Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Ampullaviruses are unique among viruses. They live in extreme environments and have special bottle-shaped architecture. These features make them useful tools for biotechnology. These viruses have compact genomes. They encode a range of enzymes and proteins. Their natural environment highlights their suitability for industrial applications. Ongoing research explores ways in which these viruses can improve enzyme stability. They are also employed in the creation of new biosensors and the development of new bioremediation techniques. High co-infection rates and the ecology of ampullaviruses at larger scales can also reveal new viral vectors. They can also help improve phage therapy. Here, we have explored the structure and function of ampullaviruses. We have focused on their use in biotechnology. We have also identified their characteristics that could prove to be useful. We have also pointed out key knowledge gaps and bridging them could further extend the biotechnological uses.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010325244240916112436
2024-09-27
2025-12-18
Loading full text...

Full text loading...

/deliver/fulltext/cpb/26/14/CPB-26-14-03.html?itemId=/content/journals/cpb/10.2174/0113892010325244240916112436&mimeType=html&fmt=ahah

References

  1. CornelissenM. MałyskaA. NandaA.K. LankhorstR.K. ParryM.A.J. SaltenisV.R. PribilM. NacryP. InzéD. BaekelandtA. Biotechnology for Tomorrow’s World: Scenarios to Guide Directions for Future Innovation.Trends Biotechnol.202139543844410.1016/j.tibtech.2020.09.006 33162172
    [Google Scholar]
  2. RanjitP. VarmaC.A.S.L. MaddelaN.R. ReddyK.V. Biotechnology of Twenty-First Century.Innovations in Biotechnology for a Sustainable Future; Maddela, N.R. GarcíaL.C. ChamSpringer International Publishing2021174210.1007/978‑3‑030‑80108‑3_2
    [Google Scholar]
  3. KhalilA.M. The genome editing revolution: review.J. Genet. Eng. Biotechnol.20201816810.1186/s43141‑020‑00078‑y 33123803
    [Google Scholar]
  4. VarandaC.M.R. FélixM.R. CamposM.D. PatanitaM. MateratskiP. Plant viruses: from targets to tools for CRISPR.Viruses202113114110.3390/v13010141 33478128
    [Google Scholar]
  5. Lozano-DuránR. Geminiviruses for biotechnology: the art of parasite taming.New Phytol.20162101586410.1111/nph.13564 26214399
    [Google Scholar]
  6. SainsburyF. CañizaresM.C. LomonossoffG.P. Cowpea mosaic virus: the plant virus-based biotechnology workhorse.Annu. Rev. Phytopathol.201048143745510.1146/annurev‑phyto‑073009‑114242 20455698
    [Google Scholar]
  7. AljabaliA.A.A. ObeidM.A. TambuwalaM.M. DuaK. PalK. Viral nanoparticles where we are heading.Multidisciplinary Science and Advanced Technologies.Nova Science Publishers, Inc.20218591
    [Google Scholar]
  8. BlondalT. HjorleifsdottirS.H. FridjonssonO.F. AevarssonA. SkirnisdottirS. HermannsdottirA.G. HreggvidssonG.O. SmithA.V. KristjanssonJ.K. Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1.Nucleic Acids Res.200331247247725410.1093/nar/gkg914 14654700
    [Google Scholar]
