Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Phytosterols are bioactive substances found naturally in the cell membranes of plants and have an arrangement of molecules similar to that of fat, which is produced by mammalian cells. They are widely distributed as dietary sources of lipids in plants, such as nuts, seeds, olive oil, and legumes. This review provides a summary of the efficacy of BS in treating lifestyle problems, as well as an appraisal of previous research. Data was collected from PubMed, ScienceDirect, Scopus, and Google scholar (1968 -2024) using standard keywords “β-sitosterol,” “Classification,” “Biosynthesis,” “Pharmacokinetics,” “Herbal nutraceutical,” “Analytical,” “Structure,” “Pharmacological effect.” A total of 222 studies were included in this review. Numerous and investigations have shown that BSs exhibit several biological properties such as calming and anxiolytic effects; narcotic and immune-stimulating effects; antibacterial, antineoplastic, inflammation-causing, lipid-lowering, and hepatoprotective effects; and antioxidant, anti-diabetic, and wound-healing effects in contrast to respiratory and non-alcoholic fatty liver disease illnesses. β-sitosterol is a promising natural substance for the management of cholesterol and inflammation. However, further studies are needed to understand its pharmacological consequences and determine its best use in clinical applications. β-Sitosterol, also known as “plant sterol ester,” is often present in plants and has several applications, notably in medicine and the food industry. Experimental research on β-sitosterol provides unequivocal evidence that phytosterol can be supplemented with other methods to combat serious illnesses. Such a high potential identifies this substance as a noteworthy medication for the future based on its composition. Although β-sitosterol has anticancer and anti-inflammatory properties and is useful in human clinical trials for enlarged prostates, its mechanism of action remains unclear.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010313844240905055119
2024-09-23
2025-12-19
Loading full text...

Full text loading...

References

  1. KopylovA.T. MalsagovaK.A. StepanovA.A. KayshevaA.L. Diversity of plant sterols metabolism: The impact on human health, sport, and accumulation of contaminating sterols.Nutrients2021135162310.3390/nu1305162334066075
    [Google Scholar]
  2. BabuS. JayaramanS. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management.Biomed. Pharmacother.202013111070210.1016/j.biopha.2020.11070232882583
    [Google Scholar]
  3. Bin SayeedM. KarimS. SharminT. MorshedM. Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: A plant-derived orphan phytosterol.Medicines2016342910.3390/medicines304002928930139
    [Google Scholar]
  4. European Food Safety Authority (EFSA) Consumption of food and beverages with added plant sterols.EFSA J.200863133r10.2903/j.efsa.2008.133r
    [Google Scholar]
  5. BarkasF. BathrellouE. NomikosT. PanagiotakosD. LiberopoulosE. KontogianniM.D. Plant sterols and plant stanols in cholesterol management and cardiovascular prevention.Nutrients20231513284510.3390/nu1513284537447172
    [Google Scholar]
  6. PatelS.B. Plant sterols and stanols: Their role in health and disease.J. Clin. Lipidol.200822S11S1910.1016/j.jacl.2008.01.00719343077
    [Google Scholar]
  7. Sánchez-CrisóstomoI. Fernández-MartínezE. Cariño-CortésR. Betanzos-CabreraG. Bobadilla-LugoR.A. Phytosterols and triterpenoids for prevention and treatment of metabolic-related liver diseases and hepatocellular carcinoma.Curr. Pharm. Biotechnol.201920319721410.2174/138920102066619021912235730806308
    [Google Scholar]
  8. MachadoV.A. SantistebanA.R.N. MartinsC.M. DamascenoN.R.T. FonsecaF.A. NetoA.M.F. IzarM.C. Effects of phytosterol supplementation on lipoprotein subfractions and LDL particle quality.Sci. Rep.20241411110810.1038/s41598‑024‑61897‑438750162
    [Google Scholar]
  9. VezzaT CanetF de MarañónAM BañulsC RochaM VíctorVM Phytosterols: nutritional health players in the management of obesity and its related disorders.Antioxidants2020912126610.3390/antiox9121266
    [Google Scholar]
  10. SalehiB. QuispeC. Sharifi-RadJ. Cruz-MartinsN. NigamM. MishraA.P. KonovalovD.A. OrobinskayaV. Abu-ReidahI.M. ZamW. SharopovF. VenneriT. CapassoR. Kukula-KochW. WawruszakA. KochW. Phytosterols: From preclinical evidence to potential clinical applications.Front. Pharmacol.20211159995910.3389/fphar.2020.59995933519459
    [Google Scholar]
  11. PrasadM. JayaramanS. EladlM.A. El-SherbinyM. AbdelrahmanM.A.E. VeeraraghavanV.P. VengadassalapathyS. UmapathyV.R. Jaffer HussainS.F. KrishnamoorthyK. SekarD. PalanisamyC.P. MohanS.K. RajagopalP. A comprehensive review on therapeutic perspectives of phytosterols in insulin resistance: A mechanistic approach.Molecules2022275159510.3390/molecules2705159535268696
    [Google Scholar]
  12. GuptaAD PatilSZ Natural medicinal products as potential enzyme inhibitors.Enzyme Inactivation in Food ProcessingApple Academic Press202326931010.1201/9781003331797‑13
    [Google Scholar]
  13. KircherHW Sterols and insects.Cholesterol systems in insects and animalsCRC Press201815010.1201/9781351070652‑1
    [Google Scholar]
  14. SmetE.D. MensinkR.P. PlatJ. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present.Mol. Nutr. Food Res.20125671058107210.1002/mnfr.20110072222623436
    [Google Scholar]
  15. ScolaroB. AndradeL.F.S. CastroI.A. Cardiovascular disease prevention: The earlier the better? A review of plant sterol metabolism and implications of childhood supplementation.Int. J. Mol. Sci.201921112810.3390/ijms2101012831878116
    [Google Scholar]
  16. PiironenV. LindsayD.G. MiettinenT.A. ToivoJ. LampiA.M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition.J. Sci. Food Agric.200080793996610.1002/(SICI)1097‑0010(20000515)80:7<939::AID‑JSFA644>3.0.CO;2‑C
    [Google Scholar]
  17. ParkH.Y. LeeK.W. ChoiH.D. Rice bran constituents: Immunomodulatory and therapeutic activities.Food Funct.20178393594310.1039/C6FO01763K28224159
    [Google Scholar]
  18. RashedK. Beta-sitosterol medicinal properties: A review article.J. Sci. Innov. Technol.20209208212
    [Google Scholar]
  19. MiettinenT.A. Phytosterols–what plant breeders should focus on.J. Sci. Food Agric.200181989590310.1002/jsfa.901
    [Google Scholar]
  20. RahimM.A. AyubH. SehrishA. AmbreenS. KhanF.A. ItratN. NazirA. ShoukatA. ShoukatA. EjazA. ÖzogulF. BartkieneE. RochaJ.M. Essential components from plant source oils: A review on extraction, detection, identification, and quantification.Molecules20232819688110.3390/molecules2819688137836725
    [Google Scholar]
  21. AwadAB BradfordPG Phytosterols: Sources and metabolism.Nutrition and Cancer PreventionCRC Press2005241268
    [Google Scholar]
