Skip to content
2000
image of Experimental Evaluation of QY-69: A Butyrylcholinesterase Inhibitor with Anti-Glioblastoma Efficacy

Abstract

Introduction

Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor, characterized by poor prognosis. Moreover, cognitive impairment from the tumor and its treatments compromises patients' quality of life. Butyrylcholinesterase (BChE) inhibition enhances cognitive function. Notably, is overexpressed in GBM tissues; its downregulation suppresses tumor cell proliferation, migration, and invasion. This study aimed to identify a BChE inhibitor with dual functionality: anti-GBM efficacy and cognitive protection modulation of neuroinflammation.

Methods

was identified from an in-house BChE inhibitor library through cytotoxicity-based screening. Its anti-GBM effects were evaluated through colony formation, wound healing, and transwell assays. Orthotopic GBM mice were treated with orally for 15 days. Tumor progression, cognitive function (Morris water maze), and neuroinflammation (microglia and astrocyte immunofluorescence) were analyzed.

Results

exhibited significant antiproliferative activity at micromolar concentrations. assays demonstrated significant inhibition of GBM cell growth, migration, and invasion. Behavioral impairment in mice was improved, and the activation of astrocytes and microglia in peritumoral tissues was reduced, indicating a decrease in neuroinflammation.

Discussion

demonstrated dual therapeutic potential in GBM by inhibiting tumor progression and alleviating cognitive impairment. However, its precise molecular mechanisms remain to be elucidated. Future research should employ transcriptomic and proteomic approaches to elucidate the molecular basis of its anti-GBM activity.

Conclusion

, a BChE inhibitor, exhibits potent anti-GBM activity and confers cognitive protection, positioning it as a promising dual-action therapeutic candidate. By inhibiting tumor progression and reducing neuroinflammation, it may enhance both survival and quality of life in GBM patients.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X394797250701074055
2025-07-07
2025-09-12
Loading full text...

Full text loading...

References

  1. Ostrom Q.T. Bauchet L. Davis F.G. Deltour I. Fisher J.L. Langer C.E. Pekmezci M. Schwartzbaum J.A. Turner M.C. Walsh K.M. Wrensch M.R. Barnholtz-Sloan J.S. The epidemiology of glioma in adults: A “state of the science” review. Neuro-oncol. 2014 16 7 896 913 10.1093/neuonc/nou087 24842956
    [Google Scholar]
  2. Price M. Ballard C. Benedetti J. Neff C. Cioffi G. Waite K.A. Kruchko C. Barnholtz-Sloan J.S. Ostrom Q.T. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2017-2021. Neuro-oncol. 2024 26 Suppl. 6 vi1 vi85 10.1093/neuonc/noae145 39371035
    [Google Scholar]
  3. Tan A.C. Ashley D.M. López G.Y. Malinzak M. Friedman H.S. Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020 70 4 299 312 10.3322/caac.21613 32478924
    [Google Scholar]
