Skip to content
2000
image of Peroxiredoxin 6 Alone or in Combination with Fingolimod Ameliorates EAE

Abstract

Introduction

Multiple Sclerosis (MS) is characterized by the infiltration of leukocytes into the nervous tissue, and disruption of the Blood-Brain Barrier (BBB) is one of the main factors in the progression of MS and its model, Experimental Autoimmune Encephalomyelitis (EAE). Furthermore, some anti-lymphocytic drugs against MS may inherently produce BBB disruption as their side effect. This study hypothesized that drugs restoring the BBB may be useful for the treatment of MS and EAE, as well as for ameliorating the side effects of modern anti-lymphocytic drugs.

Methods

EAE was induced in mice. EAE progression was evaluated by a severity score and a plasma cytokine profile, while a BBB condition was evaluated by the Evans dye method, Tight Junction Proteins (TJPs) content, and leukocyte infiltration.

Results

The mice with EAE demonstrated neurological symptoms, a cytokine response, and BBB deterioration, which was associated with upregulation of the NADPH oxidases NOX1 and NOX4 in the brain. Administration of the anti-lymphocyte drug fingolimod to EAE mice caused lymphopenia, improved animal health, enhanced the BBB function during the administration period, and decreased the pro-inflammatory response, but it was accompanied by a “withdrawal effect,” defined as a sharp increase in the IL-17 and IFN-gamma to levels higher than those in untreated animals, lymphocyte hyperactivation, worsening symptoms, and increasing BBB permeability after discontinuation of fingolimod. Administration of peroxiredoxin 6 (Prdx6) to EAE mice also improved BBB, decreased lymphocyte infiltration and NADPH oxidase expression, and ameliorated symptoms. Preliminary administration of Prdx6 before the fingolimod treatment eliminated the “withdrawal effect” of fingolimod and led to full recovery of the EAE mice. This Prdx6 effect was associated with the activation of anti-proliferative and pro-apoptotic signaling cascades in lymphocytes.

Discussion and

Both fingolimod and Prdx6 produced beneficial effects, while Prdx6 may be useful for ameliorating the side effects of anti-lymphocytic drugs. Accounting for literature data that discontinuation of MS treatment is very likely to lead to a severe MS rebound, a drug that prevents the rebound should be useful.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X372166250619064636
2025-07-07
2025-09-13
Loading full text...

Full text loading...