  22. GuptaE. β-Sitosterol: Predominant phytosterol of therapeutic potential.Innovations in food technology: current perspectives and future goalsSpringer Nature Singapore Pte Ltd202046547710.1007/978‑981‑15‑6121‑4_32
    [Google Scholar]
  23. IsengardH.D. Water content, one of the most important properties of food.Food Control200112739540010.1016/S0956‑7135(01)00043‑3
    [Google Scholar]
  24. DurraniA.K. KhalidM. RazaA. Faiz ul RasoolI. KhalidW. AkhtarM.N. Ahmad KhanA. AbdullahZ. KhadijahB. Clinical improvement, toxicity and future prospects of β-sitosterol: A review.CYTA J. Food2024221233788610.1080/19476337.2024.2337886
    [Google Scholar]
  25. MathesonA.B. KoutsosV. DalkasG. EustonS. CleggP. Microstructure of β-Sitosterol:γ-Oryzanol Edible Organogels.Langmuir201733184537454210.1021/acs.langmuir.7b0004028430456
    [Google Scholar]
  26. DiasM.C. PintoD.C.G.A. FigueiredoC. SantosC. SilvaA.M.S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery.Phytochemistry202118511269510.1016/j.phytochem.2021.11269533581598
    [Google Scholar]
  27. EkinciM.S. GürüM. Extraction of oil and β-sitosterol from peach (Prunus persica) seeds using supercritical carbon dioxide.J. Supercrit. Fluids20149231932310.1016/j.supflu.2014.06.004
    [Google Scholar]
  28. HakalaP. LampiA.M. OllilainenV. WernerU. MurkovicM. WähäläK. KarkolaS. PiironenV. Steryl phenolic acid esters in cereals and their milling fractions.J. Agric. Food Chem.200250195300530710.1021/jf025637b12207465
    [Google Scholar]
  29. PatelS. AshwanikumarN. RobinsonE. XiaY. MihaiC. GriffithJ.P.III HouS. EspositoA.A. KetovaT. WelsherK. JoyalJ.L. AlmarssonÖ. SahayG. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA.Nat. Commun.202011198310.1038/s41467‑020‑14527‑232080183
    [Google Scholar]
  30. Ramos-AguilarA.L. Ornelas-PazJ. Tapia-VargasL.M. Ruiz-CruzS. Gardea-BéjarA.A. YahiaE.M. Ornelas-PazJ.J. Pérez-MartínezJ.D. Rios-VelascoC. Ibarra-JunqueraV. The importance of the bioactive compounds of avocado fruit (Persea americana Mill) on human health.Biotecnia201921315416210.18633/biotecnia.v21i3.1047
    [Google Scholar]
  31. Salazar-LópezN.J. Domínguez-AvilaJ.A. YahiaE.M. Belmonte-HerreraB.H. Wall-MedranoA. Montalvo-GonzálezE. González-AguilarG.A. Avocado fruit and by-products as potential sources of bioactive compounds.Food Res. Int.2020138Pt A10977410.1016/j.foodres.2020.10977433292952
    [Google Scholar]
  32. Ramos-AguilarA.L. Ornelas-PazJ. Tapia-VargasL.M. Gardea-BejarA.A. YahiaE.M. Ornelas-PazJ.J. Perez-MartinezJ.D. Rios-VelascoC. Escalante-MinakataP. Metabolomic analysis and physical attributes of ripe fruits from Mexican Creole (Persea americana var. Drymifolia) and ‘Hass’ avocados.Food Chem.202135412957110.1016/j.foodchem.2021.12957133761337
    [Google Scholar]
  33. SobhaniZ. AkaberiM. AmiriM.S. RamezaniM. EmamiS.A. SahebkarA. Medicinal species of the genus berberis: A review of their traditional and ethnomedicinal uses, phytochemistry and pharmacology.Adv. Exp. Med. Biol.2021130854757710.1007/978‑3‑030‑64872‑5_27
    [Google Scholar]
  34. KhanI. NajeebullahS. AliM. ShinwariZ.K. Phytopharmacological and ethnomedicinal uses of the Genus Berberis (Berberidaceae): A review.Trop. J. Pharm. Res.20161592047205710.4314/tjpr.v15i9.33
    [Google Scholar]
  35. AchakzaiZ AhmedS KhanZ ShahAA Functional and phytochemical potential of berberis.Pak-Euro J. Med. Life Sci.20214Special IsS25S34
    [Google Scholar]
  36. BegumS.N. Sundar RayA. HazraS. DeS. RahamanC.H. Unveiling the phytochemical profiles, selective bioactivity potential, and molecular docking study of bioactive compounds with target proteins using optimized bark extracts of Grewia asiatica L.Kuwait J. Sci.202451310023010.1016/j.kjs.2024.100230
    [Google Scholar]
  37. PandeyG. VermaK.K. SinghM. Evaluation of phytochemical, antibacterial and free radical scavenging properties of Azadirachta indica (neem) leaves.Int. J. Pharm. Pharm. Sci.201462444447
    [Google Scholar]
  38. DjibrilD. MamadouF. GérardV. GeuyeM.D. OumarS. LucR. Physical characteristics, chemical composition and distribution of constituents of the neem seeds (Azadirachta indica A. Juss) collected in Senegal.Res. J. Chem. Sci.201532606612
    [Google Scholar]
  39. RautelaI. DheerP. ThapliyalP. JoshiT. SharmaN. SharmaM.D. GC-MS analysis of plant leaf extract of Datura stramonium in different solvent system.Eur. J. Biomed. Pharm. Sci.20185236245
    [Google Scholar]
  40. GuptaA. KumarS. MahindrooN. SainiR.V. Bioactive fraction from Datura stramonium linn. promotes human immune cells mediated cytotoxicity towards lung and breast cancer cells.Pharmacogn. J.20168543543910.5530/pj.2016.5.4
    [Google Scholar]
  41. LavinyaB.U. MartinS.J. JayakumarP. JenaB. SamarpitaS. SabinaE.P. In-vitro antimicrobial potential of Bacopa monnieri and in-silico OMPX inhibitory activity of its active components.J. Chem. Pharm. Res.20168294300
    [Google Scholar]
  42. González-RomeroJ Guerra-HernándezEJ Rodríguez-PérezC Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes.Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative StressAcademic Press202237939910.1016/B978‑0‑12‑823482‑2.00011‑X
    [Google Scholar]
  43. MohammedM. MahdiM.F. TalibB. AbaasI.S. Identification and isolation of lupeol and β-sitosterol from iraqi bauhinia variegata and determination the cytotoxic activity of the hexane extract of its leaves, stems and flowers.Res J Pharm Technol.202114115703570810.52711/0974‑360X.2021.00991
    [Google Scholar]
  44. TanakaM. MisawaE. ItoY. HabaraN. NomaguchiK. YamadaM. ToidaT. HayasawaH. TakaseM. InagakiM. HiguchiR. Identification of five phytosterols from Aloe vera gel as anti-diabetic compounds.Biol. Pharm. Bull.20062971418142210.1248/bpb.29.141816819181
    [Google Scholar]
  45. BernardiD.M. MarchiJ.P. AraújoC.S.A. NascimentoV.R. LimaD.S. WietzikoskiS. FerroM.M. MiyoshiE. LíveroF.A.R. SeixasF.A.V. LovatoE.C.W. Dopamine docking studies of biologically active metabolites from Curcuma longa L.Research, Society and Development2021107e5991071699210.33448/rsd‑v10i7.16992
    [Google Scholar]
  46. GhaneSG ZananRL Ethnopharmacology and Phytochemistry of kewda [Pandanus odorifer (Forssk.) Kuntze; family: Pandanaceae].Bioactives and pharmacology of medicinal plantsApple Academic Press2022451463
    [Google Scholar]
  47. Kumar PaulG. MahmudS. AldahishA.A. AfrozeM. BiswasS. Briti Ray GuptaS. Hasan RazuM. ZamanS. Salah UddinM. NahariM.H. Merae AlshahraniM. Abdul Rahman AlshahraniM. KhanM. Abu SalehM. Computational screening and biochemical analysis of Pistacia integerrima and Pandanus odorifer plants to find effective inhibitors against Receptor-Binding domain (RBD) of the spike protein of SARS-Cov-2.Arab. J. Chem.202215210360010.1016/j.arabjc.2021.10360034909068
    [Google Scholar]