  9. AljabaliA.A.A. HassanS.S. PabariR.M. ShahcheraghiS.H. MishraV. CharbeN.B. ChellappanD.K. DurejaH. GuptaG. AlmutaryA.G. AlnuqaydanA.M. VermaS.K. PandaP.K. MishraY.K. Serrano-ArocaÁ. DuaK. UverskyV.N. RedwanE.M. BaharB. BhatiaA. NegiP. GoyalR. McCarronP. BakshiH.A. TambuwalaM.M. The viral capsid as novel nanomaterials for drug delivery.Future Sci. OA202179FSO74410.2144/fsoa‑2021‑0031 34737885
    [Google Scholar]
  10. AljabaliA.A.A. Al ZoubiM.S. Al-BataynehK.M. PardhiD.M. DuaK. PalK. TambuwalaM.M. Innovative applications of plant viruses in drug targeting and molecular Imaging-A review.Curr. Med. Imaging202117491506
    [Google Scholar]
  11. AljabaliA.A.A. AlzoubiL. HamzatY. AlqudahA. ObeidM.A. Al ZoubiM.S. EnnabR.M. AlshaerW. AlbataynehK. Al-TradB. AlqudahD.A. ChellappanD.K. GuptaG. TambuwalaM.M. KamalD. EvansD.J. A potential MRI agent and an anticancer drug encapsulated within CPMV virus-like particles.Comb. Chem. High Throughput Screen.202124101557157110.2174/1386207323666200914110012 32928083
    [Google Scholar]
  12. AljabaliA.A.A. BarclayJ.E. SteinmetzN.F. LomonossoffG.P. EvansD.J. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid.Nanoscale20124185640564510.1039/c2nr31485a 22865109
    [Google Scholar]
  13. UgwuanyiI.R. FogelM.L. BowdenR. SteeleA. De NataleG. TroiseC. SommaR. PiochiM. MormoneA. GlamoclijaM. Comparative metagenomics at Solfatara and Pisciarelli hydrothermal systems in Italy reveal that ecological differences across substrates are not ubiquitous.Front. Microbiol.202314106640610.3389/fmicb.2023.1066406 36819055
    [Google Scholar]
  14. WitzanyG. Biocommunication of phages.Springer202010.1007/978‑3‑030‑45885‑0
    [Google Scholar]
  15. de SouzaR.F. IyerL.M. AravindL. Diversity and evolution of chromatin proteins encoded by DNA viruses.Biochim. Biophys. Acta. Gene Regul. Mech.201017993-430231810.1016/j.bbagrm.2009.10.006 19878744
    [Google Scholar]
  16. PrangishviliD. KrupovicM. Ictv ReportC. ICTV Virus Taxonomy Profile: Ampullaviridae.J. Gen. Virol.201899328828910.1099/jgv.0.001023 29458532
    [Google Scholar]
  17. PengX. BastaT. HäringM. GarrettR.A. PrangishviliD. Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms.Virology2007364123724310.1016/j.virol.2007.03.005 17412384
    [Google Scholar]
  18. HäringM. RachelR. PengX. GarrettR.A. PrangishviliD. Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae.J. Virol.200579159904991110.1128/JVI.79.15.9904‑9911.2005 16014951
    [Google Scholar]
  19. KrupovicM. Cvirkaite-KrupovicV. IranzoJ. PrangishviliD. KooninE.V. Viruses of archaea: Structural, functional, environmental and evolutionary genomics.Virus Res.201824418119310.1016/j.virusres.2017.11.025 29175107
    [Google Scholar]
  20. IranzoJ. KooninE.V. PrangishviliD. KrupovicM. Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements.J. Virol.20169024110431105510.1128/JVI.01622‑16 27681128
    [Google Scholar]
  21. LoutenJ. Virus Structure and Classification.Essential Human Virology.Elsevier2016192910.1016/B978‑0‑12‑800947‑5.00002‑8
    [Google Scholar]
  22. FerminG. Virion Structure, Genome Organization, and Taxonomy of Viruses.Viruses20182018175410.1016/B978‑0‑12‑811257‑1.00002‑4
    [Google Scholar]
