Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The incidence of Coronavirus Disease 2019 (COVID-19) has increased dramatically in recent years, affecting millions of people worldwide. The primary cause of morbidity and mortality in COVID-19 patients is respiratory illness. However, the disease can also significantly impact the cardiovascular system. SARS-CoV-2, the virus responsible for COVID-19, enters cells using the angiotensin-converting enzyme 2 (ACE-2) receptor. ACE-2 is a component of the renin-angiotensin system (RAS) and plays a crucial role in regulating various pathological processes. The interaction of the virus with ACE-2 in the myocardium can lead to direct heart damage. Several mechanisms may contribute to myocardial damage in COVID-19 patients, including systemic inflammation, myocardial interstitial fibrosis, interferon-mediated immune response, exaggerated cytokine response, T-cell-mediated damage, coronary plaque instability, and hypoxia. There has been concern that ACE inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) may increase vulnerability to SARS-CoV-2 by upregulating ACE-2 expression. However, it may be advisable to continue medications for patients with underlying cardiovascular disorders. The precise mechanisms of cardiomyocyte injury in COVID-19 are not fully understood, but necroptosis appears to play a significant role. Current treatments for cardiac damage in COVID-19 patients include IL-6 blockers and antiplatelet therapy. Ponatinib, a small molecule tyrosine kinase inhibitor designed using computational and structural approaches, has shown the potential to affect cell death through its impact on tyrosine kinase activity. By reviewing studies related to ponatinib’s effects on necroptosis and cell death, we propose a novel approach to potentially reduce the cardiotoxic effects of COVID-19 on cardiomyocytes. Further research is needed to fully elucidate the mechanisms of cardiac injury in COVID-19 and to develop targeted therapies to protect the heart from the devastating effects of this disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010324744240916110446
2024-09-26
2025-12-18
Loading full text...

Full text loading...

References

  1. MorganO How decision makers can use quantitative approaches to guide outbreak responses.Philos Trans R Soc Lond B Biol Sci201937417762018036510.1098/rstb.2018.036531104605
    [Google Scholar]
  2. AjamiM. SotoudeheianM. Houshiar-RadA. EsmailiM. NaeiniF. Mohammadi NasrabadiF. DoaeiS. Milani-BonabA. Quercetin may reduce the risk of developing the symptoms of COVID-19.Avicenna J. Phytomed.2024142189201 38966631
    [Google Scholar]
  3. YozwiakN.L. SchaffnerS.F. SabetiP.C. Data sharing: Make outbreak research open access.Nature2015518754047747910.1038/518477a 25719649
    [Google Scholar]
  4. RaniI. KalsiA. KaurG. SharmaP. GuptaS. GautamR.K. ChopraH. BibiS. AhmadS.U. SinghI. DhawanM. EmranT.B. Modern drug discovery applications for the identification of novel candidates for COVID-19 infections.Ann. Med. Surg.20228010412510.1016/j.amsu.2022.104125 35845863
    [Google Scholar]
  5. BonowR.O. FonarowG.C. O’GaraP.T. YancyC.W. Association of coronavirus disease 2019 (COVID-19) with myocardial injury and mortality.JAMA Cardiol.20205775175310.1001/jamacardio.2020.1105 32219362
    [Google Scholar]
