Current Neuropharmacology - Online First
Description text for Online First listing goes here...
41 - 60 of 93 results
-
-
Microglia-Neuron Interactions in Alzheimer’s Disease
Authors: Yujie Ma, Xinyue Wang, Minghuang Gao, Yeze Lin, Qini Chen, Hongyin Yang, Cong Yang and Qi WangAvailable online: 26 August 2025More LessAlzheimer's disease (AD) is a progressive disease characterized by significant cognitive decline, posing a substantial threat to life. Neuronal loss and dysfunction are responsible for the cognitive decline and behavioral disturbances observed in AD. Microglia are increasingly recognized for shaping the fate of neurons. However, the role of microglia-neuron interaction in neuronal degeneration of AD remains largely unclear. This review discusses microglia-mediated excessive synaptic pruning and microglia-neuron metabolic coupling in the neuronal degeneration of AD. It also summarizes the role of microglia-neuron interactions in classical pathogenic hypotheses such as the amyloid cascade, tau protein, neuroinflammation, and metal ions. It is found that microglia can serve as protectors of neurons, yet they also exacerbate neuronal damage under stress stimulation. This bidirectional modulation of microglia-neuron interaction provides a novel direction for rescuing AD neurons.
-
-
-
Pharmacodynamics and Pharmacokinetics of Ublituximab Compared with Other Anti-CD20 Monoclonal Antibodies for Multiple Sclerosis Treatment
Available online: 26 August 2025More LessThe therapeutic scenario for multiple sclerosis (MS) has expanded rapidly over the last few years. Among the available treatments, anti-CD20 monoclonal antibodies, including rituximab, ocrelizumab, ofatumumab, and ublituximab, have shown significant results in reducing disease activity and slowing progression, particularly in relapsing MS. The distinct mechanisms of action, including the pharmacokinetic and pharmacodynamic profiles as well as the immunogenicity of these drugs, require careful consideration to tailor treatment for individual patients. A comprehensive review of the literature was conducted by searching PubMed and evaluating key studies, trials, and congress abstracts related to the use of anti-CD20 monoclonal antibodies. The analysis focused on the pharmacokinetic and pharmacodynamic profiles, as well as the immunogenicity, of anti-CD20 therapies currently available, with particular emphasis on the recently approved ublituximab. Ocrelizumab is effective in both relapsing-remitting and primary-progressive MS, using antibody-dependent cellular cytotoxicity (ADCC) as its primary mechanism of action, with intravenous and subcutaneous administration options ensuring flexible treatment delivery. Ofatumumab depletes B-cells through enhanced complement-dependent cytotoxicity, offering convenient monthly subcutaneous self-administration. Ublituximab’s unique glycoengineered fragment crystallizable region enhances ADCC, resulting in rapid B-cell depletion and potentially improving its safety profile. Ublituximab allows for a shorter infusion time without requiring post-infusion monitoring after the second dose, provided there have been no prior reactions. Understanding the characteristics of different anti-CD20 monoclonal antibodies is critical for optimizing treatment, enhancing patient outcomes, and minimizing treatment burden. Ublituximab represents a promising option, offering a shorter infusion time and higher ADCC activity, which complements existing treatments such as ocrelizumab and ofatumumab.
-
-
-
Unraveling Complex Interactions Mechanisms Linking PTSD and Chronic Diseases
Available online: 21 August 2025More LessPost-traumatic stress disorder (PTSD) is a chronic and multifactorial psychiatric condition that is often underdiagnosed, particularly when associated with chronic diseases (CDs). These conditions arise from complex interactions among psychosocial, socioeconomic, epigenetic, immune, metabolic, and neurobiological factors. Current treatment options for PTSD and CDs, whether isolated or comorbid, remain suboptimal. Addressing the bidirectional relationship between PTSD and CDs is a pressing global public health challenge, necessitating a deeper understanding of the underlying molecular mechanisms. This review examines the interplay of stress-response and neurochemical factors in PTSD and CDs, highlighting how maladaptive stress responses to trauma can disrupt neurochemical pathways, contributing to the development of CDs, and vice versa. Despite this, a significant gap exists in the number of in vivo model studies that adequately mimic the comorbid symptoms of PTSD and CDs, hindering progress in elucidating shared cellular and molecular pathways. This limitation restricts therapeutic advancements. Therefore, a comprehensive understanding of the neurobiological dysfunctions in the brain and their crosstalk with the immune, cardiovascular, and endocrine systems is critical. Such insights will pave the way for individualized treatment strategies tailored to the unique profiles of patients with PTSD associated with CDs.