References

  1. Schiera G. Di Liegro C.M. Schirò G. Sorbello G. Di Liegro I. Involvement of astrocytes in the formation, maintenance, and function of the blood-brain barrier. Cells 2024 13 2 150 10.3390/cells13020150 38247841
    [Google Scholar]
  2. Serlin Y. Shelef I. Knyazer B. Friedman A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol. 2015 38 2 6 10.1016/j.semcdb.2015.01.002 25681530
    [Google Scholar]
  3. Ballabh P. Braun A. Nedergaard M. The blood–brain barrier: An overview. Neurobiol. Dis. 2004 16 1 1 13 10.1016/j.nbd.2003.12.016 15207256
    [Google Scholar]
  4. Abbott N.J. Rönnbäck L. Hansson E. Astrocyte–endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006 7 1 41 53 10.1038/nrn1824 16371949
    [Google Scholar]
  5. Stamatovic S. Keep R. Andjelkovic A. Brain endothelial cell-cell junctions: How to “open” the blood brain barrier. Curr. Neuropharmacol. 2008 6 3 179 192 10.2174/157015908785777210 19506719
    [Google Scholar]
  6. Furuse M. Sasaki H. Fujimoto K. Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J. Cell Biol. 1998 143 2 391 401 10.1083/jcb.143.2.391 9786950
    [Google Scholar]
  7. Tsukita S. Furuse M. Occludin and claudins in tight-junction strands: Leading or supporting players? Trends Cell Biol. 1999 9 7 268 273 10.1016/S0962‑8924(99)01578‑0 10370242
    [Google Scholar]
  8. Mooradian A. Haas M.J. Chehade J.M. Age-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1). Mech. Ageing Dev. 2003 124 2 143 146 10.1016/S0047‑6374(02)00041‑6 12633933
    [Google Scholar]
  9. Van Itallie C.M. Rogan S. Yu A. Vidal L.S. Holmes J. Anderson J.M. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am. J. Physiol. Renal Physiol. 2006 291 6 F1288 F1299 10.1152/ajprenal.00138.2006 16804102
    [Google Scholar]
  10. Tsukita S. Tanaka H. Tamura A. The Claudins: From tight junctions to biological systems. Trends Biochem. Sci. 2019 44 2 141 152 10.1016/j.tibs.2018.09.008 30665499
    [Google Scholar]
  11. Chiba H. Ichikawa-Tomikawa N. Imura T. Sugimoto K. The region ;selective regulation of endothelial claudin ;5 expression and signaling in brain health and disorders. J. Cell. Physiol. 2021 236 10 7134 7143 10.1002/jcp.30357 33694168
    [Google Scholar]
  12. Hashimoto Y. Greene C. Munnich A. Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023 20 1 22 10.1186/s12987‑023‑00424‑5 36978081
    [Google Scholar]
  13. Acharya N.K. Grossman H.C. Clifford P.M. Levin E.C. Light K.R. Choi H. Swanson R.L. Kosciuk M.C. Venkataraman V. Libon D.J. Matzel L.D. Nagele R.G. A Chronic Increase in blood-brain barrier permeability facilitates intraneuronal deposition of exogenous bloodborne amyloid-beta1-42 peptide in the brain and leads to alzheimer’s disease-relevant cognitive changes in a mouse model. J. Alzheimers Dis. 2024 98 1 163 186 10.3233/JAD‑231028 38393907
    [Google Scholar]
  14. Montagne A. Toga A.W. Zlokovic B.V. Blood-brain barrier permeability and gadolinium: Benefits and potential pitfalls in research. JAMA Neurol. 2016 73 1 13 14 10.1001/jamaneurol.2015.2960 26524294
    [Google Scholar]
  15. Sanmarco L.M. Polonio C.M. Wheeler M.A. Quintana F.J. Functional immune cell-astrocyte interactions. J. Exp. Med. 2021 218 9 20202715 10.1084/jem.20202715 34292315
    [Google Scholar]
  16. Kunkl M. Amormino C. Tedeschi V. Fiorillo M.T. Tuosto L. Astrocytes and inflammatory T helper cells: A dangerous liaison in multiple sclerosis. Front. Immunol. 2022 13 824411 10.3389/fimmu.2022.824411 35211120
    [Google Scholar]
  17. Stepanovska B. Huwiler A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol. Res. 2020 154 104170 10.1016/j.phrs.2019.02.009 30776422
    [Google Scholar]