  6. LiS.S. ChengC. FuC. ChanY. LeeM. ChanJ.W. YiuS. Left ventricular performance in patients with severe acute respiratory syndrome: A 30-day echocardiographic follow-up study.Circulation2003108151798180310.1161/01.CIR.0000094737.21775.32 14504188
    [Google Scholar]
  7. YuC-M. WongR.S-M. WuE.B. KongS-L. WongJ. YipG.W-K. SooY.O.Y. ChiuM.L.S. ChanY-S. HuiD. LeeN. WuA. LeungC-B. SungJ.J-Y. Cardiovascular complications of severe acute respiratory syndrome.Postgrad. Med. J.20068296414014410.1136/pgmj.2005.037515 16461478
    [Google Scholar]
  8. Babapoor-FarrokhranS. GillD. WalkerJ. RasekhiR.T. BozorgniaB. AmanullahA. Myocardial injury and COVID-19: Possible mechanisms.Life Sci.202025311772310.1016/j.lfs.2020.117723 32360126
    [Google Scholar]
  9. ZhengY.Y. MaY.T. ZhangJ.Y. XieX. COVID-19 and the cardiovascular system.Nat. Rev. Cardiol.202017525926010.1038/s41569‑020‑0360‑5 32139904
    [Google Scholar]
  10. CrackowerM.A. SaraoR. OuditG.Y. YagilC. KozieradzkiI. ScangaS.E. Oliveira-dos-SantosA.J. da CostaJ. ZhangL. PeiY. ScholeyJ. FerrarioC.M. ManoukianA.S. ChappellM.C. BackxP.H. YagilY. PenningerJ.M. Angiotensin-converting enzyme 2 is an essential regulator of heart function.Nature2002417689182282810.1038/nature00786 12075344
    [Google Scholar]
  11. YamamotoK. OhishiM. KatsuyaT. ItoN. IkushimaM. KaibeM. TataraY. ShiotaA. SuganoS. TakedaS. RakugiH. OgiharaT. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II.Hypertension200647471872610.1161/01.HYP.0000205833.89478.5b 16505206
    [Google Scholar]
  12. BibiS. KhanM.S. El-KafrawyS.A. AlandijanyT.A. El-DalyM.M. YousafiQ. FatimaD. FaizoA.A. BajraiL.H. AzharE.I. Virtual screening and molecular dynamics simulation analysis of Forsythoside A as a plant-derived inhibitor of SARS-CoV-2 3CLpro.Saudi Pharm. J.2022307979100210.1016/j.jsps.2022.05.003 35637849
    [Google Scholar]
  13. OuditG.Y. KassiriZ. JiangC. LiuP.P. PoutanenS.M. PenningerJ.M. ButanyJ. SARS‐coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS.Eur. J. Clin. Invest.200939761862510.1111/j.1365‑2362.2009.02153.x 19453650
    [Google Scholar]
  14. GorjipourF. DehakiM.G. TotonchiZ. HajimiresmaielS.J. AzarfarinR. Pazoki-toroudiH. MahdaviM. KorbiM. DehakiM.G. SoltaniB. GorjipourF. Inflammatory cytokine response and cardiac troponin I changes in cardiopulmonary bypass using two cardioplegia solutions; del Nido and modified St. Thomas’: A randomized controlled trial.Perfusion201732539440210.1177/0267659117691119 28152655
    [Google Scholar]
  15. GuoT. FanY. ChenM. WuX. ZhangL. HeT. WangH. WanJ. WangX. LuZ. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781181810.1001/jamacardio.2020.1017 32219356
    [Google Scholar]
  16. ZhaoX. NichollsJ.M. ChenY.G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-β signaling.J. Biol. Chem.200828363272328010.1074/jbc.M708033200 18055455
    [Google Scholar]
  17. CameronM.J. RanL. XuL. DaneshA. Bermejo-MartinJ.F. CameronC.M. MullerM.P. GoldW.L. RichardsonS.E. PoutanenS.M. WilleyB.M. DeVriesM.E. FangY. SeneviratneC. BosingerS.E. PersadD. WilkinsonP. GrellerL.D. SomogyiR. HumarA. KeshavjeeS. LouieM. LoebM.B. BruntonJ. McGeerA.J. KelvinD.J. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome.J. Virol.200781168692870610.1128/JVI.00527‑07 17537853
    [Google Scholar]
  18. CameronM.J. Bermejo-MartinJ.F. DaneshA. MullerM.P. KelvinD.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS).Virus Res.20081331131910.1016/j.virusres.2007.02.014 17374415
    [Google Scholar]