-
-
-
Structural and Functional Determinants of ARIA-H Risk in Anti-Amyloid Monoclonal Antibodies: A Comparative Mechanistic Framework for Alzheimer's Immunotherapy Development
Authors: Dinghao An, Xinxin Zou and Yun XuAvailable online: 19 August 2025More LessIntroductionAmyloid-beta-targeting monoclonal antibodies (mAbs) for Alzheimer's disease frequently induce amyloid-related imaging abnormalities with hemorrhage (ARIA-H), yet systematic comparisons of ARIA-H incidence across therapeutic agents remain limited. Post-approval research prioritizes dosing over mechanism, leaving unresolved whether ARIA-H variations originate from intrinsic mAb properties. We address two gaps: comparative ARIA-H risk stratification among clinically available/investigational mAbs, and elucidation of structural/functional features influencing ARIA-H susceptibility.
MethodsA systematic comparison of seven mAbs (donanemab, aducanumab, bapineuzumab, lecanemab, gantenerumab, crenezumab, solanezumab) was conducted, analyzing clinical trial data and molecular characteristics.
ResultsARIA-H incidence ranked as follows (highest to lowest): donanemab > aducanumab > bapineuzumab > lecanemab > gantenerumab > crenezumab > solanezumab. Five mAb-specific determinants emerged: (1) Types of Aβ Binding: Enhanced clearance of mature amyloid plaques correlated with elevated ARIA-H risk. (2) Polymer binding Affinity: Reduced small oligomer-binding capacity predicted higher ARIA-H incidence. (3) Epitope location: N-terminal-targeting mAbs showed greater ARIA-H incidence vs. mid/C-terminal binders. (4) Fc region structure: IgG4-based constructs showed higher ARIA-H incidence than IgG1 analogs. (5) Clearance kinetics: Rapid attainment of amyloid reduction thresholds amplified ARIA-H incidence.
DiscussionWe identify a risk hierarchy for ARIA-H among anti-Aβ mAbs and link specific mAb biophysical properties—Aβ binding type, affinity for soluble oligomers, epitope specificity, Fc structure, and plaque clearance dynamics—directly to ARIA-H pathogenesis.
ConclusionThese findings establish a mechanistic framework for ARIA-H risk and provide concrete molecular predictors to guide antibody engineering strategies. Prioritizing mAbs with controlled amyloid clearance, C-terminal binding domains, and IgG1 frameworks may enhance therapeutic safety, advancing precision immunotherapy for Alzheimer's disease.
-
-
-
Mitochondria as a Therapeutic Target in Neurodegeneration: Strategies for Restoring Cellular Homeostasis
Authors: Bartosz Twarowski, Iwona Piątkowska-Chmiel and Mariola HerbetAvailable online: 12 August 2025More LessAgeing is a complex biological process marked by a gradual decline in bodily functions at the cellular, tissue, and organ levels, resulting from molecular damage and environmental influences. It increases disease risk, particularly in older adults with neurodegenerative conditions characterized by progressive neuronal loss and neurological symptoms such as cognitive and motor impairments. Key mechanisms include abnormal protein accumulation, oxidative stress, neuroinflammation, and mitochondrial dysfunction. Disruption of cellular homeostasis prevents the maintenance of internal conditions such as pH and glucose levels. Mitochondria, known as the cell’s “powerhouses,” are essential for ATP production, DNA protection, and metabolic regulation, supporting cellular structures. Their dysfunction plays a crucial role in the progression of neurodegenerative diseases. Factors like chronic inflammation, ATP deficiency, excessive production of reactive oxygen species (ROS), and calcium imbalance leads to oxidative stress and neuronal damage, exacerbating neurodegeneration. Current therapies mainly focus on symptom relief, emphasizing the urgent need for new treatment strategies. Given the key role of mitochondrial dysfunction, therapies aiming to restore mitochondrial homeostasis are gaining increasing attention. Mitochondrial antioxidants such as MitoQ, MitoTEMPO, and SkQ1 have shown neuroprotective, anti-inflammatory, and antioxidant properties. Research into their therapeutic potential may lead to the development of effective drugs that restore mitochondrial function and improve quality of life of the patients.
-
-
-
Inhibition of the P2Y2 Receptor Promotes Facial Nerve Function by Enhancing Neuron Autophagy
Authors: Xianmin Song, Yingna Gao, Minhui Zhu, Hongliang Zheng, Wei Wang and Shicai ChenAvailable online: 08 August 2025More LessObjectiveFacial nerve injury induces autophagy and apoptosis in facial nerve nucleus motoneurons of the CNS, impairing nerve regeneration and functional recovery. The function of P2Y2R after facial nerve injury remains to be determined. This study hypothesizes that inhibiting P2Y2R may play a protective role in facial nerve injury by modulating the autophagy signaling pathway.