  48. KhushbuC. RoshniS. AnarP. CarolM. MayureeP. Phytochemical and therapeutic potential of Piper longum Linn a review.Int. J. Res. Ayurveda Pharm.201121157161
    [Google Scholar]
  49. SinghS. PriyadarshiA. SinghB. SharmaP. Pharmacognostical and phytochemical analysis of Pippali (Piper longum Linn.).Pharma Innov. J.20187286289
    [Google Scholar]
  50. AgrawalJ. PalA. Nyctanthes arbor-tristis Linn—A critical ethnopharmacological review.J. Ethnopharmacol.2013146364565810.1016/j.jep.2013.01.02423376280
    [Google Scholar]
  51. BhalakiyaH. ModiN.R. Traditional medicinal uses, phytochemical profile and pharmacological activities of Nyctanthes arbortris.RJLBPCS20195110031023
    [Google Scholar]
  52. HaM.T. VuN.K. TranT.H. KimJ.A. WooM.H. MinB.S. Phytochemical and pharmacological properties of Myristica fragrans Houtt.: An updated review.Arch. Pharm. Res.202043111067109210.1007/s12272‑020‑01285‑433206347
    [Google Scholar]
  53. ObranovićM BryśJ RepajićM BalbinoS ŠkevinD BryśA TonkovićP MedvedAM UzelacVD KraljićK Fatty acid and sterol profile of nutmeg (Myristica fragrans) and star anise (Illicium verum) extracted using three different methods.Proceedings202170133
    [Google Scholar]
  54. KafleA. KalauniS.K. ManandharM.D. Phytochemical studies and in vitro activity of Asparagus racemosus.J. Nepal Pharm. Assoc.2012261485310.3126/jnpa.v26i1.6632
    [Google Scholar]
  55. VermaRK Pradeep ParasharPP Quantitative estimation of β sitosterol and stigmasterol in Asparagus racemosus, and Tinospora cordifolia.Int. J. Pharma Bio Sci.201344232235
    [Google Scholar]
  56. RoutK. SwainS. ChandP. Quantification of β-sitosterol in hairy root cultures and natural plant parts of butterfly pea (Clitoria ternatea L.). JPC–.J. Planar Chromatogr. Mod. TLC2014271424610.1556/JPC.27.2014.1.8
    [Google Scholar]
  57. MakasanaJ. DholakiyaB.Z. GajbhiyeN.A. BishoyiA.K. RajuS. Assessment of chemical diversity in Clitoria ternatea accessions by an improved and validated HPTLC method.Indian J. Agric. Sci.20168691133113910.56093/ijas.v86i9.61419
    [Google Scholar]
  58. AhmadS.R. GhoshP. A systematic investigation on flavonoids, catechin, β-sitosterol and lignin glycosides from Saraca asoca (ashoka) having anti-cancer & antioxidant properties with no side effect.J. Indian Chem. Soc.202299110029310.1016/j.jics.2021.100293
    [Google Scholar]
  59. PagareM.S. PatilL. KadamV.J. Benincasa hispida: A Natural medicine.Res J Pharm Technol..201141219411944
    [Google Scholar]
  60. AliS.A. GaddamN. MuddukrishnaB.S. BhatK. DatarkarS. BallalM. VasantharajuS.G. Shelf life determination of Khushmanda Rasayana towards scientific evidence for the chemical stability.J. Appl. Pharm. Sci.2024143136144
    [Google Scholar]
  61. SrivastavaS SinghAP RawatAK Comparative botanical and phytochemical evaluation of Calotropis procera Linn. and Calotropis gigantea Linn. Root.J. Appl. Pharm. Sci.201550704104710.7324/JAPS.2015.50707
    [Google Scholar]
  62. KhanZH FaruqueeHM ShaikMM Phytochemistry and pharmacological potential of Terminalia arjuna L.Medicinal Plant Research20133
    [Google Scholar]
  63. DwivediS. SharmaV. PatilC.R. Can We Use Terminalia Arjuna (Roxb.) Wight and Arn in Place of Novel Oral Anticoagulants (NOACs) in Post-COVID-19Cardiac Conditions?J. Pharmacol. Pharmacother.2022131959610.1177/0976500X221080202
    [Google Scholar]
  64. AliA JameelM AliM. A new naphthyl substituted β-sitosterol and fatty acids from the bark of Ficus religiosa L.Indian Drugs2017547182210.53879/id.54.07.10899
    [Google Scholar]
  65. GapparovA.M. ToshpulatovaD.S. UmarxonovaH.V. Phytochemical study of the plant convolvulus pseudocanthabrica growing in fergana region.Eur. J. Agric. Rural Educ.2021251011
    [Google Scholar]
  66. IrshadS. KhatoonS. Development of a validated high-performance thin-layer chromatography method for the simultaneous estimation of caffeic acid, ferulic acid, β-sitosterol, and lupeol in Convolvulus pluricaulis Choisy and its adulterants/substitutes.J. Planar Chromatogr. Mod. TLC201831642943610.1556/1006.2018.31.6.2
    [Google Scholar]
  67. TaprialS. A review on phytochemical and pharmacological properties of Michelia champaca Linn. Family: Magnoliaceae.Int J Pharmacogn.20152430436
    [Google Scholar]
  68. AhmadH. SehgalS. MishraA. GuptaR. SarafS.A. TLCDetection of β-sitosterol in Michelia champaca L. Leaves andstem bark and its determination by HPTLC.Pharmacogn. J.2012427455510.5530/pj.2012.27.8
    [Google Scholar]
  69. SoniK. SanganiC.B. KorgaokarS. VanzaraP. AfzalM. AlarifiA. Kumar AmetaR. DuanY.T. HSA, free radicals, and antibacterial interaction with ferrous oxide nanoparticles synthesized from Amorphophallus paeoniifolius.J. Mol. Liq.202440312490310.1016/j.molliq.2024.124903
    [Google Scholar]
  70. DeyY.N. WanjariM.M. SrivastavaB. KumarD. SharmaD. SharmaJ. GaidhaniS. Beneficial effect of standardized extracts of Amorphophallus paeoniifolius tuber and its active constituents on experimental constipation in rats.Heliyon202065e0402310.1016/j.heliyon.2020.e0402332509986
    [Google Scholar]
  71. SharmaG.N. DubeyS.K. SatiN. SanadyaJ. Phytochemical screening and estimation of total phenolic content in Aegle marmelos seeds.Int. J. Pharm. Clin. Res.2011232729
    [Google Scholar]
  72. DuesterK.C. Avocado fruit is a rich source of beta-sitosterol.J. Am. Diet. Assoc.2001101440440510.1016/S0002‑8223(01)00102‑X11320941
    [Google Scholar]
  73. ZmysłowskiA. SitkowskiJ. MichalskaK. SzterkA. Purification of commercially available β‐sitosterol via chemical synthesis.Eur. J. Lipid Sci. Technol.20211233200033110.1002/ejlt.202000331
    [Google Scholar]
  74. HangJ.I. Synthesis of β-Sitosterol and Phytosterol Esters; II. New Methodology for Singlet Oxygen Generation from 1, 1-Dihydroperoxides Derivatives.The University of Nebraska-Lincoln2012
    [Google Scholar]
  75. RyanM.C. Catalytic Asymmetric Cyclization Reactions of Chiral Cyclopentadienylruthenium and Indenylruthenium Complexes.Stanford University2016
    [Google Scholar]
  76. BildziukevichU. VidaN. RárováL. KolářM. ŠamanD. HavlíčekL. DrašarP. WimmerZ. Polyamine derivatives of betulinic acid and β-sitosterol: A comparative investigation.Steroids2015100273510.1016/j.steroids.2015.04.00525963549
    [Google Scholar]
  77. JovanovićA.A. BalančB.D. OtaA. Ahlin GrabnarP. DjordjevićV.B. ŠavikinK.P. BugarskiB.M. NedovićV.A. Poklar UlrihN. Comparative effects of cholesterol and β‐sitosterol on the liposome membrane characteristics.Eur. J. Lipid Sci. Technol.20181209180003910.1002/ejlt.201800039
    [Google Scholar]
  78. AlamgirA.N. AlamgirA.N. Phytoconstituents—active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin.Therapeutic Use of Medicinal Plants and their Extracts.Phytochemistry and Bioactive Compounds201822516410.1007/978‑3‑319‑92387‑1_2
    [Google Scholar]