  4. Wen P.Y. Weller M. Lee E.Q. Alexander B.M. Barnholtz-Sloan J.S. Barthel F.P. Batchelor T.T. Bindra R.S. Chang S.M. Chiocca E.A. Cloughesy T.F. DeGroot J.F. Galanis E. Gilbert M.R. Hegi M.E. Horbinski C. Huang R.Y. Lassman A.B. Le Rhun E. Lim M. Mehta M.P. Mellinghoff I.K. Minniti G. Nathanson D. Platten M. Preusser M. Roth P. Sanson M. Schiff D. Short S.C. Taphoorn M.J.B. Tonn J.C. Tsang J. Verhaak R.G.W. von Deimling A. Wick W. Zadeh G. Reardon D.A. Aldape K.D. van den Bent M.J. Glioblastoma in adults: A Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-oncol. 2020 22 8 1073 1113 10.1093/neuonc/noaa106 32328653
    [Google Scholar]
  5. Schaff L.R. Mellinghoff I.K. Glioblastoma and other primary brain malignancies in adults: A review. JAMA 2023 329 7 574 587 10.1001/jama.2023.0023 36809318
    [Google Scholar]
  6. Weller M. Wick W. Aldape K. Brada M. Berger M. Pfister S.M. Nishikawa R. Rosenthal M. Wen P.Y. Stupp R. Reifenberger G. Glioma. Nat. Rev. Dis. Primers 2015 1 1 15017 10.1038/nrdp.2015.17 27188790
    [Google Scholar]
  7. Lassman A.B. van den Bent M.J. Gan H.K. Reardon D.A. Kumthekar P. Butowski N. Lwin Z. Mikkelsen T. Nabors L.B. Papadopoulos K.P. Penas-Prado M. Simes J. Wheeler H. Walbert T. Scott A.M. Gomez E. Lee H.J. Roberts-Rapp L. Xiong H. Ansell P.J. Bain E. Holen K.D. Maag D. Merrell R. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR -amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro-oncol. 2019 21 1 106 114 10.1093/neuonc/noy091 29982805
    [Google Scholar]
  8. McBain C. Lawrie T.A. Rogozińska E. Kernohan A. Robinson T. Jefferies S. Treatment options for progression or recurrence of glioblastoma: A network meta-analysis. Cochrane Libr. 2021 2021 5 CD013579 10.1002/14651858.CD013579.pub2 34559423
    [Google Scholar]
  9. Sonabend A.M. Gould A. Amidei C. Ward R. Schmidt K.A. Zhang D.Y. Gomez C. Bebawy J.F. Liu B.P. Bouchoux G. Desseaux C. Helenowski I.B. Lukas R.V. Dixit K. Kumthekar P. Arrieta V.A. Lesniak M.S. Carpentier A. Zhang H. Muzzio M. Canney M. Stupp R. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: A phase 1 trial. Lancet Oncol. 2023 24 5 509 522 10.1016/S1470‑2045(23)00112‑2 37142373
    [Google Scholar]
  10. Taal W. Oosterkamp H.M. Walenkamp A.M.E. Dubbink H.J. Beerepoot L.V. Hanse M.C.J. Buter J. Honkoop A.H. Boerman D. de Vos F.Y.F. Dinjens W.N.M. Enting R.H. Taphoorn M.J.B. van den Berkmortel F.W.P.J. Jansen R.L.H. Brandsma D. Bromberg J.E.C. van Heuvel I. Vernhout R.M. van der Holt B. van den Bent M.J. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol. 2014 15 9 943 953 10.1016/S1470‑2045(14)70314‑6 25035291
    [Google Scholar]
  11. Cochereau J. Herbet G. Duffau H. Patients with incidental WHO grade II glioma frequently suffer from neuropsychological disturbances. Acta Neurochir. (Wien) 2016 158 2 305 312 10.1007/s00701‑015‑2674‑3 26711285
    [Google Scholar]
  12. van Kessel E. Baumfalk A.E. van Zandvoort M.J.E. Robe P.A. Snijders T.J. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: A systematic review of neurocognitive functioning prior to anti-tumor treatment. J. Neurooncol. 2017 134 1 9 18 10.1007/s11060‑017‑2503‑z 28567586
    [Google Scholar]
  13. Tucha O. Smely C. Preier M. Lange K.W. Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 2000 47 2 324 334 10.1097/00006123‑200008000‑00011 10942005
    [Google Scholar]
  14. Yamawaki R. Nankaku M. Umaba C. Ueda M. Liang N. Mineharu Y. Yamao Y. Ikeguchi R. Matsuda S. Miyamoto S. Arakawa Y. Assessment of neurocognitive function in association with WHO grades in gliomas. Clin. Neurol. Neurosurg. 2021 208 106824 10.1016/j.clineuro.2021.106824 34329808