MethodsAn in vivo mouse model of facial nerve crush injury was utilized in this study. Mice received either a P2Y2R agonist or antagonist through intrathecal injections of 10 μL/daily for 4 weeks. This study measured facial nerve function, examined fibrogenesis, and analyzed expression of autophagy regulatory proteins. In an in vitro experiment, NSC34 cells were treated with a P2Y2R agonist or an antagonist, and changes in the levels of phosphorylated PI3K, Akt, and mTOR, as well as autophagy regulatory proteins determined.
ResultsInhibition of P2Y2R significantly increased autophagy levels and enhanced facial nerve function. These protective outcomes were linked to the suppression of phosphorylated PI3K, Akt, and mTOR signaling pathways.
ConclusionThe study suggests that P2Y2R inhibition may improve facial nerve function by improving autophagy, making it a promising therapeutic approach for treating facial nerve injury.
-
-
-
Betaine: A Promising Natural Product for Neurological and Psychiatric Diseases
Authors: Ying Zhang, Zhaojuan Ke, Jie Luo, Qibin Chen, Xin Jiang, Jialin Xiong and Linya DengAvailable online: 08 August 2025More LessNeurological and psychiatric diseases pose a considerable global burden. Exploring additional potential prevention strategies and therapies is ongoing. As a prevalent natural product and nutraceutical from food, betaine’s pharmaceutical applications suggest benefits for both health and disease in multiple organs. Recently, its efficacy on neurological and psychiatric health has been proposed and has drawn considerable attention. This review aims to provide an updated, critical, and comprehensive profile of the promising medicinal roles of betaine in these diseases. In addition to its well-known osmotic protection, due to methyl donation, it regulates metabolism, alleviates oxidative stress, and reduces inflammation. To manifest neurological and psychiatric health benefits, betaine acts by affecting gamma-aminobutyric acid associated with its transporters, related neurotransmitters, downstream and neurological pathways, and other specific mechanisms in the nervous system. Betaine demonstrates therapeutic potential against various neurological and psychiatric diseases, such as epilepsy, neurocognitive disorders (including Alzheimer's disease), Parkinson's disease, stroke, multiple sclerosis, traumatic brain injury, depression, anxiety, schizophrenia, autism spectrum disorder, sleep disorders, fetal alcohol syndrome, syringomyelia, neonatal brain injury, neuropathic pain, and motor dysfunction. Despite the promising role of betaine in the treatment, diagnosis, and prevention of neuropsychiatric disorders, much of the present evidence appears to be fragmentary. Further studies elucidating the underlying mechanisms and direct clinical applications are required to obtain a deeper understanding of betaine and its underutilized potential. Overall, this review highlights the potential of betaine as a promising agent with benefits for neurological and psychiatric diseases, aiming to offer clues to advance this field.
-
-
-
The Cathepsin Family in Disease: From Molecular Mechanisms to Therapeutic Applications
Authors: Lorca Alzoubi, Yassmen Hamzat, Alaa Alqudah and Alaa A.A. AljabaliAvailable online: 08 August 2025More LessT4he cathepsin family of proteolytic enzymes is involved in the maintenance of major physiological processes, including protein degradation, immune modulation, tissue remodeling, and apoptosis. Members of the cathepsin family include cysteine, serine, and aspartic proteases, which are implicated in diverse cellular functions. Evidence for tissue-specific expression emphasizes the specialized functions of these enzymes in many organs. However, dysregulated cathepsin activity has been implicated in a wide range of pathological conditions, including, but not limited to, cancer, cardiovascular diseases, neurodegeneration, and autoimmune disorders. There is significant therapeutic potential for intervention, whereby specific inhibitors of certain cathepsins may offer promising strategies for disease management. Despite this promise, major challenges persist in designing inhibitors that avoid off-target effects while respecting the dual physiological and pathological roles of cathepsins. Structural similarities among family members and their context-dependent functions complicate precision targeting. This review identifies the emerging strategies including structure-guided design, cathepsin-cleavable delivery systems, and real-time imaging that are reshaping therapeutic approaches toward these complex enzymes. A structured web-based literature search was conducted using PubMed, Scopus, and Google Scholar employing keywords such as “cathepsins”, “therapeutic targeting”, “proteolytic enzymes”, and “disease pathways” to inform this review. As cathepsins continue to play a key role in health and disease, much research is warranted to determine their full therapeutic potential, which would represent a foundation for treatment options for various complex diseases.