  79. XuH LiY HanB LiZ WangB JiangP ZhangJ MaW ZhouD LiX YeX. Anti-breast-cancer activity exerted by β-sitosterol-D-glucoside from sweet potato via upregulation of microRNA-10a and via the PI3K–Akt signaling pathway.J. Agric. Food Chem.201866379704971810.1021/acs.jafc.8b03305
    [Google Scholar]
  80. MiettinenT.A. PuskaP. GyllingH. VanhanenH. VartiainenE. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population.ACC Curr. J. Rev.1996355010.1056/NEJM1995111633320027566021
    [Google Scholar]
  81. PouteauE.B. MonnardI.E. Piguet-WelschC. GrouxM.J.A. SagalowiczL. BergerA. Non-esterified plant sterols solubilized in low fat milks inhibit cholesterol absorption.Eur. J. Nutr.200342315416410.1007/s00394‑003‑0406‑612811473
    [Google Scholar]
  82. YuanL. ZhangF. JiaS. XieJ. ShenM. Differences between phytosterols with different structures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells.J. Funct. Foods20206510371510.1016/j.jff.2019.103715
    [Google Scholar]
  83. OthmanR.A. MoghadasianM.H. Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties.Nutr. Rev.201169737138210.1111/j.1753‑4887.2011.00399.x21729090
    [Google Scholar]
  84. YuanL. ZhangF. ShenM. JiaS. XieJ. Phytosterols suppress phagocytosis and inhibit inflammatory mediators via ERK pathway on LPS-triggered inflammatory responses in RAW264. 7 macrophages and the correlation with their structure.Foods201981158210.3390/foods811058231744147
    [Google Scholar]
  85. LiQ.Z. ChangY.Z. LiL.D. DuX.Y. BaiX.H. HeZ.M. ChenL. ZhouX.W. Immunomodulatory activity of Ganoderma lucidum immunomodulatory protein via PI3K/Akt and MAPK signaling pathways in macrophage RAW264. 7 cells.bioRxiv2018499871
    [Google Scholar]
  86. SharmaN. TanM.A. AnS.S.A. Phytosterols: Potential metabolic modulators in neurodegenerative diseases.Int. J. Mol. Sci.202122221225510.3390/ijms22221225534830148
    [Google Scholar]
  87. Bashir DarK. Hussain BhatA. AminS. MasoodA. Afzal ZargarM. Ahmad GanieS. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds.Curr. Med. Chem.201623333775380010.2174/092986732366616081716353127538691
    [Google Scholar]
  88. RushdiM.I. Abdel-RahmanI.A.M. AttiaE.Z. AbdelraheemW.M. SaberH. MadkourH.A. AminE. HassanH.M. AbdelmohsenU.R. A review on the diversity, chemical and pharmacological potential of the green algae genus Caulerpa.S. Afr. J. Bot.202013222624110.1016/j.sajb.2020.04.031
    [Google Scholar]
  89. GravandiM.M. AbdianS. TahvilianM. IranpanahA. MoradiS.Z. FakhriS. EcheverríaJ. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration.Phytomedicine202311515482110.1016/j.phymed.2023.15482137119761
    [Google Scholar]
  90. SterlingS.R. BowenS.A. The potential for plant-based diets to promote health among blacks living in the United States.Nutrients20191112291510.3390/nu1112291531810250
    [Google Scholar]
  91. Alvarez-SalaA. AttanzioA. TesoriereL. Garcia-LlatasG. BarberáR. CillaA. Apoptotic effect of a phytosterol-ingredient and its main phytosterol (β-sitosterol) in human cancer cell lines.Int. J. Food Sci. Nutr.201970332333410.1080/09637486.2018.151168930192685
    [Google Scholar]
  92. AwadA.B. ChinnamM. FinkC.S. BradfordP.G. β-Sitosterol activates Fas signaling in human breast cancer cells.Phytomedicine2007141174775410.1016/j.phymed.2007.01.00317350814
    [Google Scholar]
  93. MaherT. Ahmad RausR. DaddiouaissaD. AhmadF. AdzharN.S. LatifE.S. AbdulhafizF. MohammedA. Medicinal plants with anti-leukemic effects: A review.Molecules2021269274110.3390/molecules2609274134066963
    [Google Scholar]
  94. RajavelT. PackiyarajP. SuryanarayananV. SinghS.K. RuckmaniK. Pandima DeviK. β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation.Sci. Rep.201881207110.1038/s41598‑018‑20311‑629391428
    [Google Scholar]
  95. KampaM. NifliA.P. NotasG. CastanasE. Polyphenols and cancer cell growth.Rev. Physiol. Biochem. Pharmacol.20071597911310.1007/112_2006_070217551696
    [Google Scholar]
  96. NandiS. NagA. KhatuaS. SenS. ChakrabortyN. NaskarA. AcharyaK. CalinaD. Sharifi-RadJ. Anticancer activity and other biomedical properties of β‐sitosterol: Bridging phytochemistry and current pharmacological evidence for future translational approaches.Phytother. Res.202438259261910.1002/ptr.806137929761
    [Google Scholar]
  97. PowerKA Interactive effects of flaxseed, soy, and their phytoestrogens on MCF-7 human breast tumors and bones in ovariectomized athymic mice.Thesis, University of Toronto2007
    [Google Scholar]
  98. EvtyuginD.D. EvtuguinD.V. CasalS. DominguesM.R. Advances and challenges in plant sterol research: Fundamentals, analysis, applications and production.Molecules20232818652610.3390/molecules2818652637764302
    [Google Scholar]
  99. GrundyS.M. AhrensE.H.Jr SalenG. Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies.J. Lipid Res.19689337438710.1016/S0022‑2275(20)43108‑65646188
    [Google Scholar]
  100. Kamal-EldinA. MoazzamiA. Plant sterols and stanols as cholesterol-lowering ingredients in functional foods.Recent Pat. Food Nutr. Agric.20091111410.2174/221279841090101000120653521
    [Google Scholar]
  101. HoustonM. The role of nutrition and nutritional supplements in the treatment of dyslipidemia.Clin. Lipidol.20149333335410.2217/clp.14.25
    [Google Scholar]
  102. LeeM.J. YoonS.H. LeeS.K. ChungM.H. ParkY.I. SungC.K. ChoiJ.S. KimK.W. In vivo angiogenic activity of dichloromethane extracts ofAloe vera gel.Arch. Pharm. Res.199518533233510.1007/BF02976327
    [Google Scholar]
  103. SalaniD. TarabolettiG. RosanòL. Di CastroV. BorsottiP. GiavazziR. BagnatoA. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo.Am. J. Pathol.200015751703171110.1016/S0002‑9440(10)64807‑911073829
    [Google Scholar]
  104. El MenyiyN. MrabtiH.N. El OmariN. BakiliA.E.I. BakrimS. MekkaouiM. BalahbibA. Amiri-ArdekaniE. UllahR. AlqahtaniA.S. ShahatA.A. BouyahyaA. Medicinal uses, phytochemistry, pharmacology, and toxicology of Mentha spicata.Evid. Based Complement. Alternat. Med.20222022113210.1155/2022/799050835463088
    [Google Scholar]
  105. van PamelE. DaeseleireE. A multiresidue liquid chromatographic/tandem mass spectrometric method for the detection and quantitation of 15 nonsteroidal anti-inflammatory drugs (NSAIDs) in bovine meat and milk.Anal. Bioanal. Chem.2015407154485449410.1007/s00216‑015‑8634‑125814273
    [Google Scholar]
  106. VillaseñorI.M. AngeladaJ. CanlasA.P. EchegoyenD. Bioactivity studies on β‐sitosterol and its glucoside.Phytother. Res.200216541742110.1002/ptr.91012203259
    [Google Scholar]
  107. DwivediJ. SachanP. WalP. A mechanistic approach on structural, analytical and pharmacological potential of beta-sitosterol: A promising nutraceutical.Curr. Nutr. Food Sci.202420893295110.2174/0115734013245468230927042947
    [Google Scholar]