    [Google Scholar]
  15. Dallabona M. Sarubbo S. Merler S. Corsini F. Pulcrano G. Rozzanigo U. Barbareschi M. Chioffi F. Impact of mass effect, tumor location, age, and surgery on the cognitive outcome of patients with high-grade gliomas: A longitudinal study. Neurooncol. Pract. 2017 4 4 229 240 10.1093/nop/npw030 31386003
    [Google Scholar]
  16. Klein M. Neurocognitive functioning in adult WHO grade II gliomas: Impact of old and new treatment modalities. Neuro-oncol. 2012 14 Suppl. 4 iv17 iv24 10.1093/neuonc/nos161 23095826
    [Google Scholar]
  17. Noll K.R. Ziu M. Weinberg J.S. Wefel J.S. Neurocognitive functioning in patients with glioma of the left and right temporal lobes. J. Neurooncol. 2016 128 2 323 331 10.1007/s11060‑016‑2114‑0 27022915
    [Google Scholar]
  18. Noll K.R. Weinberg J.S. Ziu M. Benveniste R.J. Suki D. Wefel J.S. Neurocognitive changes associated with surgical resection of left and right temporal lobe glioma. Neurosurgery 2015 77 5 777 785 10.1227/NEU.0000000000000987 26317672
    [Google Scholar]
  19. Noll K.R. Sullaway C. Ziu M. Weinberg J.S. Wefel J.S. Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection. Neuro-oncol. 2015 17 4 580 587 10.1093/neuonc/nou233 25227126
    [Google Scholar]
  20. Krishna S. Choudhury A. Keough M.B. Seo K. Ni L. Kakaizada S. Lee A. Aabedi A. Popova G. Lipkin B. Cao C. Nava Gonzales C. Sudharshan R. Egladyous A. Almeida N. Zhang Y. Molinaro A.M. Venkatesh H.S. Daniel A.G.S. Shamardani K. Hyer J. Chang E.F. Findlay A. Phillips J.J. Nagarajan S. Raleigh D.R. Brang D. Monje M. Hervey-Jumper S.L. Glioblastoma remodelling of human neural circuits decreases survival. Nature 2023 617 7961 599 607 10.1038/s41586‑023‑06036‑1 37138086
    [Google Scholar]
  21. van Kessel E. Berendsen S. Baumfalk A.E. Venugopal H. Krijnen E.A. Spliet W.G.M. van Hecke W. Giuliani F. Seute T. van Zandvoort M.J.E. Snijders T.J. Robe P.A. Tumor-related molecular determinants of neurocognitive deficits in patients with diffuse glioma. Neuro-oncol. 2022 24 10 1660 1670 10.1093/neuonc/noac036 35148403
    [Google Scholar]
  22. Venkatesh H.S. Morishita W. Geraghty A.C. Silverbush D. Gillespie S.M. Arzt M. Tam L.T. Espenel C. Ponnuswami A. Ni L. Woo P.J. Taylor K.R. Agarwal A. Regev A. Brang D. Vogel H. Hervey-Jumper S. Bergles D.E. Suvà M.L. Malenka R.C. Monje M. Electrical and synaptic integration of glioma into neural circuits. Nature 2019 573 7775 539 545 10.1038/s41586‑019‑1563‑y 31534222
    [Google Scholar]
  23. Sekely A. Bernstein L.J. Campbell K.L. Mason W.P. Laperriere N. Kalidindi N. Or R. Ramos R. Climans S.A. Pond G.R. Ann Millar B. Shultz D. Tsang D.S. Zadeh G. Edelstein K. Neurocognitive impairment, neurobehavioral symptoms, fatigue, sleep disturbance, and depressive symptoms in patients with newly diagnosed glioblastoma. Neurooncol. Pract. 2023 10 1 89 96 10.1093/nop/npac068 36659968
    [Google Scholar]
  24. Halkett G.K.B. Lobb E. Spilsbury K. Dhillon H. Nowak A.K. Brain cancer patients’ levels of distress and supportive care needs over time. Psychooncology 2022 31 12 2074 2085 10.1002/pon.6028 36086830
    [Google Scholar]