  23. WangH. PengN. ShahS.A. HuangL. SheQ. Archaeal extrachromosomal genetic elements.Microbiol. Mol. Biol. Rev.201579111715210.1128/MMBR.00042‑14 25694123
    [Google Scholar]
  24. PinaM. BizeA. ForterreP. PrangishviliD. The archeoviruses.FEMS Microbiol. Rev.20113561035105410.1111/j.1574‑6976.2011.00280.x 21569059
    [Google Scholar]
  25. FuchsM. Marsella-HerrickP. LoebG.M. MartinsonT.E. HochH.C. Diversity of ampeloviruses in mealybug and soft scale vectors and in grapevine hosts from leafroll-affected vineyards.Phytopathology200999101177118410.1094/PHYTO‑99‑10‑1177 19740031
    [Google Scholar]
  26. NowakI. MadejM. SecemskaJ. SarnaR. Strzalka-MrozikB. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases.Pharmaceutics2023157193110.3390/pharmaceutics15071931 37514117
    [Google Scholar]
  27. VarandaC. FélixM.R. CamposM.D. MateratskiP. An Overview of the Application of Viruses to Biotechnology.Viruses20211310207310.3390/v13102073 34696503
    [Google Scholar]
  28. AljabaliA.A.A. AljbalyM.B.M. ObeidM.A. ShahcheraghiS.H. TambuwalaM.M. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages.Bacteriophages: Methods and Protocols. TumbanE. New York, NYSpringer US202427931510.1007/978‑1‑0716‑3549‑0_18
    [Google Scholar]
  29. NaranjoH.D. RatA. De ZutterN. De RidderE. LebbeL. AudenaertK. WillemsA. Uncovering genomic features and biosynthetic gene clusters in endophytic bacteria from roots of the medicinal plant Alkanna tinctoria tausch as a strategy to identify novel biocontrol bacteria.Microbiol. Spectr.2023114e00747e2310.1128/spectrum.00747‑23 37436171
    [Google Scholar]
  30. AiewsakunP. AdriaenssensE.M. LavigneR. KropinskiA.M. SimmondsP. Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy.J. Gen. Virol.20189991331134310.1099/jgv.0.001110 30016225
    [Google Scholar]
  31. HymanP. AbedonS.T. Smaller fleas: viruses of microorganisms.Scientifica (Cairo)2012201212310.6064/2012/734023 24278736
    [Google Scholar]
  32. KellerJ. LeulliotN. CollinetB. CampanacciV. CambillauC. PranghisvilliD. TilbeurghH. Crystal structure of AFV1‐102, a protein from the acidianus filamentous virus 1.Protein Sci.200918484584910.1002/pro.79 19319936
    [Google Scholar]
  33. PrangishviliD. VestergaardG. HäringM. AramayoR. BastaT. RachelR. GarrettR.A. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle.J. Mol. Biol.200635951203121610.1016/j.jmb.2006.04.027 16677670
    [Google Scholar]
  34. PengX. GarrettR.A. SheQ. Archaeal viruses—novel, diverse and enigmatic.Sci. China Life Sci.201255542243310.1007/s11427‑012‑4325‑8 22645086
    [Google Scholar]
  35. PrangishviliD. The wonderful world of archaeal viruses.Annu. Rev. Microbiol.201367156558510.1146/annurev‑micro‑092412‑155633 24024638
    [Google Scholar]
  36. ErdmannS. ChenB. HuangX. DengL. LiuC. ShahS.A. Le Moine BauerS. SobrinoC.L. WangH. WeiY. SheQ. GarrettR.A. HuangL. LinL. A novel single-tailed fusiform Sulfolobus virus STSV2 infecting model Sulfolobus species.Extremophiles2014181516010.1007/s00792‑013‑0591‑z 24163004
    [Google Scholar]
  37. PrangishviliD. BamfordD.H. ForterreP. IranzoJ. KooninE.V. KrupovicM. The enigmatic archaeal virosphere.Nat. Rev. Microbiol.2017151272473910.1038/nrmicro.2017.125 29123227
    [Google Scholar]