  19. WongC.K. LamC.W.K. WuA.K.L. IpW.K. LeeN.L.S. ChanI.H.S. LitL.C.W. HuiD.S.C. ChanM.H.M. ChungS.S.C. SungJ.J.Y. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome.Clin. Exp. Immunol.200413619510310.1111/j.1365‑2249.2004.02415.x 15030519
    [Google Scholar]
  20. BoozG.W. DayJ.N.E. BakerK.M. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: Role in cardiac hypertrophy, ischemia/reperfusion dysfunction, and heart failure.J. Mol. Cell. Cardiol.200234111443145310.1006/jmcc.2002.2076 12431443
    [Google Scholar]
  21. AbdelMassihA.F. RamzyD. NathanL. AzizS. AshrafM. YoussefN.H. Possible molecular and paracrine involvement underlying the pathogenesis of COVID-19 cardiovascular complications.LWW2020121124
    [Google Scholar]
  22. LiuC.M. MaJ.Q. XieW.R. LiuS.S. FengZ.J. ZhengG.H. WangA.M. Quercetin protects mouse liver against nickel-induced DNA methylation and inflammation associated with the Nrf2/HO-1 and p38/STAT1/NF-κB pathway.Food Chem. Toxicol.201582192610.1016/j.fct.2015.05.001 25957741
    [Google Scholar]
  23. YangP.M. WuZ.Z. ZhangY.Q. WungB.S. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.Life Sci.20161559410110.1016/j.lfs.2016.05.006 27155396
    [Google Scholar]
  24. KhanA. JamwalS. BijjemK.R.V. PrakashA. KumarP. Neuroprotective effect of hemeoxygenase-1/glycogen synthase kinase-3β modulators in 3-nitropropionic acid-induced neurotoxicity in rats.Neuroscience2015287667710.1016/j.neuroscience.2014.12.018 25536048
    [Google Scholar]
  25. CuadradoA. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP.Free Radic. Biol. Med.201588Pt B14715710.1016/j.freeradbiomed.2015.04.02925937177
    [Google Scholar]
  26. WangP. PengX. WeiZ.F. WeiF.Y. WangW. MaW.D. YaoL.P. FuY.J. ZuY.G. Geraniin exerts cytoprotective effect against cellular oxidative stress by upregulation of Nrf2-mediated antioxidant enzyme expression via PI3K/AKT and ERK1/2 pathway.Biochim. Biophys. Acta, Gen. Subj.2015185091751176110.1016/j.bbagen.2015.04.010 25917210
    [Google Scholar]
  27. GuL. TaoX. XuY. HanX. QiY. XuL. YinL. PengJ. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway.Toxicol. Appl. Pharmacol.2016292192910.1016/j.taap.2015.12.024 26747300
    [Google Scholar]
  28. ZhuH.Q. WangF. DongL.Y. ZhouQ. WangY. MicroRNA1 modulates oxLDL-induced hyperlipidemia by down-regulating MLCK and ERK/p38 MAPK pathway.Life Sci.20141071-2212610.1016/j.lfs.2014.04.028 24792518
    [Google Scholar]
  29. GouS.H. HuangH.F. ChenX.Y. LiuJ. HeM. MaY.Y. ZhaoX.N. ZhangY. NiJ.M. Lipid-lowering, hepatoprotective, and atheroprotective effects of the mixture Hong-Qu and gypenosides in hyperlipidemia with NAFLD rats.J. Chin. Med. Assoc.201679311112110.1016/j.jcma.2015.09.002 26842974
    [Google Scholar]
  30. SahiniN. BorlakJ. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes.Prog. Lipid Res.2014548611210.1016/j.plipres.2014.02.002 24607340
    [Google Scholar]
  31. WangY.P. WatE. KoonC.M. WongC.W. CheungD.W.S. LeungP.C. ZhaoQ.S. FungK.P. LauC.B.S. The beneficial potential of polyphenol-enriched fraction from Erigerontis Herba on metabolic syndrome.J. Ethnopharmacol.20161879410310.1016/j.jep.2016.04.040 27125589
    [Google Scholar]
  32. KrauzováE. KračmerováJ. RossmeislováL. MališováL. TencerováM. KocM. ŠtichV. ŠiklováM. Acute hyperlipidemia initiates proinflammatory and proatherogenic changes in circulation and adipose tissue in obese women.Atherosclerosis201625015115710.1016/j.atherosclerosis.2016.04.021 27236705