  25. Li Q. Zhang L. Chen C. Gan Y. Jiang L. Li S. Xiang W. Ming Y. Yang C. Zhou J. Caregiver burden and influencing factors among family caregivers of patients with glioma: A cross-sectional survey. J. Clin. Neurosci. 2022 96 107 113 10.1016/j.jocn.2021.11.012 34840093
    [Google Scholar]
  26. Sinha R. Stephenson J.M. Price S.J. A systematic review of cognitive function in patients with glioblastoma undergoing surgery. Neurooncol. Pract. 2019 7 2 131 142 10.1093/nop/npz018 32626582
    [Google Scholar]
  27. Lomeli N. Di K. Pearre D.C. Chung T.F. Bota D.A. Mitochondrial-associated impairments of temozolomide on neural stem/progenitor cells and hippocampal neurons. Mitochondrion 2020 52 56 66 10.1016/j.mito.2020.02.001 32045717
    [Google Scholar]
  28. Nokia M.S. Anderson M.L. Shors T.J. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur. J. Neurosci. 2012 36 11 3521 3530 10.1111/ejn.12007 23039863
    [Google Scholar]
  29. Soreq H. Seidman S. Acetylcholinesterase — New roles for an old actor. Nat. Rev. Neurosci. 2001 2 4 294 302 10.1038/35067589 11283752
    [Google Scholar]
  30. Xi H.J. Wu R.P. Liu J.J. Zhang L.J. Li Z.S. Role of acetylcholinesterase in lung cancer. Thorac. Cancer 2015 6 4 390 398 10.1111/1759‑7714.12249 26273392
    [Google Scholar]
  31. Lazarevic-Pasti T. Leskovac A. Momic T. Petrovic S. Vasic V. Modulators of acetylcholinesterase activity: From Alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem. 2017 24 30 3283 3309 10.2174/0929867324666170705123509 28685687
    [Google Scholar]
  32. Ma Y. Gao W. Ma S. Liu Y. Lin W. Observation of the elevation of cholinesterase activity in brain glioma by a near-infrared emission chemsensor. Anal. Chem. 2020 92 19 13405 13410 10.1021/acs.analchem.0c02770 32864956
    [Google Scholar]
  33. Greig N.H. Utsuki T. Ingram D.K. Wang Y. Pepeu G. Scali C. Yu Q.S. Mamczarz J. Holloway H.W. Giordano T. Chen D. Furukawa K. Sambamurti K. Brossi A. Lahiri D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005 102 47 17213 17218 10.1073/pnas.0508575102 16275899
    [Google Scholar]
  34. Xing S. Li Q. Xiong B. Chen Y. Feng F. Liu W. Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer’s disease, and fat metabolism. Med. Res. Rev. 2021 41 2 858 901 10.1002/med.21745 33103262
    [Google Scholar]
  35. Li Q. Chen Y. Xing S. Liao Q. Xiong B. Wang Y. Lu W. He S. Feng F. Liu W. Chen Y. Sun H. Highly potent and selective butyrylcholinesterase inhibitors for cognitive improvement and neuroprotection. J. Med. Chem. 2021 64 10 6856 6876 10.1021/acs.jmedchem.1c00167 33973470
    [Google Scholar]
  36. Li B. Duysen E.G. Carlson M. Lockridge O. The butyrylcholinesterase knockout mouse as a model for human butyrylcholinesterase deficiency. J. Pharmacol. Exp. Ther. 2008 324 3 1146 1154 10.1124/jpet.107.133330 18056867
    [Google Scholar]
  37. Manoharan I. Boopathy R. Darvesh S. Lockridge O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta 2007 378 1-2 128 135 10.1016/j.cca.2006.11.005 17182021
    [Google Scholar]
  38. Li Q. Xing S. Chen Y. Liao Q. Xiong B. He S. Lu W. Liu Y. Yang H. Li Q. Feng F. Liu W. Chen Y. Sun H. Discovery and biological evaluation of a novel highly potent selective butyrylcholinsterase inhibitor. J. Med. Chem. 2020 63 17 10030 10044 10.1021/acs.jmedchem.0c01129 32787113