  38. ParvezM.K. Geometric architecture of viruses.World J. Virol.20209251810.5501/wjv.v9.i2.5 32923381
    [Google Scholar]
  39. GarrettR.A. ShahS.A. Martinez-AlvarezL. PengX. Archaeal Viruses and Their Interactions with CRISPR-Cas Systems.Biocommunication of Phages.Springer2020
    [Google Scholar]
  40. BaqueroD.P. LiuY. WangF. EgelmanE.H. PrangishviliD. KrupovicM. Structure and assembly of archaeal viruses.Adv. Virus Res.202010812716410.1016/bs.aivir.2020.09.004 33837715
    [Google Scholar]
  41. KooninE.V. KrupovicM. Evolution of viral proteins.Fields VirologyOpen access publications of the Institut Pasteur2023
    [Google Scholar]
  42. XieC. LiaoJ. ZhangN. SunY. LiY. XiongL. ZhangY. LiuX. SuW. ChenH. ZengP. ZhangX. LuY. WangT. ZhangC. Advanced nano drug delivery systems for neuroprotection against ischemic stroke.Chin. Chem. Lett.202435210914910.1016/j.cclet.2023.109149
    [Google Scholar]
  43. CollinsF.S. DoudnaJ.A. LanderE.S. RotimiC.N. Human molecular genetics and genomics—important advances and exciting possibilities.N. Engl. J. Med.202138411410.1056/NEJMp2030694 33393745
    [Google Scholar]
  44. KimH.S. KweonJ. KimY. Recent advances in CRISPR-based functional genomics for the study of disease-associated genetic variants.Exp. Mol. Med.202456486186910.1038/s12276‑024‑01212‑3 38556550
    [Google Scholar]
  45. AlvandiN. RajabnejadM. TaghvaeiZ. EsfandiariN. New generation of viral nanoparticles for targeted drug delivery in cancer therapy.J. Drug Target.202230215116510.1080/1061186X.2021.1949600 34210232
    [Google Scholar]
  46. DollT.A.P.F. RamanS. DeyR. BurkhardP. Nanoscale assemblies and their biomedical applications.J. R. Soc. Interface201310802012074010.1098/rsif.2012.0740 23303217
    [Google Scholar]
  47. ZengL. LiJ. LvM. LiZ. YaoL. GaoJ. WuQ. WangZ. YangX. TangG. QuG. JiangG. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces.Environ. Health202311153110.1021/envhealth.3c00005 37552709
    [Google Scholar]
  48. PoulsonR.L. TompkinsS.M. BerghausR.D. BrownJ.D. StallknechtD.E. Environmental Stability of Swine and Human Pandemic Influenza Viruses in Water under Variable Conditions of Temperature, Salinity, and pH.Appl. Environ. Microbiol.201682133721372610.1128/AEM.00133‑16 27084011
    [Google Scholar]
  49. AljabaliA.A.A. LomonossoffG.P. EvansD.J. CPMV-polyelectrolyte-templated gold nanoparticles.Biomacromolecules20111272723272810.1021/bm200499v 21657200
    [Google Scholar]
  50. NooraeiS. BahrulolumH. HoseiniZ.S. KatalaniC. HajizadeA. EastonA.J. AhmadianG. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers.J. Nanobiotechnology20211915910.1186/s12951‑021‑00806‑7 33632278
    [Google Scholar]
  51. Mejía-MéndezJ.L. Vazquez-DuhaltR. HernándezL.R. Sánchez-ArreolaE. BachH. Virus-like Particles: Fundamentals and Biomedical Applications.Int. J. Mol. Sci.20222315857910.3390/ijms23158579 35955711
    [Google Scholar]
  52. GhoshS. BanerjeeM. A smart viral vector for targeted delivery of hydrophobic drugs.Sci. Rep.2021111703010.1038/s41598‑021‑86198‑y 33782428
    [Google Scholar]
  53. IkwuagwuB. Tullman-ErcekD. Virus-like particles for drug delivery: a review of methods and applications.Curr. Opin. Biotechnol.20227810278510.1016/j.copbio.2022.102785 36099859