  18. Arish M. Alaidarous M. Ali R. Akhter Y. Rub A. Implication of sphingosine-1-phosphate signaling in diseases: Molecular mechanism and therapeutic strategies. J. Recept. Signal Transduct. Res. 2017 37 5 437 446 10.1080/10799893.2017.1358282 28758826
    [Google Scholar]
  19. Huwiler A. Pfeilschifter J. New players on the center stage: Sphingosine 1-phosphate and its receptors as drug targets. Biochem. Pharmacol. 2008 75 10 1893 1900 10.1016/j.bcp.2007.12.018 18321471
    [Google Scholar]
  20. Maceyka M. Harikumar K.B. Milstien S. Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012 22 1 50 60 10.1016/j.tcb.2011.09.003 22001186
    [Google Scholar]
  21. Gräler M.H. Goetzl E.J. The immunosuppressant FTY720 down ;regulates sphingosine 1 ;phosphate G protein ;coupled receptors. FASEB J. 2004 18 3 551 553 10.1096/fj.03‑0910fje 14715694
    [Google Scholar]
  22. Matloubian M. Lo C.G. Cinamon G. Lesneski M.J. Xu Y. Brinkmann V. Allende M.L. Proia R.L. Cyster J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004 427 6972 355 360 10.1038/nature02284 14737169
    [Google Scholar]
  23. Oo M.L. Thangada S. Wu M.T. Liu C.H. Macdonald T.L. Lynch K.R. Lin C.Y. Hla T. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 2007 282 12 9082 9089 10.1074/jbc.M610318200 17237497
    [Google Scholar]
  24. Bigaud M. Dincer Z. Bollbuck B. Dawson J. Beckmann N. Beerli C. Fishli-Cavelti G. Nahler M. Angst D. Janser P. Otto H. Rosner E. Hersperger R. Bruns C. Quancard J. Pathophysiological consequences of a break in s1p1-dependent homeostasis of vascular permeability revealed by s1p1 competitive antagonism. PLoS One 2016 11 12 0168252 10.1371/journal.pone.0168252 28005953
    [Google Scholar]
  25. Yanagida K. Liu C.H. Faraco G. Galvani S. Smith H.K. Burg N. Anrather J. Sanchez T. Iadecola C. Hla T. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc. Natl. Acad. Sci. USA 2017 114 17 4531 4536 10.1073/pnas.1618659114 28396408
    [Google Scholar]
  26. La Mantia L. Tramacere I. Firwana B. Pacchetti I. Palumbo R. Filippini G. Fingolimod for relapsing-remitting multiple sclerosis. Cochrane Libr. 2016 2016 4 CD009371 10.1002/14651858.CD009371.pub2 27091121
    [Google Scholar]
  27. Stepanovska B. Zivkovic A. Enzmann G. Tietz S. Homann T. Kleuser B. Engelhardt B. Stark H. Huwiler A. Morpholino analogues of fingolimod as novel and selective s1p1 ligands with in vivo efficacy in a mouse model of experimental antigen-induced encephalomyelitis. Int. J. Mol. Sci. 2020 21 18 6463 10.3390/ijms21186463 32899717
    [Google Scholar]
  28. Imeri F. Stepanovska T.B. Zivkovic A. Enzmann G. Schwalm S. Pfeilschifter J. Homann T. Kleuser B. Engelhardt B. Stark H. Huwiler A. Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology 2021 186 108464 10.1016/j.neuropharm.2021.108464 33460688
    [Google Scholar]
  29. Roscoe W.A. Welsh M.E. Carter D.E. Karlik S.J. VEGF and angiogenesis in acute and chronic MOG(35-55) peptide induced EAE. J. Neuroimmunol. 2009 209 1-2 6 15 10.1016/j.jneuroim.2009.01.009 19233483
    [Google Scholar]
  30. Seabrook T.J. Littlewood-Evans A. Brinkmann V. Pöllinger B. Schnell C. Hiestand P.C. Angiogenesis is present in experimental autoimmune encephalomyelitis and pro-angiogenic factors are increased in multiple sclerosis lesions. J. Neuroinflammation 2010 7 1 95 10.1186/1742‑2094‑7‑95 21176212
    [Google Scholar]
  31. Schreibelt G. van Horssen J. Haseloff R.F. Reijerkerk A. van der Pol S.M.A. Nieuwenhuizen O. Krause E. Blasig I.E. Dijkstra C.D. Ronken E. de Vries H.E. Protective effects of peroxiredoxin-1 at the injured blood-brain barrier. Free Radic. Biol. Med. 2008 45 3 256 264 10.1016/j.freeradbiomed.2008.03.024 18452719
    [Google Scholar]
  32. van der Goes A. Brouwer J. Hoekstra K. Roos D. van den Berg T.K. Dijkstra C.D. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J. Neuroimmunol. 1998 92 1-2 67 75 10.1016/S0165‑5728(98)00175‑1 9916881