-
-
-
Mediterranean Pattern Diet in Multiple Sclerosis: A Review Focusing on Immunometabolites
Available online: 07 August 2025More LessMultiple Sclerosis (MS), the most common demyelinating disease of the Central Nervous System (CNS), is characterized in its pathogenesis by an interplay of mechanisms pertaining to aberrant immune response, acute and chronic inflammation, glial housekeeping, and neuron survival, ultimately resulting in demyelination, synaptic dysfunction, and neuroaxonal loss. Experimental models as well as epidemiological observations support the hypothesis of a role of diet in the disease onset, activity, and progression. It has been suggested that Western-type diets might be detrimental, while on the other hand, certain dietary regimens, like Mediterranean, low-fat, ketogenic, or intermittent fasting, might lead to disease amelioration, possibly through differential regulatory effects upon inflammation, immunity, and regenerative processes of neurons and glia. Under this perspective, immunometabolites, small intermediates including among the others citrate, itaconate, lactate, glutamate, glutamine, alfa-ketoglutarate, 2-hydroxyglutarate, fumarate, ceramides, whose turn-over reflects metabolic reprogramming of immune cells, might be viewed as significant regulators of cellular responses against either local or systemic noxious stimuli, both in the periphery and in the CNS. The present narrative review aims at summarizing current experimental and clinical evidence regarding the role of immunometabolites in shaping MS pathology, to address whether they could be relevant either as disease markers or therapeutic targets, and whether they might be differentially influenced by dietary approaches, especially by Mediterranean Pattern Diets (MPD).
-
-
-
A Prospective Clinical Trial of Efgartigimod for New-Onset Generalized Myasthenia Gravis
Authors: Chi Ma, Jingyi Shen, Ying Zhu and Ruixia ZhuAvailable online: 06 August 2025More LessIntroductionNumerous studies have demonstrated that efgartigimod is effective in treating myasthenia gravis (MG) across various patient populations. However, there is limited evidence regarding its use in patients with new-onset acetylcholine receptor antibody-positive generalized MG (AChR-gMG). Therefore, this study aimed to investigate the real-world safety and effectiveness of efgartigimod in Chinese patients with new-onset anti-cholinergic receptor (AChR)- gMG.
MethodsThis prospective study was conducted in 29 patients with new-onset AChR-gMG, with a three-month follow-up. The Myasthenia Gravis Activities of Daily Living (MG-ADL) score, Quantitative Myasthenia Gravis score, prednisone dose, laboratory data, and adverse events were assessed at every follow-up visit.
ResultsAt 4, 8, and 12 weeks, the mean change in MG-ADL scores was 8.13 ± 3.66, 7.41 ± 4.22, and 6.37 ± 4.67, respectively. Compared with the baseline, 96% (28/29) of patients achieved an MG-ADL response (defined as a decrease of ≥2 points), with a mean response time of 0.81 ± 0.53 weeks (5.67 ± 3.71 days). After one cycle, 52% (15/29) of patients achieved minimal symptom expression (MSE), while 41% maintained MSE at 12 weeks. Moreover, 89% and 72% of MG-ADL responders sustained for 8 and 12 consecutive weeks, respectively. Additionally, patients with thymomatous MG exhibited a poorer response to efgartigimod and required two infusion cycles. All patients were able to reduce their daily steroid dose, and the mean daily prednisone dose decreased by 10.73 mg per day. The treatment was well tolerated, and a few mild adverse events were reported.
DiscussionThese results demonstrate the clinical significance of efgartigimod in patients with new-onset AChR-gMG, achieving rapid symptom relief and steroid reduction. Additionally, the potential of efgartigimod to serve as a bridge treatment, facilitating a steady transition to long-term conventional immunosuppressive therapy, was demonstrated. Due to limitations in this study, such as a small sample size, larger randomized controlled trials are needed to validate.
ConclusionOur study showed that efgartigimod is clinically beneficial and offers rapid symptom control in patients with new-onset AChR-gMG. A more aggressive application of efgartigimod in combination with corticosteroids may lead to a smoother therapeutic transition, which will further maintain favorable conditions.