    [Google Scholar]
  54. WangH. GuoZ. FengH. ChenY. ChenX. LiZ. Hernández-AscencioW. DaiX. ZhangZ. ZhengX. Mora-LópezM. FuY. ZhangC. ZhuP. HuangL. Novel Sulfolobus Virus with an Exceptional Capsid Architecture.J. Virol.2018925e01727e1710.1128/JVI.01727‑17 29212941
    [Google Scholar]
  55. ChenY.L. BaoC.J. DuanJ.L. XieY. LuW.L. Overcoming biological barriers by virus-like drug particles for drug delivery.Adv. Drug Deliv. Rev.202320311513410.1016/j.addr.2023.115134 37926218
    [Google Scholar]
  56. RohovieM.J. NagasawaM. SwartzJ.R. Virus‐like particles: Next‐generation nanoparticles for targeted therapeutic delivery.Bioeng. Transl. Med.201721435710.1002/btm2.10049 29313023
    [Google Scholar]
  57. MaY. NolteR.J.M. CornelissenJ.J.L.M. Virus-based nanocarriers for drug delivery.Adv. Drug Deliv. Rev.201264981182510.1016/j.addr.2012.01.005 22285585
    [Google Scholar]
  58. LuaL.H.L. ConnorsN.K. SainsburyF. ChuanY.P. WibowoN. MiddelbergA.P.J. Bioengineering virus‐like particles as vaccines.Biotechnol. Bioeng.2014111342544010.1002/bit.25159 24347238
    [Google Scholar]
  59. ChungY.H. CaiH. SteinmetzN.F. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications.Adv. Drug Deliv. Rev.202015621423510.1016/j.addr.2020.06.024 32603813
    [Google Scholar]
  60. YuanB. LiuY. LvM. SuiY. HouS. YangT. BelhadjZ. ZhouY. ChangN. RenY. SunC. Virus-like particle-based nanocarriers as an emerging platform for drug delivery.J. Drug Target.202331543345510.1080/1061186X.2023.2193358 36940208
    [Google Scholar]
  61. HillB.D. ZakA. KheraE. WenF. Engineering virus-like particles for antigen and drug delivery.Curr. Protein Pept. Sci.2018191112127 27875963
    [Google Scholar]
  62. SevvanaM. KloseT. RossmannM.G. Principles of virus structure. Encyclopedia of virology.Encyclopedia of Virology.Academic press2021
    [Google Scholar]
  63. UldahlK.B. JensenS.B. Bhoobalan-ChittyY. Martínez-ÁlvarezL. PapathanasiouP. PengX. Life Cycle Characterization of Sulfolobus Monocaudavirus 1, an Extremophilic Spindle-Shaped Virus with Extracellular Tail Development.J. Virol.201690125693569910.1128/JVI.00075‑16 27053548
    [Google Scholar]
  64. ArbuthnotP. Antiviral Gene Therapy: Summary and Perspectives.Gene Therapy for Viral Infections.Academic press201535536410.1016/B978‑0‑12‑410518‑8.00012‑0
    [Google Scholar]
  65. EscorsD. BreckpotK. Lentiviral vectors in gene therapy: their current status and future potential.Arch. Immunol. Ther. Exp. (Warsz.)201058210711910.1007/s00005‑010‑0063‑4 20143172
    [Google Scholar]
  66. VrbaS.M. KirkN.M. BrisseM.E. LiangY. LyH. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats.Vaccines (Basel)20208468010.3390/vaccines8040680 33202961
    [Google Scholar]
  67. WangS. LiangB. WangW. LiL. FengN. ZhaoY. WangT. YanF. YangS. XiaX. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases.Signal Transduct. Target. Ther.20238114910.1038/s41392‑023‑01408‑5 37029123
    [Google Scholar]
  68. TraviesoT. LiJ. MaheshS. MelloJ.D.F.R.E. BlasiM. The use of viral vectors in vaccine development.NPJ Vaccines2022717510.1038/s41541‑022‑00503‑y 35787629