  108. KhanZ. NathN. RaufA. EmranT.B. MitraS. IslamF. ChandranD. BaruaJ. KhandakerM.U. IdrisA.M. WilairatanaP. ThiruvengadamM. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications.Chem. Biol. Interact.202236511011710.1016/j.cbi.2022.11011735995256
    [Google Scholar]
  109. ElbermawiA. DarwishM.S. ZakiA.A. Abou-ZeidN.A. TaherM.A. KhojahE. BokhariS.A. SolimanA.F. In vitro antidiabetic, antioxidant, and prebiotic activities of the chemical compounds isolated from Guizotia abyssinica.Antioxidants20221112248210.3390/antiox1112248236552690
    [Google Scholar]
  110. BouicP.J.D. EtsebethS. LiebenbergR.W. AlbrechtC.F. PegelK. Van JaarsveldP.P. Beta-sitosterol and beta-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination.Int. J. Immunopharmacol.1996181269370010.1016/S0192‑0561(97)85551‑89172012
    [Google Scholar]
  111. NairA ChattopadhyayD SahaB. Plant-derived immunomodulators.New look to phytomedicineAcademic Press201943549910.1016/B978‑0‑12‑814619‑4.00018‑5
    [Google Scholar]
  112. CobbC.S. ErnstE. Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus.Clin. Rheumatol.200625327528410.1007/s10067‑005‑0001‑816220229
    [Google Scholar]
  113. ChiufaiK ChenyuL ChiianK ManinL LirongM FongP. Anti-endometrial cancer activity of hedyotis diffusa willd and its phytochemicals by experimental and in silico analysis.Trop. J. Nat. Prod. Res.202265
    [Google Scholar]
  114. DonnapeeS. LiJ. YangX. GeA. DonkorP.O. GaoX. ChangY. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine.J. Ethnopharmacol.201415729230810.1016/j.jep.2014.09.03225281912
    [Google Scholar]
  115. WiltM. Macdonald Ishani β‐sitosterol for the treatment of benign prostatic hyperplasia.BJU Int.199983997698310.1046/j.1464‑410x.1999.00026.x10368239
    [Google Scholar]
  116. RamuR. ShirahattiP.S. NayakavadiS. RV. ZameerF. DhananjayaB.L. Prasad MNN. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats.Food Funct.2016793999401110.1039/C6FO00343E27711824
    [Google Scholar]
  117. KhanH.M. MurtazaG. UsmanM. RasoolF. AkhtarM. QureshiM.I. FarzanaK. Evidence based study of side effects of drugs used in the treatment of diabetes mellitus.Afr. J. Pharm. Pharmacol.201262418051808
    [Google Scholar]
  118. PundarikakshuduK ShahPA PatelMG A comprehensive review of Indian medicinal plants effective in diabetes management: Current status and future prospects.Antidiab. Med. Plants.202437310.1016/B978‑0‑323‑95719‑9.00013‑6
    [Google Scholar]
  119. DengX. LiuZ. HanS. Cimifugin inhibits adipogenesis and TNF-α-induced insulin resistance in 3T3-L1 cells.Open Med.20231812023085510.1515/med‑2023‑085538045856
    [Google Scholar]
  120. LvX. GaoF. LiT.P. XueP. WangX. WanM. HuB. ChenH. JainA. ShaoZ. CaoX. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY.eLife202110e7032410.7554/eLife.7032434468315
    [Google Scholar]
  121. ChaiJ.W. LimS.L. KanthimathiM.S. KuppusamyU.R. Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes.Genes Nutr.20116218118810.1007/s12263‑010‑0196‑421484150
    [Google Scholar]
  122. CzechM.P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes.Mol. Metab.202034274210.1016/j.molmet.2019.12.01432180558
    [Google Scholar]
  123. AfifiS.M. AmmarN.M. KamelR. EsatbeyogluT. HassanH.A. β-Sitosterol glucoside-loaded nanosystem ameliorates insulin resistance and oxidative stress in streptozotocin-induced diabetic rats.Antioxidants2022115102310.3390/antiox1105102335624887
    [Google Scholar]
  124. MatsudaM. ShimomuraI. Increased oxidative stress in obesity: Implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer.Obes. Res. Clin. Pract.201375e330e34110.1016/j.orcp.2013.05.00424455761
    [Google Scholar]
  125. ZgutkaK. TkaczM. TomasiakP. TarnowskiM. A role for advanced glycation end products in molecular ageing.Int. J. Mol. Sci.20232412988110.3390/ijms2412988137373042
    [Google Scholar]
  126. UmaruI.J. ShuaibuS.I. AdamR.B. HabibuB. UmaruK.I. HarunaD.E. DavidB.C. Effect of herbal medicine and its biochemical implication.Int. J. Adv. Biochem. Res.202042465710.33545/26174693.2020.v4.i2a.130
    [Google Scholar]
  127. LiuY. LiZ. LiW. ChenX. YangL. LuS. ZhouS. LiM. XiongW. ZhangX. LiuY. ZhouJ. Discovery of β-sitosterol’s effects on molecular changes in rat diabetic wounds and its impact on angiogenesis and macrophages.Int. Immunopharmacol.202412611128310.1016/j.intimp.2023.11128338035407
    [Google Scholar]
  128. ElkeilshA. AwadY.M. SolimanM.H. Abu-ElsaoudA. AbdelhamidM.T. El-MetwallyI.M. Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system.J. Plant Res.2019132688190110.1007/s10265‑019‑01143‑531606785
    [Google Scholar]
  129. SarkarA BhattacharjeeS. Terpenoids in treatment of immunological disease.Terpenoids Against Human DiseasesCRC Press201911917510.1201/9781351026703‑6
    [Google Scholar]
  130. MirkovI. StojkovićD. AleksandrovA.P. IvanovM. KostićM. GlamočlijaJ. SokovićM. Plant extracts and isolated compounds reduce parameters of oxidative stress induced by heavy metals: An up-to-date review on animal studies.Curr. Pharm. Des.202026161799181510.2174/138161282666620040716340832264808
    [Google Scholar]
  131. HamizaO.O. RehmanM.U. KhanR. TahirM. KhanA.Q. LateefA. SultanaS. Chemopreventive effects of aloin against 1,2-dimethylhydrazine-induced preneoplastic lesions in the colon of Wistar rats.Hum. Exp. Toxicol.201433214816310.1177/096032711349330723928829
    [Google Scholar]
  132. ShriramV. KumarV. Eulophia spp.: In vitro generation, chemical constituents, and pharmacological activities.Orchids Phytochemistry, Biology and Horticulture: Fundamentals and Applications.ChamSpringer International Publishing202112310.1007/978‑3‑030‑11257‑8_31‑1
    [Google Scholar]
  133. BalajiR DuraisamyR KumarMP Complications of diabetes mellitus: A review.Drug Invention Today2019121
    [Google Scholar]
  134. TengH. YuanB. GothaiS. ArulselvanP. SongX. ChenL. Dietary triterpenes in the treatment of type 2 diabetes: To date.Trends Food Sci. Technol.201872344410.1016/j.tifs.2017.11.012
    [Google Scholar]
  135. BabuS. KrishnanM. RajagopalP. PeriyasamyV. VeeraraghavanV. GovindanR. JayaramanS. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats.Eur. J. Pharmacol.202087317300410.1016/j.ejphar.2020.17300432045603
    [Google Scholar]
  136. PeiJ. PrasadM. Mohamed HelalG. El-SherbinyM. Abdelmonem ElsherbiniD.M. RajagopalP. PalanisamyC.P. VeeraraghavanV.P. JayaramanS. SurapaneniK.M. [Retracted] Beta‐sitosterol facilitates glut4 vesicle fusion on the plasma membrane via the activation of Rab/IRAP/Munc 18 signaling pathways in diabetic gastrocnemius muscle of adult male rats.Bioinorg. Chem. Appl.202220221777230510.1155/2022/777230535992048
    [Google Scholar]
  137. KrishnanM. BabuS. RajagopalP. NazarS.P. ChinnaiyanM. JayaramanS. Effect of β-sitosterol on insulin receptor, glucose transporter 4 protein expression and glucose oxidation in the gastrocnemius muscle of high fat diet induced type-2 diabetic experimental rats.Indian J. Pharm. Educ. Res.2021552ss479s49110.5530/ijper.55.2s.119