-
-
-
MicroRNAs as Potential Biomarkers and Therapeutic Targets in Ischemic Stroke from the Perspective of Inflammation
Authors: Nai-He Chen, Jia-Xin Ren, Guang-Jian Li and Xin SunAvailable online: 30 July 2025More LessIschemic stroke, triggered by the interruption of cerebral blood flow, initiates a complex inflammatory process involving both brain-resident and peripheral immune cells. Microglia, the primary brain-resident immune cells of high heterogeneity, regulate central nervous system inflammation upon activation. Activated microglia are commonly classified into two predominant phenotypes (pro-inflammatory M1 and anti-inflammatory M2), which exert dual effects through the secretion of distinct cytokine profiles. Peripheral immune cells, including monocytes, macrophages, and neutrophils, contribute to stroke pathogenesis and progression via diverse inflammatory mechanisms. Multiple microRNAs regulate the inflammatory dynamics of ischemic stroke across all phases by modulating both brain-resident and peripheral immune cells. MicroRNAs play a pivotal role in the activation and polarization of microglia, as well as cytokine release. Furthermore, microRNAs modulate the activation and extravasation processes of peripheral leukocytes by enhancing or attenuating signaling pathways. These mechanisms suggest that microRNA alterations could be biomarkers for predicting, diagnosing, and prognosticating ischemic stroke. Additionally, microRNA modulation offers potential as a therapeutic strategy for the treatment of ischemic stroke.
-
-
-
Efficacy of Venlafaxine and Deep Brain Stimulation Against the Effects of Hippocampal Lesion with Ibotenic Acid in Animals Exposed to the Chronic Mild Stress Model of Depression
Available online: 28 July 2025More LessIntroductionDysfunction of the pathway between the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) may be responsible for the weaker or lack of efficacy of antidepressant drugs in patients suffering from treatment-resistant depression. This study aims to evaluate the behavioural effects of vHPC lesion with ibotenic acid (IBO) in animals subjected to the chronic mild stress (CMS) procedure and treated with either chronic venlafaxine or acute deep brain stimulation (DBS) in the mPFC. In addition, electrophysiological studies are expected to reveal neuromodulatory effects on the function and plasticity of mPFC neurons in response to stress, lesion, and deep brain stimulation (DBS).
MethodsWistar Han rats were exposed to the chronic mild stress model of depression and IBO lesion in vHPC. The effects of both procedures were evaluated in a series of behavioural tests (sucrose test, elevated plus maze, novel object recognition, and social interaction) and in electrophysiological recordings (field potential recording and LTP induction).
ResultsThe CMS procedure caused a decrease in sucrose consumption, deficits in cognitive function and social interaction, and increased anxiety. The lesion in vHPC with IBO resulted in similar behavioral changes. Repeated (5 weeks) administration of venlafaxine (10 mg/kg, IP) reversed these deficits in stressed animals but was only partially effective in reversing the effects of IBO lesion in HPC. In contrast, the neuromodulation strategy with DBS of the mPFC produced a robust reversal of all behavioural changes observed in both stressed and lesioned rats. The CMS did not affect the amplitude of field potentials in mPFC slices, but the induction of Long-Term Potentiation was impaired in these animals. The IBO lesion significantly reduced the amplitude of Field potentials as compared to unstressed rats. Both repeated venlafaxine and acute DBS normalized these effects of the IBO lesion.
DiscussionObserved effects were fully normalized by DBS in mPFC but not by venlafaxine, which only partially reversed the IBO lesion-induced effects. The weaker sensitivity of vHPC-lesioned animals to the therapeutic action of venlafaxine provides further evidence that insufficient transmission from the vHPC to the mPFC could be responsible for antidepressant non-response.
ConclusionThese data support the hypothesis that resistance to antidepressant treatment may result from the inability of antidepressants to fully activate the impaired vHPC-PFC pathway, which could be overcome by the neuromodulatory properties of deep brain stimulation.
-
-
-
Current Research Focus and Trends of Remimazolam: A Bibliometric Analysis of the 100 Most Cited Articles
Authors: Yunying Chen, Junting Wu, Huangyi Chen, Chenxing Lei, Dezhao Liu and Ying WangAvailable online: 24 July 2025More LessIntroductionRemimazolam is a novel benzodiazepine derivative with advantages such as prompt onset, short duration of action, fast recovery, and non-organ dependence. Numerous studies have been conducted on remimazolam. However, bibliometric analysis on high-quality and highly cited articles related to remimazolam is lacking. The objective of this article is to evaluate the current research status and prevailing trends regarding the most frequently cited articles on remimazolam, utilizing bibliometrics.
MethodsStudies related to remimazolam were searched in the Web of Science core database. The search period ranged from the inception of the database to April 2025, and 100 highly cited research articles were selected. The researchers gathered and analyzed pertinent data from the studies and subsequently conducted visual analysis utilizing VOSviewer and CiteSpace.
ResultsThe total number of citations for the top 100 highly cited studies was 6683, published between 2010 and 2024. China, the United States, and the United Kingdom contributed the majority of these studies. These studies were published in 47 different journals. The journal with the highest number of publications was the Journal of Anesthesia. The institution with the highest publication volume was PAION DEUTSCHLAND GMBH in Germany, and the author with the highest contribution was Schippers F. The pharmacokinetics, pharmacodynamics, safety, and efficacy of remimazolam were the main research directions and focuses in the field.
