. Role of biomarkers in the integrated management of melanoma.Dis. Markers2021202111310.1155/2021/6238317 35003391
    [Google Scholar]
  50. MkhobongoB. Targeted photodynamic therapy of metastatic melanoma cancer and cancer stem cells. MTech.University of Johannesburg2022
    [Google Scholar]
  51. ParkC.R. LeeJ.S. SonC.G. LeeN.H. A survey of herbal medicines as tumor microenvironment‐modulating agents.Phytother. Res.2021351789410.1002/ptr.6784 32658314
    [Google Scholar]
  52. ChanM.K. ChanE.L. JiZ.Z. ChanA.S. LiC. LeungK.T. ToK.F. TangP.M. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. Explor. Targ.Anti-tumor Therap.20234231634310.37349/etat.2023.00137 37205317
    [Google Scholar]
  53. GrumezescuA.M. Multifunctional systems for combined delivery, biosensing and diagnostics.William Andrew2017
    [Google Scholar]
  54. FoxL.T. GerberM. PlessisJ.D. HammanJ.H. Transdermal drug delivery enhancement by compounds of natural origin.Molecules20111612105071054010.3390/molecules161210507
    [Google Scholar]
  55. DoaneT.L. BurdaC. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy.Chem. Soc. Rev.20124172885291110.1039/c2cs15260f 22286540
    [Google Scholar]
  56. LiuX. ZhangY. WangY. ZhuW. LiG. MaX. ZhangY. ChenS. TiwariS. ShiK. ZhangS. FanH.M. ZhaoY.X. LiangX.J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.Theranostics20201083793381510.7150/thno.40805 32206123
    [Google Scholar]
  57. ZhuH LiB Yu ChanC Low Qian LingB TorJ Yi OhX JiangW YeE LiZ Jun LohX Advances in single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy.Adv Drug Deliv Rev202319211464410.1016/j.addr.2022.11464436493906
    [Google Scholar]
  58. NaserY.A. TekkoI.A. VoraL.K. PengK. AnjaniQ.K. GreerB. ElliottC. McCarthyH.O. DonnellyR.F. Hydrogel-forming microarray patches with solid dispersion reservoirs for transdermal long-acting microdepot delivery of a hydrophobic drug.J. Control. Release202335641643310.1016/j.jconrel.2023.03.003 36878320
    [Google Scholar]
  59. YeungA.W. TzvetkovN.T. GuptaV.K. GuptaS.C. OriveG. BonnG.K. FiebichB. BishayeeA. EfferthT. XiaoJ. SilvaA.S. RussoG.L. DagliaM. BattinoM. OrhanI.E. NicolettiF. HeinrichM. AggarwalB.B. DiederichM. BanachM. WeckwerthW. BauerR. PerryG. BayerE.A. HuberL.A. WolfenderJ-L. VerpoorteR. MaciasF.A. WinkM. StadlerM. GibbonsS. CifuentesA. IbanezE. LizardG. MüllerR. RistowM. AtanasovA.G. Current research in biotechnology: Exploring the biotech forefront.Curr. Resea. Biotechnol.20191344010.1016/j.crbiot.2019.08.003
    [Google Scholar]
  60. ChehelgerdiM. ChehelgerdiM. AllelaO.Q. PechoR.D. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  61. GuptaR. BadheY. RaiB. MitragotriS. Molecular mechanism of the skin permeation enhancing effect of ethanol: a molecular dynamics study.RSC Advances20201021122341224810.1039/D0RA01692F 35497613
    [Google Scholar]
  62. AkhtarN. AkhtarN. MenaaF. AlharbiW. AlaryaniF. AlqahtaniA. AhmadF. Fabrication of ethosomes containing tocopherol acetate to enhance transdermal permeation: In vitro and ex vivo characterizations.Gels20228633510.3390/gels8060335 35735679
    [Google Scholar]
  63. Paiva-SantosA.C. SilvaA.L. GuerraC. PeixotoD. Pereira-SilvaM. ZeinaliM. Mascarenhas-MeloF. CastroR. VeigaF. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  64. NatshehH. TouitouE. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties.Molecules20202513295910.3390/molecules25132959 32605117
    [Google Scholar]
  65. LiuL. NieJ. LiL. Phospholipid complexation for bioavailability improvement of albendazole: Preparation, characterization and in vivo evaluation.AAPS PharmSciTech20232413610.1208/s12249‑022‑02497‑1 36635447
    [Google Scholar]