    [Google Scholar]
  138. BihareeA. ChaudhariL. BhartiyaS. KoriS.K. ChaudharyA. DubeyD. YadavA. A comprehensive study on natural products and their bioactive constituents to cure respiratory diseases.Nat. Prod. J.2024142e12062321787910.2174/2210315513666230612111133
    [Google Scholar]
  139. KansilT. AminZ. YusofN.A. ZakariaZ.A. Mohd MokhtarR.A. Mycobacterium tuberculosis as a resilient foe in the mechanisms of colonisation, pathogenesis and host immune responses serves as a prerequisite for the development of potential mangrove plant-derived anti-TB drugs.Malays. J. Microbiol.202319610.21161/mjm.230010
    [Google Scholar]
  140. MaaroufR.E. Abdel-RafeiM.K. ThabetN.M. AzabK.S. RashedL. El BakaryN.M. Ondansetron or beta-sitosterol antagonizes inflammatory responses in liver, kidney, lung and heart tissues of irradiated arthritic rats model.Int. J. Immunopathol. Pharmacol.2024380394632024126063510.1177/0394632024126063538831558
    [Google Scholar]
  141. Abdul WahabI.R. HussainM.F. Brine shrimp lethality test of various Cinnamomum iners (Lauraceae) barks extracts.J. Trop. Resour. Sustain. Sci.202162109113[JTRSS].10.47253/jtrss.v6i2.573
    [Google Scholar]
  142. KuhnertN. KararM.G.E. Herbal drugs from Sudan: Traditional uses and phytoconstituents.Pharmacogn. Rev.201711228310310.4103/phrev.phrev_15_1528989244
    [Google Scholar]
  143. AlawodeT.T. LajideL. OlaleyeM. OwolabiB. Stigmasterol and β-Sitosterol: Antimicrobial compounds in the Leaves of Icacina trichantha identified by GC–MS.Beni. Suef Univ. J. Basic Appl. Sci.20211018010.1186/s43088‑021‑00170‑3
    [Google Scholar]
  144. MayorgaL. SalassaB.N. MarzeseD.M. LoosM.A. EiroaH.D. LubienieckiF. García SamartinoC. RomanoP.S. RoquéM. Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA.Cell. Mol. Life Sci.20197671397141710.1007/s00018‑019‑03008‑530673822
    [Google Scholar]
  145. RinthongP. PulbutrP. MudjupaC. Molecular docking studies of Triphala with catalytic portion of HMG-CoA reductase enzyme.J. Herbmed Pharmacol.202312226227010.34172/jhp.2023.28
    [Google Scholar]
  146. DammE. BuechT.R.H. GudermannT. BreitA. Melanocortin-induced PKA activation inhibits AMPK activity via ERK-1/2 and LKB-1 in hypothalamic GT1-7 cells.Mol. Endocrinol.201226464365410.1210/me.2011‑121822361823
    [Google Scholar]
  147. HwangS.L. YangB.K. LeeJ.Y. KimJ.H. KimB.H. SuhK.H. KimD.Y. KimM.S. SongH. ParkB.S. HuhT.L. Isodihydrocapsiate stimulates plasma glucose uptake by activation of AMP-activated protein kinase.Biochem. Biophys. Res. Commun.2008371228929310.1016/j.bbrc.2008.04.06118435912
    [Google Scholar]
  148. HwangS.L. KimH.N. JungH.H. KimJ.E. ChoiD.K. HurJ.M. LeeJ.Y. SongH. SongK.S. HuhT.L. Beneficial effects of β-sitosterol on glucose and lipid metabolism in L6 myotube cells are mediated by AMP-activated protein kinase.Biochem. Biophys. Res. Commun.200837741253125810.1016/j.bbrc.2008.10.13618992226
    [Google Scholar]
  149. Abo-ZaidO.A.R. MoawedF.S.M. IsmailE.S. FarragM.A. β-sitosterol attenuates high- fat diet-induced hepatic steatosis in rats by modulating lipid metabolism, inflammation and ER stress pathway.BMC Pharmacol. Toxicol.20232413110.1186/s40360‑023‑00671‑037173727
    [Google Scholar]
  150. RosE. Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk.Atherosclerosis2000151235737910.1016/S0021‑9150(00)00456‑110924713
    [Google Scholar]
  151. ChengY. ChenY. LiJ. QuH. ZhaoY. WenC. ZhouY. Dietary β-sitosterol regulates serum lipid level and improves immune function, antioxidant status, and intestinal morphology in broilers.Poult. Sci.20209931400140810.1016/j.psj.2019.10.02532111314
    [Google Scholar]
  152. JayaramanS. DevarajanN. RajagopalP. BabuS. GanesanS.K. VeeraraghavanV.P. PalanisamyC.P. CuiB. PeriyasamyV. ChandrasekarK. β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats.Molecules2021267210110.3390/molecules2607210133917607
    [Google Scholar]
  153. BaoX. ZhangY. ZhangH. XiaL. Molecular mechanism of β-sitosterol and its derivatives in tumor progression.Front. Oncol.20221292697510.3389/fonc.2022.92697535756648
    [Google Scholar]
  154. TavakolS. AshrafizadehM. DengS. AzarianM. AbdoliA. MotavafM. PoormoghadamD. KhanbabaeiH. Ghasemipour AfsharE. MandegaryA. PardakhtyA. YapC.T. MohammadinejadR. KumarA.P. Autophagy modulators: Mechanistic aspects and drug delivery systems.Biomolecules201991053010.3390/biom910053031557936
    [Google Scholar]
  155. SanzP. AMP-activated protein kinase: Structure and regulation.Curr. Protein Pept. Sci.20089547849210.2174/13892030878591525418855699
    [Google Scholar]
  156. SharmaA. AnandS.K. SinghN. DwivediU.N. KakkarP. AMP-activated protein kinase: An energy sensor and survival mechanism in the reinstatement of metabolic homeostasis.Exp. Cell Res.2023428111361410.1016/j.yexcr.2023.11361437127064
    [Google Scholar]
  157. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.9528974774
    [Google Scholar]
  158. HabeggerK.M. HoffmanN.J. RidenourC.M. BrozinickJ.T. ElmendorfJ.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol.Endocrinology201215352130214110.1210/en.2011‑209922434076
    [Google Scholar]
  159. RasmussenB.B. Regulation of malonyl-CoA formation in skeletal muscle: Effects of phosphorylation, exercise intensity, endurance training, and post-exercise recovery.Brigham Young University1997
    [Google Scholar]
  160. ShiS. ChenY. SiewersV. NielsenJ. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.MBio201453e01130-1410.1128/mBio.01130‑1424803522
    [Google Scholar]
  161. Jasmin JaitakV. A review on molecular mechanism of flavonoids as antidiabetic agents.Mini Rev. Med. Chem.201919976278610.2174/138955751966618122715342830588881
    [Google Scholar]
  162. WuM. CongY. WangK. YuH. ZhangX. MaM. DuanZ. PeiX. Bisphenol A impairs macrophages through inhibiting autophagy via AMPK/mTOR signaling pathway and inducing apoptosis.Ecotoxicol. Environ. Saf.202223411339510.1016/j.ecoenv.2022.11339535298966
    [Google Scholar]
  163. FengS. DaiZ. LiuA.B. HuangJ. NarsipurN. GuoG. KongB. ReuhlK. LuW. LuoZ. YangC.S. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20181863101274128410.1016/j.bbalip.2018.08.00430305244
    [Google Scholar]
  164. BlochK.E. Sterol structure and membrane function.Crit. Rev. Biochem.1983141479210.3109/104092383091027906340956
    [Google Scholar]
  165. Fidalgo RodríguezJ.L. Dynarowicz-LatkaP. Miñones CondeJ. How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique.Chem. Phys. Lipids202023210496810.1016/j.chemphyslip.2020.10496832896519
    [Google Scholar]
  166. SindhuR SinghI. Phytosterols: Physiological functions and therapeutic applications.Bioactive Food Components Activity in Mechanistic ApproachAcademic Press202222323810.1016/B978‑0‑12‑823569‑0.00008‑4