    [Google Scholar]
  39. Li Q. Xiong B. Wang Y. Lyu W. Xing S. Chen Y. Liao Q. He S. Feng F. Liu W. Chen Y. Sun H. A highly effective and stable butyrylcholinesterase inhibitor with multi-faceted neuroprotection and cognition improvement. Eur. J. Med. Chem. 2022 239 114510 10.1016/j.ejmech.2022.114510 35728508
    [Google Scholar]
  40. Cai Y. Liu J. Wang B. Sun M. Yang H. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front. Immunol. 2022 13 856376 10.3389/fimmu.2022.856376 35558075
    [Google Scholar]
  41. Tang J.H. Yang L. Chen J.X. Li Q.R. Zhu L.R. Xu Q.F. Huang G.H. Zhang Z.X. Xiang Y. Du L. Zhou Z. Lv S.Q. Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-Survivin axis. Cancer Commun. (Lond.) 2019 39 1 81 10.1186/s40880‑019‑0424‑2 31796105
    [Google Scholar]
  42. Zha C. Meng X. Li L. Mi S. Qian D. Li Z. Wu P. Hu S. Zhao S. Cai J. Liu Y. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol. Med. 2020 17 1 154 168 10.20892/j.issn.2095‑3941.2019.0353 32296583
    [Google Scholar]
  43. Xu J. Zhang Z. Qian M. Wang S. Qiu W. Chen Z. Sun Z. Xiong Y. Wang C. Sun X. Zhao R. Xue H. Li G. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. J. Exp. Clin. Cancer Res. 2020 39 1 59 10.1186/s13046‑020‑01553‑7 32252802
    [Google Scholar]
  44. Qi S. Guo L. Liang J. Wang K. Liao Q. He S. Lyu W. Cheng Z. Wang J. Luo X. Yan X. Lu Z. Wang X. Wang Z. Chen X. Li Q. A new strategy for the treatment of Parkinson’s disease: Discovery and bio-evaluation of the first central-targeting tyrosinase inhibitor. Bioorg. Chem. 2024 150 107612 10.1016/j.bioorg.2024.107612 38986418
    [Google Scholar]
  45. Zhou Z. Zhou Y. Huang Z. Wang M. Jiang J. Yan M. Xiang W. Li S. Yu Y. Chen L. Zhou J. Dong W. Notopterol improves cognitive dysfunction and depression-like behavior via inhibiting STAT3/NF-ĸB pathway mediated inflammation in glioma-bearing mice. Int. Immunopharmacol. 2023 118 110041 10.1016/j.intimp.2023.110041 37004346
    [Google Scholar]
  46. Liu S. Liu J. Li H. Mao K. Wang H. Meng X. Wang J. Wu C. Chen H. Wang X. Cong X. Hou Y. Wang Y. Wang M. Yang Y.G. Sun T. An optimized ionizable cationic lipid for brain tumor-targeted siRNA delivery and glioblastoma immunotherapy. Biomaterials 2022 287 121645 10.1016/j.biomaterials.2022.121645 35779480
    [Google Scholar]
  47. Abdelwahab M.G. Sankar T. Preul M.C. Scheck A.C. Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas. J. Vis. Exp., 2011 e3403 57 e3403 10.3791/3403 22158303
    [Google Scholar]
  48. Xie Y. Li K. Liang J. Wang K. Gong Z. Chen X. Co-delivery of doxorubicin and STING agonist cGAMP for enhanced antitumor immunity. Int. J. Pharm. 2024 654 123955 10.1016/j.ijpharm.2024.123955 38423155
    [Google Scholar]
  49. Asslih S. Damri O. Agam G. Neuroinflammation as a common denominator of complex diseases (cancer, diabetes type 2, and neuropsychiatric disorders). Int. J. Mol. Sci. 2021 22 11 6138 10.3390/ijms22116138 34200240
    [Google Scholar]
  50. Ainslie A.P. Klaver M. Voshart D.C. Gerrits E. den Dunnen W.F.A. Eggen B.J.L. Bergink S. Barazzuol L. Glioblastoma and its treatment are associated with extensive accelerated brain aging. Aging Cell 2024 23 3 e14066 10.1111/acel.14066 38234228
    [Google Scholar]