    [Google Scholar]
  33. PodrezE.A. ByzovaT.V. FebbraioM. SalomonR.G. MaY. ValiyaveettilM. PoliakovE. SunM. FintonP.J. CurtisB.R. ChenJ. ZhangR. SilversteinR.L. HazenS.L. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.Nat. Med.20071391086109510.1038/nm1626 17721545
    [Google Scholar]
  34. ParkS.Y. LeeS.W. KimH.Y. LeeS.Y. LeeW.S. HongK.W. KimC.D. SIRT1 inhibits differentiation of monocytes to macrophages: Amelioration of synovial inflammation in rheumatoid arthritis.J. Mol. Med.201694892193110.1007/s00109‑016‑1402‑7 26956118
    [Google Scholar]
  35. BiswasP. HasanM.M. DeyD. dos Santos CostaA.C. PolashS.A. BibiS. FerdousN. KaiumM.A. RahmanM.D.H. JeetF.K. PapadakosS. IslamK. UddinM.S. Candidate antiviral drugs for COVID-19 and their environmental implications: A comprehensive analysis.Environ. Sci. Pollut. Res. Int.20212842595705959310.1007/s11356‑021‑16096‑3 34510341
    [Google Scholar]
  36. RahmanM.M. BibiS. RahamanM.S. RahmanF. IslamF. KhanM.S. HasanM.M. ParvezA. HossainM.A. MaeesaS.K. IslamM.R. NajdaA. Al-malkyH.S. MohamedH.R.H. AlGwaizH.I.M. AwajiA.A. GermoushM.O. KensaraO.A. Abdel-DaimM.M. SaeedM. KamalM.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology.Biomed. Pharmacother.202215011304110.1016/j.biopha.2022.113041 35658211
    [Google Scholar]
  37. FuL. BruckbauerA. LiF. CaoQ. CuiX. WuR. ShiH. ZemelM.B. XueB. Interaction between metformin and leucine in reducing hyperlipidemia and hepatic lipid accumulation in diet-induced obese mice.Metabolism201564111426143410.1016/j.metabol.2015.07.006 26303871
    [Google Scholar]
  38. LiN. ZhaoY. YueY. ChenL. YaoZ. NiuW. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance.Biochem. Biophys. Res. Commun.20164781465210.1016/j.bbrc.2016.07.095 27457805
    [Google Scholar]
  39. CovarrubiasA.J. AksoylarH.I. HorngT. Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in immunology.Elsevier2015286296
    [Google Scholar]
  40. GeD. TaoH.R. FangL. KongX.Q. HanL.N. LiN. XuY.X. LiL.Y. YuM. ZhangH. 11-Methoxytabersonine induces necroptosis with autophagy through AMPK/mTOR and JNK pathways in human lung cancer cells.Chem. Pharm. Bull.202068324425010.1248/cpb.c19‑00851 32115531
    [Google Scholar]
  41. SotoudeheianM. HoseiniS. Therapeutic properties of polyphenols affect AMPK molecular pathway in hyperlipidemia.Preprints202310.20944/preprints202301.0528.v1
    [Google Scholar]
  42. AbeK. YanoT. TannoM. MikiT. KunoA. SatoT. KouzuH. NakataK. OhwadaW. KimuraY. SugawaraH. ShibataS. IgakiY. InoS. MiuraT. mTORC1 inhibition attenuates necroptosis through RIP1 inhibition-mediated TFEB activation.Biochim. Biophys. Acta Mol. Basis Dis.201918651216555210.1016/j.bbadis.2019.165552 31499159
    [Google Scholar]
  43. MatsuzawaY. OshimaS. NibeY. KobayashiM. MaeyashikiC. NemotoY. NagaishiT. OkamotoR. TsuchiyaK. NakamuraT. WatanabeM. RIPK3 regulates p62–LC3 complex formation via the caspase-8-dependent cleavage of p62.Biochem. Biophys. Res. Commun.2015456129830410.1016/j.bbrc.2014.11.075 25450619
    [Google Scholar]
  44. GoodallM.L. FitzwalterB.E. ZahediS. WuM. RodriguezD. Mulcahy-LevyJ.M. GreenD.R. MorganM. CramerS.D. ThorburnA. The autophagy machinery controls cell death switching between apoptosis and necroptosis.Dev. Cell201637433734910.1016/j.devcel.2016.04.018 27219062
    [Google Scholar]