    [Google Scholar]
  167. MoreauR.A. NyströmL. WhitakerB.D. Winkler-MoserJ.K. BaerD.J. GebauerS.K. HicksK.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses.Prog. Lipid Res.201870356110.1016/j.plipres.2018.04.00129627611
    [Google Scholar]
  168. MoreauR.A. WhitakerB.D. HicksK.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses.Prog. Lipid Res.200241645750010.1016/S0163‑7827(02)00006‑112169300
    [Google Scholar]
  169. García-LlatasG. Rodríguez-EstradaM.T. Current and new insights on phytosterol oxides in plant sterol-enriched food.Chem. Phys. Lipids2011164660762410.1016/j.chemphyslip.2011.06.00521699886
    [Google Scholar]
  170. JewS. AbuMweisS.S. JonesP.J.H. Evolution of the human diet: Linking our ancestral diet to modern functional foods as a means of chronic disease prevention.J. Med. Food200912592593410.1089/jmf.2008.026819857053
    [Google Scholar]
  171. ChaniotiS KatsouliM TziaC. β-Sitosterol as a functional bioactive.A centum of valuable plant bioactivesAcademic Press2021January19321210.1016/B978‑0‑12‑822923‑1.00014‑5
    [Google Scholar]
  172. BartaS.L. Effects of β-sitosterol and tamoxifen on growth and ceramide metabolism in breast cancer cells.State University of New York at Buffalo2005
    [Google Scholar]
  173. Jaceldo-SieglK. LütjohannD. SiriratR. MashchakA. FraserG.E. HaddadE. Variations in dietary intake and plasma concentrations of plant sterols across plant‐based diets among North American adults.Mol. Nutr. Food Res.2017618160082810.1002/mnfr.20160082828130879
    [Google Scholar]
  174. MartinsC.M. FonsecaF.A. BallusC.A. Figueiredo-NetoA.M. MeinhartA.D. de GodoyH.T. IzarM.C. Common sources and composition of phytosterols and their estimated intake by the population in the city of São Paulo, Brazil.Nutrition201329686587110.1016/j.nut.2012.12.01723422542
    [Google Scholar]
  175. TabeeE. Lipid and phytosterol oxidation in vegetable oils and fried potato products.Department of Food Science, Swedish University of Agricultural Sciences2008
    [Google Scholar]
  176. SantosA.F. SouzaM.M.Q. PauliK.B. da SilvaG.R. MarquesM.W. AuthP.A. BortolucciW.C. GazimZ.C. LindeG.A. ColautoN.B. LovatoE.C.W. LiveroF.A.R. Bacopa monnieri: Historical aspects to promising pharmacological actions for the treatment of central nervous system diseases.Bol. Latinoam. Caribe Plantas Med. Aromat.202221213115510.37360/blacpma.22.21.2.09
    [Google Scholar]
  177. NichterM. ThompsonJ.J. For my wellness, not just my illness: North Americans’ use of dietary supplements.Cult. Med. Psychiatry200630217522210.1007/s11013‑006‑9016‑016841188
    [Google Scholar]
  178. VavasourE. RehmanA. JohnstonJ. HaywardS. GillespieZ. BoudraultC. LeeN. An overview of the evidence considered by Health Canada in the regulatory process to permit addition of plant sterols to selected foods accompanied by a cholesterol-lowering claim.Int. Food Risk Anal. J.20144
    [Google Scholar]
  179. SongY. LuZ. ZhangX. XuJ. GongM. MengL. GongZ. ZhengB. Dietary β‐sitosterol supplementation enhanced intestinal immune function of large yellow croaker ( Larimichthys crocea ) infected with Aeromonas hydrophila.Aquacult. Res.202253186545656110.1111/are.16123
    [Google Scholar]
  180. Musa-VelosoK. PoonT.H. ElliotJ.A. ChungC. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: Results of a meta-analysis of randomized, placebo-controlled trials.Prostaglandins Leukot. Essent. Fatty Acids201185192810.1016/j.plefa.2011.02.00121345662
    [Google Scholar]
  181. PandeyJ. DevK. ChattopadhyayS. KadanS. SharmaT. MauryaR. SanyalS. SiddiqiM.I. ZaidH. TamrakarA.K. β-Sitosterol-D-glucopyranoside mimics estrogenic properties and stimulates glucose utilization in skeletal muscle cells.Molecules20212611312910.3390/molecules2611312934073781
    [Google Scholar]
  182. VermaS. GuptaR. Comparative estimation of β-sitosterol in roots, leaves and flowers of Clerodendrum infortunatum L.Int. J. Green Pharm.20137213110.4103/0973‑8258.116394
    [Google Scholar]
  183. PonnulakshmiR. ShyamaladeviB. VijayalakshmiP. SelvarajJ. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats.Toxicol. Mech. Methods201929427629010.1080/15376516.2018.154581530461321
    [Google Scholar]
  184. OcchiutoF. OcchiutoC. TrombettaD. SmeriglioA. SturleseE. Effects of beta-sitosterol on isolated human non-pregnant uterus in comparison to prostaglandin E 2.Pharmacogn. Mag.2018145511810.4103/pm.pm_163_17
    [Google Scholar]
  185. UpadhyayK. GuptaN.K. DixitV.K. Development and characterization of phyto-vesicles of β-sitosterol for the treatment of androgenetic alopecia.Arch. Dermatol. Res.2012304751151910.1007/s00403‑011‑1199‑822160579
    [Google Scholar]
  186. DwivediJ. GuptaA. VermaS. DwivediM. PaliwalS. RawatA.K.S. Validated high-performance thin-layer chromatographic analysis of ursolic acid and β-sitosterol in the methanolic fraction of Paederia foetida L. leaves.J. Planar Chromatogr. Mod. TLC201831537738110.1556/1006.2018.31.5.5
    [Google Scholar]
  187. AbdouE.M. FayedM.A.A. HelalD. AhmedK.A. Assessment of the hepatoprotective effect of developed lipid-polymer hybrid nanoparticles (LPHNPs) encapsulating naturally extracted β-Sitosterol against CCl4 induced hepatotoxicity in rats.Sci. Rep.2019911977910.1038/s41598‑019‑56320‑231875004
    [Google Scholar]
  188. NirmalS.A. PalS.C. MandalS.C. PatilA.N. Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves.Inflammopharmacology201220421922410.1007/s10787‑011‑0110‑822207496
    [Google Scholar]
  189. DigheS.B. KuchekarB.S. WankhedeS.B. Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata.Int. J. Pharmacol. Res.2016610911310.7439/ijpr
    [Google Scholar]
  190. GuptaM. NathR. SrivastavaN. ShankerK. KishorK. BhargavaK. Anti-inflammatory and antipyretic activities of β-sitosterol.Planta Med.198039615716310.1055/s‑2008‑10749196967611
    [Google Scholar]
  191. DwivediJ. GuptaA. VermaS. PaliwalS. RawatA.K.S. Validated simultaneous high-performance thin-layer chromatographic analysis of ursolic acid, β -sitosterol, lupeol and quercetin in the methanolic fraction of ichnocarpus frutescens.J. Planar Chromatogr. Mod. TLC201932210310810.1556/1006.2019.32.2.4
    [Google Scholar]
  192. López-RubalcavaC. Piña-MedinaB. Estrada-ReyesR. HeinzeG. Martínez-VázquezM. Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: Possible involvement of the GABA/benzodiazepine receptor complex.Life Sci.200678773073710.1016/j.lfs.2005.05.07816122763
    [Google Scholar]
  193. SharmilaR. SindhuG. Evaluate the antigenotoxicity and anticancer role of β-sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein kinases’, C-fos, C-jun, and endothelial growth factor receptor.Pharmacogn. Mag.201713499510110.4103/0973‑1296.19763428216890
    [Google Scholar]