  51. Greutter L. Miller-Michlits Y. Klotz S. Reimann R. Nenning K.H. Platzek S. Krause E. Kiesel B. Widhalm G. Langs G. Baumann B. Woehrer A. Frequent Alzheimer’s disease neuropathological change in patients with glioblastoma. Neurooncol. Adv. 2024 6 1 vdae118 10.1093/noajnl/vdae118 39220249
    [Google Scholar]
  52. Jiang T. Nam D.H. Ram Z. Poon W. Wang J. Boldbaatar D. Mao Y. Ma W. Mao Q. You Y. Jiang C. Yang X. Kang C. Qiu X. Li W. Li S. Chen L. Li X. Liu Z. Wang W. Bai H. Yao Y. Li S. Wu A. Sai K. Li G. Yao K. Wei X. Liu X. Zhang Z. Dai Y. Lv S. Wang L. Lin Z. Dong J. Xu G. Ma X. Zhang W. Zhang C. Chen B. You G. Wang Y. Wang Y. Bao Z. Yang P. Fan X. Liu X. Zhao Z. Wang Z. Li Y. Wang Z. Li G. Fang S. Li L. Liu Y. Liu S. Shan X. Liu Y. Chai R. Hu H. Chen J. Yan W. Cai J. Wang H. Chen L. Yang Y. Wang Y. Han L. Wang Q. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021 499 60 72 10.1016/j.canlet.2020.10.050 33166616
    [Google Scholar]
  53. Stupp R. Taillibert S. Kanner A. Read W. Steinberg D.M. Lhermitte B. Toms S. Idbaih A. Ahluwalia M.S. Fink K. Di Meco F. Lieberman F. Zhu J.J. Stragliotto G. Tran D.D. Brem S. Hottinger A.F. Kirson E.D. Lavy-Shahaf G. Weinberg U. Kim C.Y. Paek S.H. Nicholas G. Bruna J. Hirte H. Weller M. Palti Y. Hegi M.E. Ram Z. Effect of tumor-treating fields plus maintenance temozolomide vs. maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 2017 318 23 2306 2316 10.1001/jama.2017.18718 29260225
    [Google Scholar]
  54. Hart M.G. Romero-Garcia R. Price S.J. Suckling J. Global effects of focal brain tumors on functional complexity and network robustness: A prospective cohort study. Neurosurgery 2019 84 6 1201 1213 10.1093/neuros/nyy378 30137556
    [Google Scholar]
  55. Correa D.D. Satagopan J. Martin A. Braun E. Kryza-Lacombe M. Cheung K. Sharma A. Dimitriadoy S. O’Connell K. Leong S. Karimi S. Lyo J. DeAngelis L.M. Orlow I. Genetic variants and cognitive functions in patients with brain tumors. Neuro-oncol. 2019 21 10 1297 1309 10.1093/neuonc/noz094 31123752
    [Google Scholar]
  56. Douw L. Klein M. Fagel S.S.A.A. van den Heuvel J. Taphoorn M.J.B. Aaronson N.K. Postma T.J. Vandertop W.P. Mooij J.J. Boerman R.H. Beute G.N. Sluimer J.D. Slotman B.J. Reijneveld J.C. Heimans J.J. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009 8 9 810 818 10.1016/S1474‑4422(09)70204‑2 19665931
    [Google Scholar]
  57. Noll K.R. Chen H.S. Wefel J.S. Kumar V.A. Hou P. Ferguson S.D. Rao G. Johnson J.M. Schomer D.F. Suki D. Prabhu S.S. Liu H.L. Alterations in functional connectomics associated with neurocognitive changes following glioma resection. Neurosurgery 2021 88 3 544 551 10.1093/neuros/nyaa453 33080024
    [Google Scholar]
  58. Huang-Hobbs E. Cheng Y.T. Ko Y. Luna-Figueroa E. Lozzi B. Taylor K.R. McDonald M. He P. Chen H.C. Yang Y. Maleki E. Lee Z.F. Murali S. Williamson M.R. Choi D. Curry R. Bayley J. Woo J. Jalali A. Monje M. Noebels J.L. Harmanci A.S. Rao G. Deneen B. Remote neuronal activity drives glioma progression through SEMA4F. Nature 2023 619 7971 844 850 10.1038/s41586‑023‑06267‑2 37380778
    [Google Scholar]
  59. Heinke L. High connectivity in gliomas affects cognition and survival. Nat. Can. 2023 4 12 1637 10.1038/s43018‑023‑00661‑5 38102346
    [Google Scholar]