  45. DeyA. MustafiS.B. SahaS. Kumar Dhar DwivediS. MukherjeeP. BhattacharyaR. Inhibition of BMI1 induces autophagy-mediated necroptosis.Autophagy201612465967010.1080/15548627.2016.1147670 27050456
    [Google Scholar]
  46. LalaouiN. LindqvistL.M. SandowJ.J. EkertP.G. The molecular relationships between apoptosis, autophagy and necroptosis. Seminars in cell & developmental biology.Elsevier20156369
    [Google Scholar]
  47. KhouryM.K. GuptaK. FrancoS.R. LiuB. Necroptosis in the pathophysiology of disease.Am. J. Pathol.2020190227228510.1016/j.ajpath.2019.10.012 31783008
    [Google Scholar]
  48. KalogerisT. BainesC.P. KrenzM. KorthuisR.J. Cell biology of ischemia/reperfusion injury.Int. Rev. Cell Mol. Biol.201229822931710.1016/B978‑0‑12‑394309‑5.00006‑7 22878108
    [Google Scholar]
  49. LueddeM. LutzM. CarterN. SosnaJ. JacobyC. VucurM. GautheronJ. RoderburgC. BorgN. ReisingerF. HippeH.J. LinkermannA. WolfM.J. Rose-JohnS. Lüllmann-RauchR. AdamD. FlögelU. HeikenwalderM. LueddeT. FreyN. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction.Cardiovasc. Res.2014103220621610.1093/cvr/cvu146 24920296
    [Google Scholar]
  50. ZhangT. ZhangY. CuiM. JinL. WangY. LvF. LiuY. ZhengW. ShangH. ZhangJ. ZhangM. WuH. GuoJ. ZhangX. HuX. CaoC.M. XiaoR.P. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress–induced myocardial necroptosis.Nat. Med.201622217518210.1038/nm.4017 26726877
    [Google Scholar]
  51. OerlemansM.I.F.J. LiuJ. ArslanF. OudenK. MiddelaarB.J. DoevendansP.A. SluijterJ.P.G. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo.Basic Res. Cardiol.2012107427010.1007/s00395‑012‑0270‑8 22553001
    [Google Scholar]
  52. QiaoZ. XuY. Myocardium protective function of Salvianolic acid B in ischemia reperfusion rats.Afr. J. Tradit. Complement. Altern. Med.201613415716110.21010/ajtcam.v13i4.20 28852731
    [Google Scholar]
  53. ŠkėmienėK. JablonskienėG. LiobikasJ. BorutaitėV. Protecting the heart against ischemia/reperfusion-induced necrosis and apoptosis: The effect of anthocyanins.Medicina20134921510.3390/medicina49020015 23888344
    [Google Scholar]
  54. FreudeB. MastersT.N. KostinS. RobicsekF. SchaperJ. Cardiomyocyte apoptosis in acute and chronic conditions.Basic Res. Cardiol.1998932858910.1007/s003950050066 9601573
    [Google Scholar]
  55. InoS. YanoT. KunoA. TannoM. KouzuH. SatoT. YamashitaT. OhwadaW. OsanamiA. OgawaT. TodaY. ShimizuM. MiuraT. Nuclear translocation of MLKL enhances necroptosis by a RIP1/RIP3-independent mechanism in H9c2 cardiomyoblasts.J. Pharmacol. Sci.2023151213414310.1016/j.jphs.2022.12.009 36707179
    [Google Scholar]
  56. FilipkowskiP. PietrowO. PanekA. SynowieckiJ. Properties of recombinant trehalose synthase from Deinococcus radiodurans expressed in Escherichia coli.Acta Biochim. Pol.201259342543110.18388/abp.2012_2133 23032750
    [Google Scholar]
  57. ElrodJ.W. MolkentinJ.D. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore.Circ. J.20137751111112210.1253/circj.CJ‑13‑0321 23538482
    [Google Scholar]
  58. Zhe-WeiS. Li-ShaG. Yue-ChunL. The role of necroptosis in cardiovascular disease.Front. Pharmacol.2018972110.3389/fphar.2018.00721 30034339
    [Google Scholar]
  59. LiC. MuN. GuC. LiuM. YangZ. YinY. ChenM. WangY. HanY. YuL. MaH. Metformin mediates cardioprotection against aging‐induced ischemic necroptosis.Aging Cell2020192e1309610.1111/acel.13096 31944526
    [Google Scholar]