    [Google Scholar]
  69. UraT. OkudaK. ShimadaM. Developments in viral vector-based vaccines.Vaccines (Basel)20142362464110.3390/vaccines2030624 26344749
    [Google Scholar]
  70. PandyaS. ThakurA. SaxenaS. JassalN. PatelC. ModiK. ShahP. JoshiR. GongeS. KadamK. KadamP. A Study of the Recent Trends of Immunology: Key Challenges, Domains, Applications, Datasets, and Future Directions.Sensors (Basel)20212123778610.3390/s21237786 34883787
    [Google Scholar]
  71. SanjuánR. IllingworthC.J.R. GeogheganJ.L. IranzoJ. ZwartM.P. CiotaA.T. MoratorioG. Gago-ZachertS. DuffyS. VijaykrishnaD. Five Challenges in the Field of Viral Diversity and Evolution.Front. Virol.2021168494910.3389/fviro.2021.684949
    [Google Scholar]
  72. DasP.K. KielianM. Molecular and Structural Insights into the Life Cycle of Rubella Virus.J. Virol.20219510e02349e2010.1128/JVI.02349‑20 33627388
    [Google Scholar]
  73. DeyD. PoudyalS. RehmanA. HasanS.S. Structural and biochemical insights into flavivirus proteins.Virus Res.202129619834310.1016/j.virusres.2021.198343 33607183
    [Google Scholar]
  74. AltammarK.A. A review on nanoparticles: characteristics, synthesis, applications, and challenges.Front. Microbiol.202314115562210.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  75. JannuA. ShekarA. BalakrishnaR. SudarshanH. VeenaG.C. BhuvaneshwariS. Advantages, Disadvantages, Indications, Contraindications and Surgical Technique of Laryngeal Airway Mask.Arch. Craniofac. Surg.201718422322910.7181/acfs.2017.18.4.223 29349045
    [Google Scholar]
  76. PhilippotL. GriffithsB.S. LangenhederS. Microbial Community Resilience across Ecosystems and Multiple Disturbances.Microbiol. Mol. Biol. Rev.2021852e00026e2010.1128/MMBR.00026‑20 33789927
    [Google Scholar]
  77. KoskellaB. MeadenS. Understanding bacteriophage specificity in natural microbial communities.Viruses20135380682310.3390/v5030806 23478639
    [Google Scholar]
  78. Safety in biotechnology. Smith, J.E., Ed.; Biotechnology, 5th ed; Cambridge University Press: Cambridge2009224231
    [Google Scholar]
  79. KohliI. JoshiN.C. MohapatraS. VarmaA. Extremophile – An Adaptive Strategy for Extreme Conditions and Applications.Curr. Genomics20202129611010.2174/1389202921666200401105908 32655304
    [Google Scholar]
  80. KimJ.G. GaziK.S. KrupovicM. RheeS.K. ConsortiumI.R. ICTV virus taxonomy profile: thaspiviridae 2021.J. Gen. Virol.2021102700163110.1099/jgv.0.001631 34328827
    [Google Scholar]
  81. MaalK.B. BouzariM. ZavarehF.A. Biotechnological applications of two novel lytic bacteriophages of Streptococcus mutans in tooth decay bio-controlling.Curr. Res. Bacteriol.2015849010010.3923/crb.2015.90.100
    [Google Scholar]
  82. PareekC.S. SmoczynskiR. TretynA. Sequencing technologies and genome sequencing.J. Appl. Genet.201152441343510.1007/s13353‑011‑0057‑x 21698376
    [Google Scholar]
  83. LogsdonG.A. VollgerM.R. EichlerE.E. Long-read human genome sequencing and its applications.Nat. Rev. Genet.2020211059761410.1038/s41576‑020‑0236‑x 32504078
    [Google Scholar]
  84. SpiritiJ. ConwayJ.F. ZuckermanD.M. Should Virus Capsids Assemble Perfectly? Theory and Observation of Defects.Biophys. J.202011991781179010.1016/j.bpj.2020.09.021 33113349