  66. SchönfeldB. WestedtU. WagnerK.G. Vacuum drum drying – A novel solvent-evaporation based technology to manufacture amorphous solid dispersions in comparison to spray drying and hot melt extrusion.Int. J. Pharm.202159612023310.1016/j.ijpharm.2021.120233 33484914
    [Google Scholar]
  67. NayakB.S. MohantyB. MishraB. RoyH. NandiS. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system.Chem. Biol. Drug Des.2023102365366710.1111/cbdd.14254 37062593
    [Google Scholar]
  68. MaH. GuoD. FanY. WangJ. ChengJ. ZhangX. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation.Molecules2018237175610.3390/molecules23071756 30018278
    [Google Scholar]
  69. HoffmannF. Consistency of semi-supervised learning algorithms on graphs: Probit and one-hot methods.J. Mach. Learn. Res.202021186155
    [Google Scholar]
  70. YuZ. GaoL. ChenK. ZhangW. ZhangQ. LiQ. HuK. Nanoparticles: a new approach to upgrade cancer diagnosis and treatment.Nanoscale Res. Lett.20211618810.1186/s11671‑021‑03489‑z 34014432
    [Google Scholar]
  71. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists.J. Nanobiotechnol.202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  72. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.2017145613633 27199229
    [Google Scholar]
  73. AlkhalidiH.M. NaguibG.H. KurakulaM. HamedM.T. AttarM.H. AlmatrookZ.H. AldryhimA.Y. BahmdanR.H. KhallafR.A. El SisiA.M. HosnyK.M. In vitro and preclinical assessment of factorial design based nanoethosomal transdermal film formulation of mefenamic acid to overcome barriers to its use in relieving pain and inflammation.J. Drug Deliv. Sci. Technol.20184845045610.1016/j.jddst.2018.10.023
    [Google Scholar]
  74. MoolakkadathT. AqilM. AhadA. ImamS.S. PraveenA. SultanaY. MujeebM. IqbalZ. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice.Int. J. Pharm.2019560789110.1016/j.ijpharm.2019.01.067 30742987
    [Google Scholar]
  75. NayakD. ThathapudiN.C. AsheS. NayakB. Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics.Int. J. Pharm.202159612026510.1016/j.ijpharm.2021.120265 33486031
    [Google Scholar]
  76. MousaI.A. HammadyT.M. GadS. ZaitoneS.A. El-SherbinyM. SayedO.M. Formulation and characterization of metformin-loaded ethosomes for topical application to experimentally induced skin cancer in mice.Pharmaceuticals202215665710.3390/ph15060657 35745575
    [Google Scholar]
  77. NasrS. RadyM. GomaaI. SyrovetsT. SimmetT. FayadW. Abdel-KaderM. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy.Int. J. Pharm.201956811852810.1016/j.ijpharm.2019.118528 31323373
    [Google Scholar]
  78. PeramM.R. JalalpureS. KumbarV. PatilS. JoshiS. BhatK. DiwanP. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation.J. Liposome Res.201929329131110.1080/08982104.2018.1556292 30526186
    [Google Scholar]
  79. SoniK. MujtabaA. AkhterM.H. ZafarA. KohliK. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy.J. Microencapsul.20203729110810.1080/02652048.2019.1701114 31810417
    [Google Scholar]
  80. GamalA. SaeedH. El-ElaF.I. SalemH.F. Improving the antitumor activity and bioavailability of sonidegib for the treatment of skin cancer.Pharmaceutics20211310156010.3390/pharmaceutics13101560 34683853
    [Google Scholar]
  81. IsmailT.A. ShehataT.M. MohamedD.I. ElsewedyH.S. SolimanW.E. Quality by design for development, optimization and characterization of brucine ethosomal gel for skin cancer delivery.Molecules20212611345410.3390/molecules26113454 34200144
    [Google Scholar]
  82. KolliparaR.K. TallapaneniV. SanapalliB.K. KumarG.V. KarriV.V. Curcumin loaded ethosomal vesicular drug delivery system for the treatment of melanoma skin cancer.Resea J. Pharma. Technol.20191241783179210.5958/0974‑360X.2019.00298.1
    [Google Scholar]
  83. LinH. LinL. ChoiY. Michniak-KohnB. Development and in-vitro evaluation of co-loaded berberine chloride and evodiamine ethosomes for treatment of melanoma.Int. J. Pharm.202058111927810.1016/j.ijpharm.2020.119278 32229284