  60. KoshinumaS. MiyamaeM. KanedaK. KotaniJ. FigueredoV.M. Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia–reperfusion injury.J. Anesth.201428223524110.1007/s00540‑013‑1716‑3 24113863
    [Google Scholar]
  61. ZhuP. HuS. JinQ. LiD. TianF. ToanS. LiY. ZhouH. ChenY. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway.Redox Biol.20181615716810.1016/j.redox.2018.02.019 29502045
    [Google Scholar]
  62. KarunakaranD. GeoffrionM. WeiL. GanW. RichardsL. ShangariP. DeKempE.M. BeanlandsR.A. PerisicL. MaegdefesselL. HedinU. SadS. GuoL. KolodgieF.D. VirmaniR. RuddyT. RaynerK.J. Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis.Sci. Adv.201627e160022410.1126/sciadv.1600224 27532042
    [Google Scholar]
  63. LinJ. LiH. YangM. RenJ. HuangZ. HanF. HuangJ. MaJ. ZhangD. ZhangZ. WuJ. HuangD. QiaoM. JinG. WuQ. HuangY. DuJ. HanJ. A role of RIP3-mediated macrophage necrosis in atherosclerosis development.Cell Rep.20133120021010.1016/j.celrep.2012.12.012 23333278
    [Google Scholar]
  64. ChenJ. KosR. GarssenJ. RedegeldF. Molecular insights into the mechanism of necroptosis: the necrosome as a potential therapeutic target.Cells2019812148610.3390/cells8121486 31766571
    [Google Scholar]
  65. HouJ. JuJ. ZhangZ. ZhaoC. LiZ. ZhengJ. ShengT. ZhangH. HuL. YuX. ZhangW. LiY. WuM. MaH. ZhangX. HeS. Discovery of potent necroptosis inhibitors targeting RIPK1 kinase activity for the treatment of inflammatory disorder and cancer metastasis.Cell Death Dis.201910749310.1038/s41419‑019‑1735‑6 31235688
    [Google Scholar]
  66. LiC. MaQ. ToanS. WangJ. ZhouH. LiangJ. SERCA overexpression reduces reperfusion-mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways.Redox Biol.20203610165910.1016/j.redox.2020.101659 32738788
    [Google Scholar]
  67. BenoS.M. RieglerA.N. GilleyR.P. BrissacT. WangY. KruckowK.L. JadapalliJ.K. WrightG.M. ShenoyA.T. StonerS.N. RestrepoM.I. DeshaneJ.S. HaladeG.V. González-JuarbeN. OrihuelaC.J. Inhibition of necroptosis to prevent long-term cardiac damage during pneumococcal pneumonia and invasive disease.J. Infect. Dis.2020222111882189310.1093/infdis/jiaa295 32492702
    [Google Scholar]
  68. CortesJ.E. KantarjianH. ShahN.P. BixbyD. MauroM.J. FlinnI. O’HareT. HuS. NarasimhanN.I. RiveraV.M. ClacksonT. TurnerC.D. HaluskaF.G. DrukerB.J. DeiningerM.W.N. TalpazM. Ponatinib in refractory Philadelphia chromosome-positive leukemias.N. Engl. J. Med.2012367222075208810.1056/NEJMoa1205127 23190221
    [Google Scholar]
  69. ZhouT. CommodoreL. HuangW.S. WangY. ThomasM. KeatsJ. XuQ. RiveraV.M. ShakespeareW.C. ClacksonT. DalgarnoD.C. ZhuX. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): Lessons for overcoming kinase inhibitor resistance.Chem. Biol. Drug Des.201177111110.1111/j.1747‑0285.2010.01054.x 21118377
    [Google Scholar]
  70. O’HareT. ShakespeareW.C. ZhuX. EideC.A. RiveraV.M. WangF. AdrianL.T. ZhouT. HuangW.S. XuQ. MetcalfC.A.III TynerJ.W. LoriauxM.M. CorbinA.S. WardwellS. NingY. KeatsJ.A. WangY. SundaramoorthiR. ThomasM. ZhouD. SnodgrassJ. CommodoreL. SawyerT.K. DalgarnoD.C. DeiningerM.W.N. DrukerB.J. ClacksonT. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.Cancer Cell200916540141210.1016/j.ccr.2009.09.028 19878872
    [Google Scholar]
  71. ConradM. AngeliJ.P.F. VandenabeeleP. StockwellB.R. Regulated necrosis: Disease relevance and therapeutic opportunities.Nat. Rev. Drug Discov.201615534836610.1038/nrd.2015.6 26775689
    [Google Scholar]