DiscussionOur analysis of the top 100 cited remimazolam papers reveals a rapidly advancing field. The surge in high-quality clinical studies confirms remimazolam's practical edge over older agents, such as propofol, particularly in offering better blood pressure stability for older patients and fewer breathing problems during procedures like endoscopy. While these advantages position it as a strong contender, important questions linger about its use in people with severe liver or kidney issues due to how it is broken down, and its effects on delirium remain unclear. Broadening research globally and focusing on these specific patient groups, as well as long-term safety, will be key to realizing remimazolam's full clinical potential.
ConclusionThis study analyzed the 100 most frequently referenced articles on remimazolam, providing valuable insights into the characteristics and focal areas of research related to this topic.
-
-
-
Lipid Metabolism in Cerebral Ischemia: From Pathogenesis to Therapy
Authors: Xinrong Wang, Rongjia Liu, Zhong Chen, Weiwei Hu and Lei JiangAvailable online: 23 July 2025More LessCerebral ischemia, a leading global cause of death and disability, is marked by multifaceted pathological processes through dysregulation of lipid metabolism. This review examines the pivotal role of lipid metabolism in the pathogenesis of cerebral ischemia, with a particular emphasis on its dual function in neuroinflammation and neuroprotection. It delves into the mechanisms by which Arachidonic Acid (AA) metabolites, such as prostaglandins and Leukotrienes (LTs), drive neuroinflammation through Cyclooxygenase (COX) and Lipoxygenase (LOX) pathways, exacerbating ischemic injury. Conversely, the aim was to review the therapeutic potential of Specialized Pro-resolving Mediators (SPMs), including lipoxins, Resolvins (RVs), and protectins, that resolve inflammation and promote tissue repair. In addition, the roles of Peroxisome Proliferator-Activated Receptors (PPARs) and sphingolipid signaling in modulating oxidative stress, mitochondrial dysfunction, and neuronal survival were also addressed. Integrating recent advances in lipid biology and cerebral ischemia research, this review presents an overview of the role of lipid metabolism in disease progression and its potential as a target for new therapeutic interventions. These findings bridge the gap between basic science and clinical research, opening new doors for the treatment of cerebral ischemia.
-
-
-
Exogenous Melatonin as a Sleep-promoting Agent beyond its Chronobiotic Properties: A Scoping Review of its Effects on Key Sleep-wake Neurotransmitters
Available online: 22 July 2025More LessIntroductionExogenous melatonin (exo-MLT) is a sleep-promoting agent that modulates key sleep-wake neurotransmitters.
MethodsThis scoping review analyzed 623 studies retrieved from PubMed/MEDLINE and ISI/Web of Science, applying PRISMA methodology to ensure rigorous inclusion criteria. After screening, 58 original research papers were analyzed for exo-MLT's effects on gamma-aminobutyric acid (GABA), serotonin, dopamine, glutamine, norepinephrine, epinephrine, orexin, acetylcholine, adenosine, glycine, galanin, and histamine.
ResultsWe identified 20 studies on the GABAergic system, showing that exo-MLT enhances GABA activity through different mechanisms, promoting non-REM sleep and reducing stress-related hyperarousal. On serotonin, 16 studies revealed limited and variable effects depending on the dose and physiological conditions. Total 13 dopamine studies suggested that exo-MLT does not alter physiological dopamine turnover, restoring dopaminergic balance in pathological states. On the glutamatergic system, seven studies showed a compensatory role of exo-MLT on glutamate excitotoxicity. Six studies on norepinephrine highlighted exo-MLT's ability to regulate sympathetic activity. The orexinergic system was the focus of five studies, indicating exo-MLT's inhibitory action on orexinergic neurons, enhancing sleep quality and consolidation. Five studies investigated exo-MLT on the cholinergic system, revealing an enhancing effect on acetylcholine activity in physiological and pathophysiological conditions. Lastly, four studies exploring adenosine and glycine were inconclusive of the exo-MLT effect, while we could not find any data on histamine and galanin.
DiscussionThis review underscores exo-MLT's mechanisms beyond circadian regulation, offering therapeutic promise in sleep disorders associated with other neuropsychiatric conditions.
ConclusionExo-MLT’s interactions provide insights into its safety and non-addictive characteristics, supporting its integration into personalized sleep medicine.
