Skip to content
2000
image of Drug-resistant Epilepsy: Which Drugs are Substrates of P-glycoprotein and Which are Not?

Abstract

One of the accepted factors of antiseizure medication resistance is the action of 
P-glycoprotein (P-gp), limiting the access of drugs to the nervous system. But if we ask which antiseizure medications are substrates of P-gp and which are not, the available bibliography will not allow us to obtain a clear answer. In this review, we focus on clarifying this response. The reviewed studies have been conducted both in cell lines and in mice that have been administered a P-gp inhibitor, artificially induced with drug-resistant epilepsy, or had a P-gp gene knockout. A limited number of studies have been conducted in dogs, primates, brain sections of known epilepsies, or human volunteers, including pharmacokinetic studies in healthy volunteers and symptomatic response to treatment. Notably, in human cases, allele variation studies check if having one allele or another of P-gp varies the pharmacokinetics in question. As we see, the approach to P-gp and antiseizure medication can be done using very different methods, which undoubtedly complicates the interpretation of the findings. We cannot be categorical in our results, but we can mention probabilities. Regarding the weighting of studies, we will consider those conducted in humans as more important, followed by animal studies, and we will give less weight to studies showing contradictory results compared to the general bibliographic base. Based on the published bibliography, we propose that, among the anti-crisis medications, the following are likely substrates of P-glycoprotein: Phenytoin, Phenobarbital, Oxcarbazepine, Lamotrigine, Topiramate, and Lacosamide (less evidence). The following are probably not substrates: Brivaracetam, Zonisamide, Valproic acid, Perampanel, Gabapentin, and Vigabatrin. We have not obtained enough information about: Carbamazepine, Eslicarbazepine, Levetiracetam, Tiagabine, Felbamate, Pregabalin, Rufinamide, Ezogabine, and Retigabine.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X381818250612061802
2025-06-30
2025-09-05
Loading full text...

Full text loading...