    [Google Scholar]
  33. van Meeteren M.E. Hendriks J.J.A. Dijkstra C.D. van Tol E.A.F. Dietary compounds prevent oxidative damage and nitric oxide production by cells involved in demyelinating disease. Biochem. Pharmacol. 2004 67 5 967 975 10.1016/j.bcp.2003.10.018 15104250
    [Google Scholar]
  34. Offen D. Gilgun-Sherki Y. Melamed E. The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy. J. Neurol. 2004 251 3 261 268 10.1007/s00415‑004‑0348‑9 15015004
    [Google Scholar]
  35. Hendriks J.J.A. Alblas J. van der Pol S.M.A. van Tol E.A.F. Dijkstra C.D. de Vries H.E. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J. Exp. Med. 2004 200 12 1667 1672 10.1084/jem.20040819 15611292
    [Google Scholar]
  36. Novoselova E.G. Lunin S.M. Novoselova T.V. Khrenov M.O. Glushkova O.V. Avkhacheva N.V. Safronova V.G. Fesenko E.E. Naturally occurring antioxidant nutrients reduce inflammatory response in mice. Eur. J. Pharmacol. 2009 615 1-3 234 240 10.1016/j.ejphar.2009.05.004 19463810
    [Google Scholar]
  37. Novoselova E.G. Khrenov M.O. Glushkova O.V. Lunin S.M. Parfenyuk S.B. Novoselova T.V. Fesenko E.E. S.M.; Parfenyuk, S.B.; Novoselova, T.V.; Fesenko, E.E. Antiinflammatory effects of IKK inhibitor XII, thymulin, and fatsoluble antioxidants in LPS-treated mice. Mediat. Inflamm. 2014 724838 10.1155/2014/724838
    [Google Scholar]
  38. Neves C.A. Firuzi O. Joao Gama M. van Horssen J. Saso L. Oxidative stress and antioxidants in neurological diseases: Is there still hope? Curr. Drug Targets 2017 18 6 705 718 10.2174/1389450117666160401120514 27033198
    [Google Scholar]
  39. Yun H.M. Park K.R. Kim E.C. Hong J.T. PRDX6 controls multiple sclerosis by suppressing inflammation and blood brain barrier disruption. Oncotarget 2015 6 25 20875 20884 10.18632/oncotarget.5205 26327204
    [Google Scholar]
  40. Arevalo J.A. Vázquez-Medina J.P. The role of Peroxiredoxin 6 in cell signaling. Antioxidants 2018 7 12 172 10.3390/antiox7120172 30477202
    [Google Scholar]
  41. Rahaman H. Herojit K. Singh L.R. Haobam R. Fisher A.B. Structural and functional diversity of the peroxiredoxin 6 enzyme family. Antioxid. Redox Signal. 2024 40 13-15 759 775 10.1089/ars.2023.0287 37463006
    [Google Scholar]
  42. Novoselova E.G. Glushkova O.V. Parfenuyk S.B. Khrenov M.O. Lunin S.M. Novoselova T.V. Sharapov M.G. Shaev I.A. Novoselov V.I. Protective effect of peroxiredoxin 6 against toxic effects of glucose and cytokines in pancreatic RIN-m5F β-cells. Biochemistry 2019 84 6 637 643 10.1134/S0006297919060063 31238863
    [Google Scholar]
  43. Novoselova E.G. Glushkova O.V. Lunin S.M. Khrenov M.O. Parfenyuk S.B. Novoselova T.V. Sharapov M.G. Novoselov V.I. Fesenko E.E. Peroxiredoxin 6 attenuates alloxan-induced type 1 diabetes mellitus in mice and cytokine-induced cytotoxicity in RIN-m5F beta cells. J. Diabetes Res. 2020 7523892 10.1155/2020/7523892
    [Google Scholar]
  44. Phasuk S. Jasmin S. Pairojana T. Chang H.K. Liang K.C. Liu I.Y. Lack of the peroxiredoxin 6 gene causes impaired spatial memory and abnormal synaptic plasticity. Mol. Brain 2021 14 1 72 10.1186/s13041‑021‑00779‑6 33874992
    [Google Scholar]
  45. Xue M. Huang X. Zhu T. Zhang L. Yang H. Shen Y. Feng L. Unveiling the significance of peroxiredoxin 6 in central nervous system disorders. Antioxidants 2024 13 4 449 10.3390/antiox13040449 38671897
    [Google Scholar]
  46. Uzawa A. Mori M. Masuda H. Ohtani R. Uchida T. Aoki R. Kuwabara S. Peroxiredoxins are involved in the pathogenesis of multiple sclerosis and neuromyelitis optica spectrum disorder. Clin. Exp. Immunol. 2020 202 2 239 248 10.1111/cei.13487 32643149
    [Google Scholar]