    [Google Scholar]
  85. BruinsmaR.F. WuiteG.J.L. RoosW.H. Physics of viral dynamics.Nature. Reviews. Physics.202132769110.1038/s42254‑020‑00267‑1 33728406
    [Google Scholar]
  86. MalodeS.J. PrabhuK.K. MascarenhasR.J. ShettiN.P. AminabhaviT.M. Recent advances and viability in biofuel production.Energy Convers. Manage.20211010007010.1016/j.ecmx.2020.100070
    [Google Scholar]
  87. LoveJ. Microbial pathways for advanced biofuel production.Biochem. Soc. Trans.2022502987100110.1042/BST20210764 35411379
    [Google Scholar]
  88. JozalaA.F. GeraldesD.C. TundisiL.L. FeitosaV.A. BreyerC.A. CardosoS.L. MazzolaP.G. Oliveira-NascimentoL. Rangel-YaguiC.O. MagalhãesP.O. OliveiraM.A. PessoaA.Jr Biopharmaceuticals from microorganisms: from production to purification.Braz J Microbiol201647Suppl 1516310.1016/j.bjm.2016.10.00727838289
    [Google Scholar]
  89. CharbonneauM.R. IsabellaV.M. LiN. KurtzC.B. Developing a new class of engineered live bacterial therapeutics to treat human diseases.Nat. Commun.2020111173810.1038/s41467‑020‑15508‑1 32269218
    [Google Scholar]
  90. LahlaliR. EzrariS. RadouaneN. KenfaouiJ. EsmaeelQ. El HamssH. BelabessZ. BarkaE.A. Biological Control of Plant Pathogens: A Global Perspective.Microorganisms202210359610.3390/microorganisms10030596 35336171
    [Google Scholar]
  91. CollingeD.B. JensenD.F. RabieyM. SarroccoS. ShawM.W. ShawR.H. Biological control of plant diseases – What has been achieved and what is the direction?Plant Pathol.20227151024104710.1111/ppa.13555
    [Google Scholar]
  92. ParmanikA. DasS. KarB. BoseA. DwivediG.R. PandeyM.M. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review.Curr. Microbiol.2022791238810.1007/s00284‑022‑03061‑7 36329256
    [Google Scholar]
  93. GadarK. McCarthyR.R. Using next generation antimicrobials to target the mechanisms of infection. npj Antimicrob.Resist.202311110.1038/s44259‑023‑00011‑6
    [Google Scholar]
  94. HimelM.H. SikderB. AhmedT. ChoudhuryS.M. Biomimicry in nanotechnology: a comprehensive review.Nanoscale Adv.20235359661410.1039/D2NA00571A 36756510
    [Google Scholar]
  95. RampelottoP. Extremophiles and extreme environments.Life (Basel)20133348248510.3390/life3030482 25369817
    [Google Scholar]
  96. San MartínC. Structure and Assembly of Complex Viruses.Structure and Physics of Viruses: An Integrated Textbook. MateuM.G. DordrechtSpringer Netherlands201332936010.1007/978‑94‑007‑6552‑8_11
    [Google Scholar]
  97. MerinoN. AronsonH.S. BojanovaD.P. Feyhl-BuskaJ. WongM.L. ZhangS. GiovannelliD. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context.Front. Microbiol.20191078010.3389/fmicb.2019.00780 31037068
    [Google Scholar]
  98. ElnahalA.S.M. El-SaadonyM.T. SaadA.M. DesokyE.S.M. El-TahanA.M. RadyM.M. AbuQamarS.F. El-TarabilyK.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review.Eur. J. Plant Pathol.2022162475979210.1007/s10658‑021‑02393‑7
    [Google Scholar]
  99. HoenenT. GrosethA. Virus–Host Cell Interactions.Cells202211580410.3390/cells11050804 35269425
    [Google Scholar]
  100. FerminG. Host Range, Host–Virus Interactions, and Virus Transmission.Viruses201810113410.1016/B978‑0‑12‑811257‑1.00005‑X