References

  1. Weiss J. Kerpen C.J. Lindenmaier H. Dormann S.M.G. Haefeli W.E. Interaction of antiepileptic drugs with human P-glycoprotein in vitro. J. Pharmacol. Exp. Ther. 2003 307 1 262 267 10.1124/jpet.103.054197 12954800
    [Google Scholar]
  2. Hu B. Zhao J. Ao Y. Cai X. The possible role of electromagnetic induction in the regulation of absence seizures: Evidence from a computational model. Nonlinear Dyn. 2025 113 3 2711 2728 10.1007/s11071‑024‑10345‑z
    [Google Scholar]
  3. Hu B. Zhou W. Ma X. Striatum is the potential target for treating absence epilepsy: A theoretical evidence. Cogn. Neurodynamics 2024 18 6 3775 3790 10.1007/s11571‑024‑10161‑6 39712108
    [Google Scholar]
  4. Hu B. Guo Y. Zhao J. Ma X. Possible regulatory mechanisms of typical and atypical absence seizures through an equivalent projection from the subthalamic nucleus to the cortex: Evidence in a computational model. J. Theor. Biol. 2025 602-603 112059 10.1016/j.jtbi.2025.112059 39921022
    [Google Scholar]
  5. van Vliet E.A. van Schaik R. Edelbroek P.M. Voskuyl R.A. Redeker S. Aronica E. Wadman W.J. Gorter J.A. Region-specific overexpression of P-glycoprotein at the blood-brain barrier affects brain uptake of phenytoin in epileptic rats. J. Pharmacol. Exp. Ther. 2007 322 1 141 147 10.1124/jpet.107.121178 17392402
    [Google Scholar]
  6. Liu Q. Wang Y. Tan D. Liu Y. Zhang P. Ma L. Liang M. Chen Y. The prevention and reversal of a phenytoin-resistant model by N-acetylcysteine therapy involves the Nrf2/P-Glycoprotein pathway at the blood-brain barrier. J. Mol. Neurosci. 2022 72 10 2125 2135 10.1007/s12031‑022‑02056‑0 36028602
    [Google Scholar]
  7. Fang Z. Cao P. Pan N. Lu H. Pluronic P85 decreases the delivery of phenytoin to the brain in drug-resistant rats with P-glycoprotein overexpressed chronic mesial temporal lobe epilepsy. IBRO Neurosci. Rep 2023 15 100 106 10.1016/j.ibneur.2023.06.009 37485299
    [Google Scholar]
  8. Zhou S. Lim L.Y. Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 2004 36 1 57 104 10.1081/DMR‑120028427 15072439
    [Google Scholar]
  9. van Vliet E.A. Zibell G. Pekcec A. Schlichtiger J. Edelbroek P.M. Holtman L. Aronica E. Gorter J.A. Potschka H. COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 2010 58 2 404 412 10.1016/j.neuropharm.2009.09.012 19786037
    [Google Scholar]
  10. Enrique A.V. New anticonvulsant candidates prevent Pglycoprotein overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav 2021 121 Pt B 106451 10.1016/j.yebeh.2019.106451
    [Google Scholar]
  11. Zhang C. Fan Q. Chen S.L. Ma H. Reversal of P‐glycoprotein overexpression by Ginkgo biloba extract in the brains of pentylenetetrazole‐kindled and phenytoin‐treated mice. Kaohsiung J. Med. Sci. 2015 31 8 398 404 10.1016/j.kjms.2015.05.007 26228278
    [Google Scholar]
  12. Potschka H. Löscher W. In vivo evidence for P-glycoprotein-mediated transport of phenytoin at the blood-brain barrier of rats. Epilepsia 2001 42 10 1231 1240 10.1046/j.1528‑1157.2001.01901.x 11737157
    [Google Scholar]
  13. Nakanishi H. Yonezawa A. Matsubara K. Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur. J. Pharmacol. 2013 710 1-3 20 28 10.1016/j.ejphar.2013.03.049
    [Google Scholar]
  14. Zhang C. Kwan P. Zuo Z. Baum L. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010 86 23-24 899 905 10.1016/j.lfs.2010.04.008 20417647
    [Google Scholar]
  15. Ma A. Wang C. Chen Y. Yuan W. P-glycoprotein alters blood-brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy. Drug Des. Devel. Ther. 2013 7 1447 1454 24348021
    [Google Scholar]
  16. Pérez-Pérez D. Castañeda-Cabral J.L. Orozco-Suárez S. Sotelo J. Besio W. Rocha L. Noninvasive transcranial focal stimulation affects the convulsive seizure-induced P-glycoprotein expression and function in rats. Epilepsy Behav. 2021 115 107659 10.1016/j.yebeh.2020.107659 33334719
    [Google Scholar]
  17. Fang Z. Chen S. Qin J. Chen B. Ni G. Chen Z. Zhou J. Li Z. Ning Y. Wu C. Zhou L. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials 2016 97 110 121 10.1016/j.biomaterials.2016.04.021 27162079
    [Google Scholar]
  18. Maines L.W. Antonetti D.A. Wolpert E.B. Smith C.D. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology 2005 49 5 610 617 10.1016/j.neuropharm.2005.04.028 15961125
    [Google Scholar]
  19. Baltes S. Gastens A.M. Fedrowitz M. Potschka H. Kaever V. Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007 52 2 333 346 10.1016/j.neuropharm.2006.07.038 17045309
    [Google Scholar]
  20. Gao F. Gao Y. Meng F. Yang C. Fu J. Li Y. The sphingosine 1‐phosphate analogue FTY 720 alleviates seizure‐induced overexpression of P‐glycoprotein in rat hippocampus. Basic Clin. Pharmacol. Toxicol. 2018 123 1 14 20 10.1111/bcpt.12973 29380527
    [Google Scholar]
  21. Rizzi M. Caccia S. Guiso G. Richichi C. Gorter J.A. Aronica E. Aliprandi M. Bagnati R. Fanelli R. Limbic seizures induce P-glycoprotein in rodent brain: Functional implications for pharmacoresistance. J. Neurosci. 2002 22 14 5833 5839 10.1523/JNEUROSCI.22‑14‑05833.2002
    [Google Scholar]