  60. Hu J. Bao H. Liu X. Fang S. Yan Z. Wang Z. Zhang R. Wang R. Pu T. Li C. Cui Z. Jiang T. Wang Y. Glioma-white matter tract interactions: a dMRI-based three-tier classification and its clinical relevance. Neuro-oncol. 2025 noaf036 10.1093/neuonc/noaf036 39946091
    [Google Scholar]
  61. Bunevicius A. Miller J. Parsons M. Isocitrate dehydrogenase, patient-reported outcomes, and cognitive functioning of glioma patients: A systematic review. Curr. Oncol. Rep. 2020 22 12 120 10.1007/s11912‑020‑00978‑9 32965568
    [Google Scholar]
  62. Jaiswara P.K. Shukla S.K. Chemotherapy-mediated neuronal aberration. Pharmaceuticals 2023 16 8 1165 10.3390/ph16081165 37631080
    [Google Scholar]
  63. Christie L.A. Acharya M.M. Parihar V.K. Nguyen A. Martirosian V. Limoli C.L. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin. Cancer Res. 2012 18 7 1954 1965 10.1158/1078‑0432.CCR‑11‑2000 22338017
    [Google Scholar]
  64. Brandes A.A. Franceschi E. Tosoni A. Benevento F. Scopece L. Mazzocchi V. Bacci A. Agati R. Calbucci F. Ermani M. Temozolomide concomitant and adjuvant to radiotherapy in elderly patients with glioblastoma. Cancer 2009 115 15 3512 3518 10.1002/cncr.24406 19514084
    [Google Scholar]
  65. Trippa L. Wen P.Y. Parmigiani G. Berry D.A. Alexander B.M. Combining progression-free survival and overall survival as a novel composite endpoint for glioblastoma trials. Neuro-oncol. 2015 17 8 1106 1113 10.1093/neuonc/nou345 25568226
    [Google Scholar]
  66. Zanotto A. Glover R.N. Zanotto T. Boele F.W. Rehabilitation in people living with glioblastoma: A narrative review of the literature. Cancers 2024 16 9 1699 10.3390/cancers16091699 38730651
    [Google Scholar]
  67. Henriksson R. Asklund T. Poulsen H.S. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review. J. Neurooncol. 2011 104 3 639 646 10.1007/s11060‑011‑0565‑x 21468776
    [Google Scholar]
  68. Bergo E. Lombardi G. Guglieri I. Capovilla E. Pambuku A. Zagone V. Neurocognitive functions and health-related quality of life in glioblastoma patients: A concise review of the literature. Eur. J. Cancer Care 2019 28 1 e12410 10.1111/ecc.12410 26531122
    [Google Scholar]
  69. Koekkoek J.A.F. van der Meer P.B. Pace A. Hertler C. Harrison R. Leeper H.E. Forst D.A. Jalali R. Oliver K. Philip J. Taphoorn M.J.B. Dirven L. Walbert T. Palliative care and end-of-life care in adults with malignant brain tumors. Neuro-oncol. 2023 25 3 447 456 10.1093/neuonc/noac216 36271873
    [Google Scholar]
  70. Boberg D.R. Batistela M.S. Pecharki M. Ribeiro E.M.S.F. Cavalli I.J. Lima R.S. Urban C.A. Furtado-Alle L. Souza R.L.R. Copy number variation in ACHE/EPHB4 (7q22) and in BCHE/MME (3q26) genes in sporadic breast cancer. Chem. Biol. Interact. 2013 203 1 344 347 10.1016/j.cbi.2012.09.020 23063927
    [Google Scholar]
  71. Jaiswal G. Jaiswal S. Butyrylcholinesterase: An economical marker of disease activity in oral squamous cell carcinoma before and after therapy. J. Cancer Res. Ther. 2020 16 Suppl. 8 39 10.4103/jcrt.JCRT_207_16 33380649
    [Google Scholar]
  72. Gu Y. Chow M.J. Kapoor A. Mei W. Jiang Y. Yan J. De Melo J. Seliman M. Yang H. Cutz J.C. Bonert M. Major P. Tang D. Biphasic alteration of butyrylcholinesterase (BChE) during prostate cancer development. Transl. Oncol. 2018 11 4 1012 1022 10.1016/j.tranon.2018.06.003 29966864