-
-
-
Resilience and Recalibration of Bibliometric Indicators in Neurosciences and Neuropharmacology Journals After COVID-19: A Longitudinal Rate of Change Analysis Using Mixed-Effects Models
Available online: 21 July 2025More LessIntroductionThe COVID-19 pandemic triggered unprecedented changes in the scholarly publishing landscape, particularly in biomedical fields such as Neurosciences and Neuropharmacology. Several journals experienced steep, short-term increases in citation metrics during 2020-2022. However, it remains uncertain whether these surges reflected a sustainable impact or temporary inflation. This study aimed to analyze post-pandemic bibliometric behavior by evaluating the Rate of Change (RoC) in key journal-level indicators from 2013 to 2023.
MethodsA retrospective longitudinal study was conducted on 233 neuroscience journals indexed in the Journal Citation Reports. Six indicators were analyzed: Journal Impact Factor (JIF), Eigenfactor Score, Immediacy Index, Article Influence Score, Cited Half-Life, and Total Citations. RoC was calculated for each metric on an annual basis. Mixed-effects models with random intercepts and slopes were constructed to evaluate longitudinal trajectories and identify changes associated with three defined periods: pre-pandemic (2013-2019), pandemic (2020-2022), and post-pandemic (2023). Subgroup analyses assessed journal quartiles and categories to explore variations in impact resilience.
ResultsThe pandemic period (2020-2022) showed significant increases in RoC for JIF (mean β = +4.85, p = 0.004), Immediacy Index (β = +6.22, p = 0.002), and Total Citations (β = +5.88, p < 0.001). These changes were more prominent in top-quartile journals and those classified under Neuropharmacology. In contrast, alternative metrics such as the Eigenfactor Score and Article Influence Score remained relatively stable across the same period. In 2023, most indicators exhibited a normalization trend, with JIF and Immediacy Index showing marked deceleration in RoC, suggesting a post-pandemic recalibration. Journals with sustained positive trajectories were primarily concentrated in high-impact clusters, with Current Neuropharmacology ranking among the top performers by RoC slope.
DiscussionThe findings demonstrate that the surge in citations during the pandemic was primarily transitory and varied across bibliometric indicators. Traditional metrics like JIF and Immediacy Index were more sensitive to systemic shocks, while influence-based indicators (Eigenfactor and Article Influence Score) showed higher temporal resilience. The application of RoC allowed for a nuanced interpretation of metric trajectories and minimized misinterpretation of short-term spikes. Limitations include reliance on publicly available data and potential lag effects in citation behavior not fully captured within the 10-year window.
ConclusionThis study reveals that pandemic-era citation inflation in Neuroscience journals was largely temporary and metric-dependent. RoC-based modeling offers a reproducible and adaptable approach for assessing the sustainability of bibliometric trends. These insights can help editors, funders, and academic institutions better understand journal performance, make informed decisions about research dissemination, and refine metrics-based evaluation frameworks in the post-pandemic publishing environment.
-
-
-
The Role of the Microbiota-Gut-Brain Axis in Perinatal Depression: Novel Insights for Treatment
Authors: Jiajing Chao, Zhangmin Tan, Zhe Li and Chengfang XuAvailable online: 18 July 2025More LessPerinatal depression, a prevalent mood disorder complicating pregnancy and childbirth, poses significant threats to maternal health and neonatal development. While psychotherapy and antidepressants constitute current standard treatments, their clinical application faces substantial limitations during pregnancy and lactation, including safety concerns, treatment resistance, and poor adherence rates. These therapeutic constraints have spurred growing interest in novel gut-brain axis (GBA)-targeted interventions. Emerging evidence suggests that the gut microbiota communicates with the brain through a complex network of neural, immune, and endocrine pathways, playing a critical role in regulating mood, behavior, and cognitive functions. Interventions such as probiotics and fecal microbiota transplantation (FMT) are increasingly explored for their potential to restore microbial balance and alleviate depressive symptoms. This review aims to systematically examine the role of the GBA in the context of perinatal depression, offering novel insights to inform clinical treatment strategies. Furthermore, it evaluates the promise and limitations of microbiota-targeted interventions while discussing future directions for personalized microbiome therapeutics.
-
-
-
Intercellular Communication Pathways in Cerebral Ischemia: Mechanisms, Molecular Insights, and Therapeutic Implications
Authors: Guoqian Cui, Wenbo Guo, Muzi Li, Shengshuang Chen, Xin Shao, Jie Liao and Xiaohui FanAvailable online: 18 July 2025More LessIntroductionCerebral ischemia (CI) is a severe neurological disorder characterized by high incidence and disability rates. Its pathogenesis is complex, involving multiple interrelated biological processes. Among these, intercellular communication has emerged as a key mechanism regulating the damage and recovery phases of CI. It controls information exchange between cells, thereby playing a crucial role in cellular responses to ischemic injury. Understanding how intercellular communication promotes the pathophysiology of CI may provide valuable insights into new therapeutic targets.