  72. DegterevA. LinkermannA. Generation of small molecules to interfere with regulated necrosis.Cell. Mol. Life Sci.20167311-122251226710.1007/s00018‑016‑2198‑x 27048812
    [Google Scholar]
  73. IannielliA. BidoS. FolladoriL. SegnaliA. CancellieriC. MarescaA. MassiminoL. RubioA. MorabitoG. CaporaliL. TagliaviniF. MusumeciO. GregatoG. BezardE. CarelliV. TirantiV. BroccoliV. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models.Cell Rep.20182282066207910.1016/j.celrep.2018.01.089 29466734
    [Google Scholar]
  74. HeS. HuangS. ShenZ. Biomarkers for the detection of necroptosis.Cell. Mol. Life Sci.20167311-122177218110.1007/s00018‑016‑2192‑3 27066893
    [Google Scholar]
  75. FuldaS. Repurposing anticancer drugs for targeting necroptosis.Cell Cycle201817782983210.1080/15384101.2018.1442626 29464983
    [Google Scholar]
  76. FausterA. RebsamenM. HuberK. BigenzahnJ. StukalovA. LardeauC. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis.Cell Death Dis.20156e176710.1038/cddis.2015.130
    [Google Scholar]
  77. NajjarM. SuebsuwongC. RayS.S. ThapaR.J. MakiJ.L. NogusaS. ShahS. SalehD. GoughP.J. BertinJ. YuanJ. BalachandranS. CunyG.D. DegterevA. Structure guided design of potent and selective ponatinib-based hybrid inhibitors for RIPK1.Cell Rep.201510111850186010.1016/j.celrep.2015.02.052 25801024
    [Google Scholar]
  78. HarrisP.A. BoloorA. CheungM. KumarR. CrosbyR.M. Davis-WardR.G. EpperlyA.H. HinkleK.W. HunterR.N.III JohnsonJ.H. KnickV.B. LaudemanC.P. LuttrellD.K. MookR.A. NolteR.T. RudolphS.K. SzewczykJ.R. TruesdaleA.T. VealJ.M. WangL. StaffordJ.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor.J. Med. Chem.200851154632464010.1021/jm800566m 18620382
    [Google Scholar]
  79. Wiscovitch-RussoR. Ibáñez-PradaE.D. Serrano-MayorgaC.C. SieversB.L. EngelbrideM.A. PadmanabhanS. TanG.S. VasheeS. BustosI.G. PachechoC. MendezL. DubeP.H. SinghH. ReyesL.F. Gonzalez-JuarbeN. Major adverse cardiovascular events are associated with necroptosis during severe COVID-19.Crit. Care202327115510.1186/s13054‑023‑04423‑8 37081485
    [Google Scholar]
  80. MillerG.D. BrunoB.J. LimC.S. Resistant mutations in CML and Ph(+)ALL - role of ponatinib.Biologics20148243254 25349473
    [Google Scholar]
  81. FeldmannF. SchenkB. MartensS. VandenabeeleP. FuldaS. Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells.Oncotarget2017840682086822010.18632/oncotarget.19919 28978109
    [Google Scholar]
  82. GuptaK. PhanN. WangQ. LiuB. Necroptosis in cardiovascular disease - A new therapeutic target.J. Mol. Cell. Cardiol.2018118263510.1016/j.yjmcc.2018.03.003 29524460
    [Google Scholar]
  83. SharmaA. BurridgeP.W. McKeithanW.L. SerranoR. ShuklaP. SayedN. ChurkoJ.M. KitaniT. WuH. HolmströmA. MatsaE. ZhangY. KumarA. FanA.C. del ÁlamoJ.C. WuS.M. MoslehiJ.J. MercolaM. WuJ.C. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.Sci. Transl. Med.20179377eaaf258410.1126/scitranslmed.aaf2584 28202772
    [Google Scholar]
  84. TalbertD.R. DohertyK.R. TruskP.B. MoranD.M. ShellS.A. BacusS. A multi-parameter in vitro screen in human stem cell-derived cardiomyocytes identifies ponatinib-induced structural and functional cardiac toxicity.Toxicol. Sci.2015143114715510.1093/toxsci/kfu215 25304212
    [Google Scholar]
  85. SinghA.P. GlennonM.S. UmbarkarP. GupteM. GalindoC.L. ZhangQ. ForceT. BeckerJ.R. LalH. Ponatinib-induced cardiotoxicity: Delineating the signalling mechanisms and potential rescue strategies.Cardiovasc. Res.2019115596697710.1093/cvr/cvz006 30629146