  47. Lunin S.M. Novoselova E.G. Glushkova O.V. Parfenyuk S.B. Kuzekova A.A. Novoselova T.V. Sharapov M.G. Mubarakshina E.K. Goncharov R.G. Khrenov M.O. Protective effect of exogenous peroxiredoxin 6 and thymic peptide thymulin on BBB conditions in an experimental model of multiple sclerosis. Arch. Biochem. Biophys. 2023 746 109729 10.1016/j.abb.2023.109729 37633587
    [Google Scholar]
  48. Charan J. Kantharia N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013 4 4 303 306 10.4103/0976‑500X.119726 24250214
    [Google Scholar]
  49. Sharapov M.G. Novoselov V.I. Fesenko E.E. Bruskov V.I. Gudkov S.V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: Effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Radic. Res. 2017 51 2 148 166 10.1080/10715762.2017.1289377 28142292
    [Google Scholar]
  50. Sharapov M.G. Novoselov V.I. Ravin V.K. Cloning, expression and comparative analysis of peroxiredoxine 6 from different species. Mol. Biol. 2009 43 3 505 511 10.1134/s0026893309030194
    [Google Scholar]
  51. Goldim M.P.S. Della G.A. Petronilho F. Using evans blue dye to determine blood ;brain barrier integrity in rodents. Curr. Protoc. Immunol. 2019 126 1 83 10.1002/cpim.83 31483106
    [Google Scholar]
  52. Schmittgen T.D. Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008 3 6 1101 1108 10.1038/nprot.2008.73 18546601
    [Google Scholar]
  53. Langrish C.L. Chen Y. Blumenschein W.M. Mattson J. Basham B. Sedgwick J.D. McClanahan T. Kastelein R.A. Cua D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005 201 2 233 240 10.1084/jem.20041257 15657292
    [Google Scholar]
  54. Hernandes M.S. Xu Q. Griendling K.K. Role of NADPH oxidases in blood–brain barrier disruption and ischemic stroke. Antioxidants 2022 11 10 1966 10.3390/antiox11101966 36290688
    [Google Scholar]
  55. Ma M.W. Wang J. Zhang Q. Wang R. Dhandapani K.M. Vadlamudi R.K. Brann D.W. NADPH oxidase in brain injury and neurodegenerative disorders. Mol. Neurodegener. 2017 12 1 7 10.1186/s13024‑017‑0150‑7 28095923
    [Google Scholar]
  56. Ambruso D.R. Ellison M.A. Thurman G.W. Leto T.L. Peroxiredoxin 6 translocates to the plasma membrane during neutrophil activation and is required for optimal NADPH oxidase activity. Biochim. Biophys. Acta Mol. Cell Res. 2012 1823 2 306 315 10.1016/j.bbamcr.2011.11.014 22178385
    [Google Scholar]
  57. Chatterjee S. Feinstein S.I. Dodia C. Sorokina E. Lien Y.C. Nguyen S. Debolt K. Speicher D. Fisher A.B. Peroxiredoxin 6 phosphorylation and subsequent phospholipase A2 activity are required for agonist-mediated activation of NADPH oxidase in mouse pulmonary microvascular endothelium and alveolar macrophages. J. Biol. Chem. 2011 286 13 11696 11706 10.1074/jbc.M110.206623 21262967
    [Google Scholar]
  58. Ellison M.A. Thurman G.W. Ambruso D.R. Phox activity of differentiated PLB ;985 cells is enhanced, in an agonist specific manner, by the PLA2 activity of Prdx6 ;PLA2. Eur. J. Immunol. 2012 42 6 1609 1617 10.1002/eji.201142157 22678913
    [Google Scholar]
  59. Leavey P.J. Gonzalez-Aller C. Thurman G. Kleinberg M. Rinckel L. Ambruso D.W. Freeman S. Kuypers F.A. Ambruso D.R.A. 29-kDa protein associated with p67phox expresses both peroxiredoxin and phospholipase A2 activity and enhances superoxide anion production by a cell-free system of NADPH oxidase activity. J. Biol. Chem. 2002 277 47 45181 45187 10.1074/jbc.M202869200 12121978
    [Google Scholar]
  60. Rhee S.G. Woo H.A. Kil I.S. Bae S.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012 287 7 4403 4410 10.1074/jbc.R111.283432 22147704
    [Google Scholar]
  61. Ueyama T. Geiszt M. Leto T.L. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol. Cell. Biol. 2006 26 6 2160 2174 10.1128/MCB.26.6.2160‑2174.2006 16507994
    [Google Scholar]
  62. Miyano K. Ueno N. Takeya R. Sumimoto H. Direct involvement of the small GTPase Rac in activation of the superoxide-producing NADPH oxidase Nox1. J. Biol. Chem. 2006 281 31 21857 21868 10.1074/jbc.M513665200 16762923