    [Google Scholar]
  84. SarafS. GuptaM.K. Itraconazole loaded ethosomal gel system for efficient treatment of skin cancer.Int. J. Drug Deliv.20181011219
    [Google Scholar]
  85. YuX. DuL. LiY. FuG. JinY. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel.Biomed. Pharmacother.20157361110.1016/j.biopha.2015.05.002 26211575
    [Google Scholar]
  86. ZeinaliM. Abbaspour-RavasjaniS. SoltanfamT. Paiva-SantosA.C. BabaeiH. VeigaF. HamishehkarH. Prevention of UV-induced skin cancer in mice by gamma oryzanol-loaded nanoethosomes.Life Sci.202128311975910.1016/j.lfs.2021.119759 34171381
    [Google Scholar]
  87. FerraraF. BenedusiM. SguizzatoM. CortesiR. BaldisserottoA. BuzziR. ValacchiG. EspositoE. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells.Pharmaceutics2022145103810.3390/pharmaceutics14051038 35631628
    [Google Scholar]
  88. AbdellatifA.A. AldosariB.N. Al-SubaiyelA. AlhaddadA. SammanW.A. ElerakyN.E. ElnaggarM.G. BarakatH. TawfeekH.M. Transethosomal gel for the topical delivery of celecoxib: formulation and estimation of skin cancer progression.Pharmaceutics20221512210.3390/pharmaceutics15010022 36678651
    [Google Scholar]
  89. Amr GamalF. KharshoumR.M. SayedO.M. El-ElaF.I. SalemH.F. Control of basal cell carcinoma via positively charged ethosomes of Vismodegib: In vitro and in vivo studies.J. Drug Deliv. Sci. Technol.20205610155610.1016/j.jddst.2020.101556
    [Google Scholar]
  90. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox10050768 34066018
    [Google Scholar]
  91. NairR.S. BillaN. LeongC.O. MorrisA.P. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M ® membrane and excised human skin.Pharm. Dev. Technol.202126224325110.1080/10837450.2020.1860087 33274672
    [Google Scholar]
  92. KazmiI. Al-AbbasiF.A. NadeemM.S. AltaybH.N. AlshehriS. ImamS.S. Formulation, optimization and evaluation of luteolin-loaded topical nanoparticulate delivery system for the skin cancer.Pharmaceutics20211311174910.3390/pharmaceutics13111749 34834164
    [Google Scholar]
  93. ChenM. ShamimM.A. ShahidA. YeungS. AndresenB.T. WangJ. NekkantiV. MeyskensF.L. KellyK.M. HuangY. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention.Pharmaceutics20201212115110.3390/pharmaceutics12121151 33260886
    [Google Scholar]
  94. MaL. WangX. WuJ. ZhangD. ZhangL. SongX. HongH. HeC. MoX. WuS. KaiG. WangH. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery.Nanomedicine201914182395240810.2217/nnm‑2018‑0398 31456475
    [Google Scholar]
  95. LiG. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes.Sci. World. J.20122012874053
    [Google Scholar]
  96. EskolakyE.B. ArdjmandM. AkbarzadehA. Evaluation of anti-cancer properties of pegylated ethosomal paclitaxel on human melanoma cell line SKMEL- 3.Trop. J. Pharm. Res.20151481421142510.4314/tjpr.v14i8.14
    [Google Scholar]
  97. LiaoB. YingH. YuC. FanZ. ZhangW. ShiJ. YingH. RavichandranN. XuY. YinJ. JiangY. DuQ. (−)-Epigallocatechin gallate (EGCG)-nanoethosomes as a transdermal delivery system for docetaxel to treat implanted human melanoma cell tumors in mice.Int. J. Pharm.20165121223110.1016/j.ijpharm.2016.08.038 27544847
    [Google Scholar]
  98. JainS.K. PuriR. MahajanM. YadavS. PathakC.M. GaneshN. Nanovesicular carrier-based formulation for skin cancer targeting: Evaluation of cytotoxicity, intracellular uptake, and preclinical anticancer activity.J. Drug Target.201523324425610.3109/1061186X.2014.981192 25417933
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010311407240902050401
Loading
/content/journals/cpb/10.2174/0113892010311407240902050401
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; clinical trials; ethosome; nanotechnology; signalling pathways; Skin cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test