MethodsTo elucidate the role of intercellular communication in CI, recent literature was analyzed, with a focus on how intercellular communication influences cellular behaviors and metabolism. This review integrates data from molecular biology, cellular signaling studies, and cerebral ischemia models.
ResultsStudies indicate that intercellular communication significantly influences the progression and outcomes of CI. Intercellular communication not only participates in regulating the inflammatory response following injury but also plays a dual role in neuroprotection and regeneration.
DiscussionThe dual role of intercellular communication—exacerbating damage through inflammatory cascades and promoting recovery through neuroprotective mechanisms—highlights its complex contribution to the pathology of CI. Cellular crosstalk between neurons, glial cells, endothelial cells, and immune cells coordinates the dynamic response to ischemic injury. Understanding these dynamics offers promising opportunities for targeted interventions.
ConclusionIntercellular communication plays a central role in the mechanisms of injury and repair in cerebral ischemia. By influencing inflammation, neuroprotection, and regeneration, it serves as both a mediator of injury and a potential therapeutic target. Further research is needed to fully elucidate these mechanisms and translate them into effective clinical strategies for treating CI.
-
-
-
Membrane Protein Modulators in Neuroinflammation
Authors: Ligang Chen, Zheng Zou, Chao Dang, Geyu Wang, Tingzhun Zhu and Guobiao LiangAvailable online: 17 July 2025More LessNeuroinflammation has emerged as a critical pathological process that significantly contributes to the development and progression of a wide range of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Recent advances in neuroscience have underscored the pivotal role of neuroinflammation not only in exacerbating these diseases but also in accelerating neuronal degeneration. The growing prevalence of these conditions worldwide, coupled with the limited efficacy of current therapeutic approaches, highlights the urgent need for new therapeutic strategies. Given the central role of neuroinflammation in disease progression, targeting the neuroinflammatory process offers a compelling opportunity for effective intervention. Membrane proteins are key regulators in cellular signal transduction and intercellular communication, and their dysregulation may trigger and sustain neuroinflammatory responses. Consequently, modulators of membrane proteins have emerged as promising candidates for managing neuroinflammation. Current research indicates that natural products and small-molecule compounds can modulate membrane protein activity, effectively mitigating excessive inflammatory responses and exhibiting potent anti-neuroinflammatory effects. This review systematically examines the classification and functional roles of membrane proteins in neuroinflammation, with a particular focus on the therapeutic potential of channel proteins, transporter proteins, and receptor proteins across various neurological conditions. The identification and development of membrane protein modulators present an innovative and urgent avenue for advancing anti-neuroinflammatory therapies, offering potential breakthroughs in treating these prevalent and debilitating diseases.
-
-
-
Use of Single Prolonged Stress to Model Post-traumatic Stress Disorder in Rodents: What We Found and Where to Next?
Authors: Keke Ding, Cunbao He, Shaojie Yang, Jingji Wang and Guoqi ZhuAvailable online: 17 July 2025More LessPost-traumatic stress disorder (PTSD) represents a grave and expansive mental illness, caused by experiencing or witnessing traumatic events that invoke profound feelings of helplessness, fear and anxiety. Reflecting the clinical features of PTSD, the single prolonged stress (SPS) model in rodents was developed to elucidate the pathogenesis and identify potential therapeutic interventions. This review aimed to deepen our understanding of the mechanisms and therapeutic methods for PTSD. We conducted a comprehensive literature search on PubMed and Web of Science using keywords such as “SPS”, “PTSD”, and “mechanisms”. Clinical and animal research, especially the exploration of the mechanisms and treatments, were included in this review. We identified a total of 327 articles. After removing duplicates and screening the full texts, we selected only 137 articles. Based on the literature, we examined the parallels and divergences between PTSD and the SPS model regarding symptomatic manifestations, affected brain regions, and molecular markers, demonstrating that the SPS model can effectively replicate PTSD-like behaviors in rodents. Guided by clinical research findings, we further synthesized the mechanisms by which SPS induces PTSD, focusing on the modulation of relevant signaling pathways and neural circuits. Additionally, we reviewed potential intervention strategies for PTSD using this model, encompassing both pharmacological and non-pharmacological therapies. This review offers significant implications for basic research rooted in the clinical characteristics of PTSD, suggesting that studies utilizing the SPS model could enhance our understanding of PTSD and aid in the identification of effective treatment strategies.
-