    [Google Scholar]
  73. Willis S. Villalobos V.M. Gevaert O. Abramovitz M. Williams C. Sikic B.I. Leyland-Jones B. Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One 2016 11 2 e0149183 10.1371/journal.pone.0149183 26886260
    [Google Scholar]
  74. Wang S. Huang X. Zhao S. Lv J. Li Y. Wang S. Guo J. Wang Y. Wang R. Zhang M. Qiu W. Progressions of the correlation between lipid metabolism and immune infiltration characteristics in gastric cancer and identification of BCHE as a potential biomarker. Front. Immunol. 2024 15 1327565 10.3389/fimmu.2024.1327565 38357546
    [Google Scholar]
  75. Jin H. Zhang C. Zwahlen M. von Feilitzen K. Karlsson M. Shi M. Yuan M. Song X. Li X. Yang H. Turkez H. Fagerberg L. Uhlén M. Mardinoglu A. Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation. Nat. Commun. 2023 14 1 5417 10.1038/s41467‑023‑41132‑w 37669926
    [Google Scholar]
  76. Uhlen M. Zhang C. Lee S. Sjöstedt E. Fagerberg L. Bidkhori G. Benfeitas R. Arif M. Liu Z. Edfors F. Sanli K. von Feilitzen K. Oksvold P. Lundberg E. Hober S. Nilsson P. Mattsson J. Schwenk J.M. Brunnström H. Glimelius B. Sjöblom T. Edqvist P.H. Djureinovic D. Micke P. Lindskog C. Mardinoglu A. Ponten F. A pathology atlas of the human cancer transcriptome. Science 2017 357 6352 eaan2507 10.1126/science.aan2507 28818916
    [Google Scholar]
  77. Vidal C.J. Expression of cholinesterases in brain and non-brain tumours. Chem. Biol. Interact. 2005 157-158 227 232 10.1016/j.cbi.2005.10.035 16256970
    [Google Scholar]
  78. García-Ayllón M.S. Sáez-Valero J. Muñoz-Delgado E. Vidal C.J. Identification of hybrid cholinesterase forms consisting of acetyl- and butyrylcholinesterase subunits in human glioma. Neuroscience 2001 107 2 199 208 10.1016/S0306‑4522(01)00355‑4 11731094
    [Google Scholar]
  79. Baranowska-Kortylewicz J. Kortylewicz Z.P. McIntyre E.M. Sharp J.G. Coulter D.W. Multifarious functions of butyrylcholinesterase in neuroblastoma: impact of BCHE deletion on the neuroblastoma growth in vitro and in vivo. J. Pediatr. Hematol. Oncol. 2022 44 6 293 304 10.1097/MPH.0000000000002285 34486544
    [Google Scholar]
  80. Rapp S.R. Case L.D. Peiffer A. Naughton M.M. Chan M.D. Stieber V.W. Moore D.F. Falchuk S.C. Piephoff J.V. Edenfield W.J. Giguere J.K. Loghin M.E. Shaw E.G. Donepezil for irradiated brain tumor survivors: A Phase III randomized placebo-controlled clinical trial. J. Clin. Oncol. 2015 33 15 1653 1659 10.1200/JCO.2014.58.4508 25897156
    [Google Scholar]
  81. Chen Y. Zhang W. Li Q. Xie H. Xing S. Lu X. Lyu W. Xiong B. Wang Y. Qu W. Liu W. Chi H. Zhang X. Feng F. Sun H. Discovery of 4-benzylpiperazinequinoline BChE inhibitor that suppresses neuroinflammation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2024 272 116463 10.1016/j.ejmech.2024.116463 38704944
    [Google Scholar]
  82. Li Q. Yang H. Chen Y. Sun H. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Eur. J. Med. Chem. 2017 132 294 309 10.1016/j.ejmech.2017.03.062 28371641
    [Google Scholar]
/content/journals/cn/10.2174/011570159X394797250701074055
Loading
/content/journals/cn/10.2174/011570159X394797250701074055
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test