  194. Paniagua-PérezR. Flores-MondragónG. Reyes-LegorretaC. Herrera-LópezB. Cervantes-HernándezI. Madrigal-SantillánO. Morales-GonzálezJ.A. Álvarez-GonzálezI. Madrigal-BujaidarE. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays.Afr. J. Tradit. Complement. Altern. Med.201614112313010.21010/ajtcam.v14i1.1328480389
    [Google Scholar]
  195. FengS. GanL. YangC.S. LiuA.B. LuW. ShaoP. DaiZ. SunP. LuoZ. Effects of stigmasterol and β-sitosterol on nonalcoholic fatty liver disease in a mouse model: A lipidomic analysis.J. Agric. Food Chem.201866133417342510.1021/acs.jafc.7b0614629583004
    [Google Scholar]
  196. YuanC. ZhangX. LongX. JinJ. JinR. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice.Lipids Health Dis.201918115710.1186/s12944‑019‑1096‑231351498
    [Google Scholar]
  197. YangQ. YuD. ZhangY. β-Sitosterol attenuates the intracranial aneurysm growth by suppressing TNF-α-mediated mechanism.Pharmacology20191045-630331110.1159/00050222131473743
    [Google Scholar]
  198. ParkY.J. BangI.J. JeongM.H. KimH.R. LeeD.E. KwakJ.H. ChungK.H. Effects of β-Sitosterol from corn silk on TGF-β1-induced epithelial–mesenchymal transition in lung alveolar epithelial cells.J. Agric. Food Chem.201967359789979510.1021/acs.jafc.9b0273031373816
    [Google Scholar]
  199. AbbasM. AbbasM.M. Al-RawiN. Al-KhateebI. Naringenin potentiated β-sitosterol healing effect on the scratch wound assay.Res. Pharm. Sci.201914656657310.4103/1735‑5362.27256532038736
    [Google Scholar]
  200. BaskarA.A. IgnacimuthuS. PaulrajG.M. Al NumairK.S. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study.BMC Complement. Altern. Med.20101012410.1186/1472‑6882‑10‑2420525330
    [Google Scholar]
  201. HaiyuanY.U. ShenX. LiuD. HongM. LuY. The protective effects of β-sitosterol and vermicularin from Thamnolia vermicularis (Sw.) Ach. against skin aging in vitro.An. Acad. Bras. Cienc.2019914e20181088
    [Google Scholar]
  202. PhatangareND DeshmukhKK MuradeVD NaikwadiP HaseD ChavhanM VelisH Isolation and characterization of β-sitosterol from Justicia gendarussa burm. F.-An anti-inflammatory compound.Int. J. Pharmacogn. Phytochem. Res.2017991280128710.25258/phyto.v9i09.10317
    [Google Scholar]
  203. NasutionR. BahiM. SaidiN. JuninaI. β-sitosterol from bark of artocarpus camansi and its antidiabetic activity.5th Syiah Kuala University Annual International Conference 2015, Banda Aceh, Indonesia, October 2015.
    [Google Scholar]
  204. NishaR. KumarP. GautamA.K. BeraH. BhattacharyaB. ParasharP. SarafS.A. SahaS. Assessments of in vitro and in vivo antineoplastic potentials of β-sitosterol-loaded PEGylated niosomes against hepatocellular carcinoma.J. Liposome Res.202131330431510.1080/08982104.2020.182052032901571
    [Google Scholar]
  205. WangS. YeK. ShuT. TangX. WangX.J. LiuS. Enhancement of Galloylation efficacy of Stigmasterol and β-Sitosterol followed by evaluation of cholesterol-reducing activity.J. Agric. Food Chem.201967113179318710.1021/acs.jafc.8b0698330827096
    [Google Scholar]
  206. HammamW.E. GadA.M. GadM.K. KirollosF.N. YassinN.A. TantawiM.E. El HawaryS.S. Pyrus communis L.(Pear) and Malus domestica Borkh.(apple) leaves lipoidal extracts as sources for beta-sitosterol rich formulae and their wound healing evaluation.Nat. Prod. Res.20221-510.1080/14786419.2022.205618135369826
    [Google Scholar]
  207. BaskarA.A. Al NumairK.S. Gabriel PaulrajM. AlsaifM.A. MuamarM.A. IgnacimuthuS. β-sitosterol prevents lipid peroxidation and improves antioxidant status and histoarchitecture in rats with 1,2-dimethylhydrazine-induced colon cancer.J. Med. Food201215433534310.1089/jmf.2011.178022353013
    [Google Scholar]
  208. AndimaM. CostabileG. IsertL. NdakalaA.J. DereseS. MerkelO.M. Evaluation of β-Sitosterol loaded PLGA and PEG-PLA nanoparticles for effective treatment of breast cancer: Preparation, physicochemical characterization, and antitumor activity.Pharmaceutics201810423210.3390/pharmaceutics1004023230445705
    [Google Scholar]
  209. YuT. XuB. BaoM. GaoY. ZhangQ. ZhangX. LiuR. Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics study.Front. Endocrinol.20221398110010.3389/fendo.2022.98110036187128
    [Google Scholar]
  210. BinnsC.W. LeeM.K. LeeA.H. Problems and prospects: Public health regulation of dietary supplements.Annu. Rev. Public Health201839140342010.1146/annurev‑publhealth‑040617‑01363829272167
    [Google Scholar]
  211. RanaN. GuptaP. SinghH. NagarajanK. Role of bioactive compounds, novel drug delivery systems, and polyherbal formulations in the management of rheumatoid arthritis.Comb. Chem. High Throughput Screen.202427335338510.2174/138620732666623091410371437711009
    [Google Scholar]
  212. BarriusoB. AnsorenaD. AstiasaránI. Oxysterols formation: A review of a multifactorial process.J. Steroid Biochem. Mol. Biol.2017169394510.1016/j.jsbmb.2016.02.02726921766
    [Google Scholar]
  213. BijauliyaR.K. AlokS. KumarM. ChanchalD.K. YadavS. A comprehensive review on herbal cosmetics.Int. J. Pharm. Sci. Res.201781249304949
    [Google Scholar]
  214. WuY.S. NgaiS.C. GohB.H. ChanK.G. LeeL.H. ChuahL.H. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery.Front. Pharmacol.2017876110.3389/fphar.2017.0076129123482
    [Google Scholar]
  215. WangH. WangZ. ZhangZ. LiuJ. HongL. β-Sitosterol as a promising anticancer agent for chemoprevention and chemotherapy: mechanisms of action and future prospects.Adv. Nutr.20231451085111010.1016/j.advnut.2023.05.01337247842
    [Google Scholar]
  216. Bentayeb Ait LounisS. MekimèneL. MaziD. HamidchiT. HadjalS. BoualitS. BenaliaM. Nutritional quality and safety of algerian margarines: Fatty acid composition, oxidative stability and physicochemical properties.Med. J. Nutrition Metab.201811333134210.3233/MNM‑18208
    [Google Scholar]
  217. NenniM. KarahuseyinS. Medicinal plants, secondary metabolites, and their antiallergic activities.In Biotechnology of Medicinal Plants with Antiallergy Properties: Research Trends and ProspectsSpringer Nature SingaporeSingapore20243712610.1007/978‑981‑97‑1467‑4_2
    [Google Scholar]
  218. MaliniT. VanithakumariG. Antifertility effects of β-sitosterol in male albino rats.J. Ethnopharmacol.199135214915310.1016/0378‑8741(91)90066‑M1809820
    [Google Scholar]
  219. EhlersP.I. KivimäkiA.S. SiltariA. TurpeinenA.M. KorpelaR. VapaataloH. Plant sterols and casein-derived tripeptides attenuate blood pressure increase in spontaneously hypertensive rats.Nutr. Res.201232429230010.1016/j.nutres.2012.03.00422575043
    [Google Scholar]
  220. CofánM. RosE. Clinical application of plant sterol and stanol products.J. AOAC Int.201598370170610.5740/jaoacint.SGECofan25941811
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010313844240905055119
Loading
/content/journals/cpb/10.2174/0113892010313844240905055119
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test