    [Google Scholar]
  63. Cheng G. Diebold B.A. Hughes Y. Lambeth J.D. Nox1-dependent reactive oxygen generation is regulated by Rac1. J. Biol. Chem. 2006 281 26 17718 17726 10.1074/jbc.M512751200 16636067
    [Google Scholar]
  64. Bánfi B. Clark R.A. Steger K. Krause K.H. Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 2003 278 6 3510 3513 10.1074/jbc.C200613200 12473664
    [Google Scholar]
  65. Geiszt M. Lekstrom K. Witta J. Leto T.L. Proteins homologous to p47phox and p67phox support superoxide production by NAD(P)H oxidase 1 in colon epithelial cells. J. Biol. Chem. 2003 278 22 20006 20012 10.1074/jbc.M301289200 12657628
    [Google Scholar]
  66. Vázquez-Medina J.P. Dodia C. Weng L. Mesaros C. Blair I.A. Feinstein S.I. Chatterjee S. Fisher A.B. The phospholipase A2 activity of peroxiredoxin 6 modulates NADPH oxidase 2 activation via lysophosphatidic acid receptor signaling in the pulmonary endothelium and alveolar macrophages. FASEB J. 2016 30 8 2885 2898 10.1096/fj.201500146R 27178323
    [Google Scholar]
  67. Kwon J. Wang A. Burke D.J. Boudreau H.E. Lekstrom K.J. Korzeniowska A. Sugamata R. Kim Y.S. Yi L. Ersoy I. Jaeger S. Palaniappan K. Ambruso D.R. Jackson S.H. Leto T.L. Peroxiredoxin 6 (Prdx6) supports NADPH oxidase1 (Nox1)-based superoxide generation and cell migration. Free Radic. Biol. Med. 2016 96 99 115 10.1016/j.freeradbiomed.2016.04.009 27094494
    [Google Scholar]
  68. Goncharov R.G. Rogov K.A. Temnov A.A. Novoselov V.I. Sharapov M.G. Protective role of exogenous recombinant peroxiredoxin 6 under ischemia-reperfusion injury of kidney. Cell Tissue Res. 2019 378 2 319 332 10.1007/s00441‑019‑03073‑z 31363842
    [Google Scholar]
  69. Sharapov M.G. Gudkov S.V. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch. Biochem. Biophys. 2021 697 108671 10.1016/j.abb.2020.108671 33181129
    [Google Scholar]
  70. Sharapov M.G. Goncharov R.G. Parfenyuk S.B. Glushkova O.V. Novoselov V.I. The role of phospholipase activity of peroxiredoxin 6 in its transmembrane transport and protective properties. Int. J. Mol. Sci. 2022 23 15265 10.3390/ijms232315265 36499590
    [Google Scholar]
  71. Lus G. Signoriello E. Maniscalco G.T. Bonavita S. Signoriello S. Gallo C. Treatment withdrawal in relapsing-remitting multiple sclerosis: A retrospective cohort study. Eur. J. Neurol. 2016 23 3 489 493 10.1111/ene.12790 26212486
    [Google Scholar]
  72. Huppke B. Vries H. Blaschek A. Huppke P. Severe disease activation after fingolimod discontinuation in a pediatric multiple sclerosis patient: A case report and literature review. Neuropediatrics 2025 56 2 147 150 10.1055/a‑2496‑5294 39638327
    [Google Scholar]
  73. Shimizu F. Nishihara H. Kanda T. Blood-brain barrier dysfunction in immuno-mediated neurological diseases. Immunol. Med. 2018 41 3 120 128 10.1080/25785826.2018.1531190 30938273
    [Google Scholar]
  74. Barry B. Erwin A.A. Stevens J. Tornatore C. Fingolimod rebound: A review of the clinical experience and management considerations. Neurol. Ther. 2019 8 2 241 250 10.1007/s40120‑019‑00160‑9 31677060
    [Google Scholar]
  75. Lin W. Chou C.H. Yang F.C. Tsai C.K. Lin Y.K. Sung Y.F. Case report: Severe rebound after withdrawal of fingolimod in a patient with neuromyelitis optica spectrum disorder. Front. Immunol. 2023 14 1115120 10.3389/fimmu.2023.1115120
    [Google Scholar]
/content/journals/cn/10.2174/011570159X372166250619064636
Loading
/content/journals/cn/10.2174/011570159X372166250619064636
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: EAE ; autoimmune response ; Multiple sclerosis ; blood-brain barrier ; fingolimod ; peroxiredoxin 6
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test