    [Google Scholar]
  101. RothenburgS. BrennanG. Species-Specific Host–Virus Interactions: Implications for Viral Host Range and Virulence.Trends Microbiol.2020281465610.1016/j.tim.2019.08.007 31597598
    [Google Scholar]
  102. KochharN Ki K ShrivastavaS GhoshA RawatVS SodhiKK KumarM Perspectives on the microorganism of extreme environments and their applications.Current Research in Microbial Sciences2022310013410.1016/j.crmicr.2022.10013435909612
    [Google Scholar]
  103. HwangY. RouxS. CocletC. KrauseS.J.E. GirguisP.R. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats.Nat. Microbiol.20238594695710.1038/s41564‑023‑01347‑5 37024618
    [Google Scholar]
  104. GilJ.F. MesaV. Estrada-OrtizN. Lopez-ObandoM. GómezA. PlácidoJ. Viruses in Extreme Environments, Current Overview, and Biotechnological Potential.Viruses20211318110.3390/v13010081 33430116
    [Google Scholar]
  105. CabreraM.Á. BlameyJ.M. Biotechnological applications of archaeal enzymes from extreme environments.Biol. Res.20185113710.1186/s40659‑018‑0186‑3 30290805
    [Google Scholar]
  106. ThapaS. MishraJ. AroraN. MishraP. LiH.O. ′Hair, J.; Bhatti, S.; Zhou, S. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation.Rev. Environ. Sci. Biotechnol.20201962164810.1007/s11157‑020‑09536‑y
    [Google Scholar]
  107. CilliersJ HadlerK RaseraJ Toward the utilisation of resources in space: knowledge gaps, open questions, and priorities.npj Microgravity202392210.1038/s41526‑023‑00274‑3
    [Google Scholar]
  108. SmyeS.W. FrangiA.F. Interdisciplinary research: shaping the healthcare of the future.Future Healthc. J.202182e218e22310.7861/fhj.2021‑0025 34286188
    [Google Scholar]
  109. ReyF.A. LokS.M. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines.Cell201817261319133410.1016/j.cell.2018.02.054 29522750
    [Google Scholar]
  110. Martínez-MolinaE. Chocarro-WronaC. Martínez-MorenoD. MarchalJ.A. BoulaizH. Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges.Pharmaceutics20201211105110.3390/pharmaceutics12111051 33153183
    [Google Scholar]
  111. ShuW.S. HuangL.N. Microbial diversity in extreme environments.Nat. Rev. Microbiol.202220421923510.1038/s41579‑021‑00648‑y 34754082
    [Google Scholar]
  112. MahmoudiehM. NaghaviM.R. SobriZ.M. AzzemeA.M. Abd-AzizN. Nik Abd RahmanN.M.A. AlitheenN.B. HussinY. BahmanrokhG. BaharumN.A. Biotechnological approaches in the production of plant secondary metabolites for treating human viral diseases: Prospects and challenges.Biocatal. Agric. Biotechnol.20245910324910.1016/j.bcab.2024.103249
    [Google Scholar]
  113. MateuM.G. Assembly, stability and dynamics of virus capsids.Arch. Biochem. Biophys.20135311-2657910.1016/j.abb.2012.10.015 23142681
    [Google Scholar]
  114. PuhanM.A. AklE.A. BryantD. XieF. ApoloneG. RietG. Discussing study limitations in reports of biomedical studies- the need for more transparency.Health Qual. Life Outcomes20121012310.1186/1477‑7525‑10‑23 22360847
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010325244240916112436
Loading
/content/journals/cpb/10.2174/0113892010325244240916112436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test