    [Google Scholar]
  86. SinghA.P. UmbarkarP. TousifS. LalH. Cardiotoxicity of the BCR-ABL1 tyrosine kinase inhibitors: Emphasis on ponatinib.Int. J. Cardiol.202031621422110.1016/j.ijcard.2020.05.077 32470534
    [Google Scholar]
  87. AhmedS.I. JamilS. IsmatullahH. HussainR. BibiS. KhandakerM.U. NaveedA. IdrisA.M. EmranT.B. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19.Saudi J. Biol. Sci.202330310356110.1016/j.sjbs.2023.103561 36684115
    [Google Scholar]
  88. MadonnaR. PieragostinoD. CufaroM.C. Del BoccioP. PucciA. MattiiL. DoriaV. Cadeddu DessalviC. ZucchiR. MercuroG. De CaterinaR. Sex-related differential susceptibility to ponatinib cardiotoxicity and differential modulation of the Notch1 signalling pathway in a murine model.J. Cell. Mol. Med.20222651380139110.1111/jcmm.17008 35122387
    [Google Scholar]
  89. TousifS. SinghA.P. UmbarkarP. GalindoC. WheelerN. Toro CoraA. ZhangQ. PrabhuS.D. LalH. Ponatinib drives cardiotoxicity by S100A8/A9-NLRP3-IL-1β mediated inflammation.Circ. Res.2023132326728910.1161/CIRCRESAHA.122.321504 36625265
    [Google Scholar]
  90. KanbayashiY. UchidaM. NakanoK. WakabayashiH. ShimizuT. Evaluation of cardiac adverse events with ponatinib using a spontaneous reporting database.Oncology2023101639740510.1159/000529768 37075717
    [Google Scholar]
  91. GardnerC.R. DaviesK.A. ZhangY. BrzozowskiM. CzabotarP.E. MurphyJ.M. LesseneG. From (tool) bench to bedside: The potential of necroptosis inhibitors.J. Med. Chem.20236642361238510.1021/acs.jmedchem.2c01621 36781172
    [Google Scholar]
  92. MulgaonkarN. WangH. MallawarachchiS. RůžekD. MartinaB. FernandoS. In silico and in vitro evaluation of imatinib as an inhibitor for SARS-CoV-2.J. Biomol. Struct. Dyn.20234173052306110.1080/07391102.2022.2045221 35220926
    [Google Scholar]
  93. JadeD. AlzahraniA. CritchleyW. PonnambalamS. HarrisonM.A. Identification of FDA-approved drugs against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through computational virtual screening.Struct. Chem.20233431005101910.1007/s11224‑022‑02072‑1 36467260
    [Google Scholar]
  94. QuekR.T. HardyK.S. WalkerS.G. NguyenD.T. de Almeida MagalhãesT. SalicA. GopalakrishnanS.M. SilverP.A. MitchisonT.J. Screen for modulation of nucleocapsid protein condensation identifies small molecules with anti-coronavirus activity.ACS Chem. Biol.202318358359410.1021/acschembio.2c00908 36795767
    [Google Scholar]
  95. DuijvelaarE. GisbyJ. PetersJ.E. BogaardH.J. AmanJ. Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients.Nat. Commun.202415174410.1038/s41467‑024‑44986‑w 38272877
    [Google Scholar]
  96. QinX. HuL. ShiS. ChenX. ZhuangC. ZhangW. JitkaewS. PangX. YuJ. TanY. WangH. CaiZ. The Bcr-Abl inhibitor GNF-7 inhibits necroptosis and ameliorates acute kidney injury by targeting RIPK1 and RIPK3 kinases.Biochem. Pharmacol.202017711394710.1016/j.bcp.2020.113947 32247850
    [Google Scholar]
  97. SotoudeheianM. SoleimaniM. FarahmandianN. Molecular pathways disturbances during covid-19 lead to cardiomyocyte necroptosis.Preprints202310.20944/preprints202304.0882.v1
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010324744240916110446
Loading
/content/journals/cpb/10.2174/0113892010324744240916110446
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cell death; cytokines; Myocardial injuries; reactive oxygen species; RIP3; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test