  22. Potschka H. Volk H.A. Löscher W. Pharmacoresistance and expression of multidrug transporter P-glycoprotein in kindled rats. Neuroreport 2004 15 10 1657 10.1097/01.wnr.0000134840.10390.a4
    [Google Scholar]
  23. Ferreira A. Rodrigues M. Fortuna A. Falcão A. Alves G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int. 2018 103 110 120 10.1016/j.foodres.2017.10.010 29389596
    [Google Scholar]
  24. Alvariza S. Fagiolino P. Vázquez M. Rosillo de la Torre A. Orozco Suárez S. Rocha L. Verapamil effect on phenytoin pharmacokinetics in rats. Epilepsy Res. 2013 107 1-2 51 55 10.1016/j.eplepsyres.2013.09.001 24074542
    [Google Scholar]
  25. Allabi A.C. Gala J.L. Horsmans Y. CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet. Genomics 2005 15 11 779 786 10.1097/01.fpc.0000174787.92861.91 16220110
    [Google Scholar]
  26. Xie Y. Wang M. Shao Y. Deng X. Chen Y. miR-138-5p/ABCB1 axis contributes to antiepileptic drug resistance in vitro. Front. Neurosci. 2019 13 1358 10.3389/fnins.2019.01358
    [Google Scholar]
  27. Tishler D.M. Weinberg K.I. Hinton D.R. Barbaro N. Annett G.M. Raffel C. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 1995 36 1 1 6 10.1111/j.1528‑1157.1995.tb01657.x 8001500
    [Google Scholar]
  28. Luna-Tortós C. Fedrowitz M. Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 2008 55 8 1364 1375 10.1016/j.neuropharm.2008.08.032 18824002
    [Google Scholar]
  29. Enrique A. Goicoechea S. Castaño R. Taborda F. Rocha L. Orozco S. Girardi E. Bruno Blanch L. New model of pharmacoresistant seizures induced by 3-mercaptopropionic acid in mice. Epilepsy Res. 2017 129 8 16 10.1016/j.eplepsyres.2016.10.012 27875747
    [Google Scholar]
  30. Van Vliet E.A. Van Schaik R. Edelbroek P.M. Redeker S. Aronica E. Wadman W.J. Marchi N. Vezzani A. Gorter J.A. Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia 2006 47 4 672 680 10.1111/j.1528‑1167.2006.00496.x 16650133
    [Google Scholar]
  31. Jomura R. Akanuma S. Bauer B. Yoshida Y. Kubo Y. Hosoya K. Participation of monocarboxylate transporter 8, but not] P-glycoprotein, in carrier-mediated cerebral elimination of phenytoin across the blood-brain barrier. Pharm. Res. 2021 38 1 113 125 10.1007/s11095‑021‑03003‑1 33527223
    [Google Scholar]
  32. Ferreira A. Rodrigues M. Meirinho S. Fortuna A. Falcão A. Alves G. Silymarin as a flavonoid-type P-glycoprotein inhibitor with impact on the pharmacokinetics of carbamazepine, oxcarbazepine and phenytoin in rats. Drug Chem. Toxicol. 2021 44 5 458 469 10.1080/01480545.2019.1601736 31020859
    [Google Scholar]
  33. Crowe A. Teoh Y.K. Limited P -glycoprotein mediated efflux for anti-epileptic drugs. J. Drug Target. 2006 14 5 291 300 10.1080/10611860600720814 16882549
    [Google Scholar]
  34. West C.L. Mealey K.L. Assessment of antiepileptic drugs as substrates for canine P-glycoprotein. Am. J. Vet. Res. 2007 68 10 1106 1110 10.2460/ajvr.68.10.1106 17916018
    [Google Scholar]
  35. Sills G.J. Kwan P. Butler E. de Lange E.C.M. van den Berg D.J. Brodie M.J. P-glycoprotein-mediated efflux of antiepileptic drugs: Preliminary studies in mdr1a knockout mice. Epilepsy Behav. 2002 3 5 427 432 10.1016/S1525‑5050(02)00511‑5 12609264
    [Google Scholar]
  36. Yang Z.H. Liu X.D. P-glycoprotein-mediated efflux of phenobarbital at the blood-brain barrier evidence from transport experiments in vitro. Epilepsy Res. 2008 78 1 40 49 10.1016/j.eplepsyres.2007.10.006 18063342
    [Google Scholar]
  37. Liu X. Yang Z. Yang J. Yang H. Increased P-glycoprotein expression and decreased phenobarbital distribution in the brain of pentylenetetrazole-kindled rats. Neuropharmacology 2007 53 5 657 663 10.1016/j.neuropharm.2007.07.012 17845805
    [Google Scholar]
  38. Potschka H. Fedrowitz M. Löscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci. Lett. 2002 327 3 173 176 10.1016/S0304‑3940(02)00423‑8 12113905
    [Google Scholar]
  39. Garg N. Joshi R. Bhatia A. Bansal S. Chakrabarti A. Prakash A. Saikia B. Modi M. Medhi B. Study of fingolimod, nitric oxide inhibitor, and P-glycoprotein inhibitor in modulating the P-glycoprotein expression via an endothelin–sphingolipid pathway in an animal model of pharmacoresistant epilepsy. Indian J. Pharmacol. 2023 55 5 307 314 10.4103/ijp.ijp_100_23 37929409
    [Google Scholar]
  40. Bartmann H. Fuest C. La Fougere C. Xiong G. Just T. Schlichtiger J. Winter P. Böning G. Wängler B. Pekcec A. Soerensen J. Bartenstein P. Cumming P. Potschka H. Imaging of P‐glycoprotein-mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy. Epilepsia 2010 51 9 1780 1790 10.1111/j.1528‑1167.2010.02671.x 20633036
    [Google Scholar]
  41. Pekcec A. Unkrüer B. Schlichtiger J. Soerensen J. Hartz A.M.S. Bauer B. van Vliet E.A. Gorter J.A. Potschka H. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J. Pharmacol. Exp. Ther. 2009 330 3 939 947 10.1124/jpet.109.152520 19494186
    [Google Scholar]
  42. Höcht C. Lazarowski A. Gonzalez N.N. Mayer M.A. Opezzo J.A.W. Taira C.A. Girardi E. Differential hippocampal pharmacokinetics of phenobarbital and carbamazepine in repetitive seizures induced by 3-mercaptopropionic acid. Neurosci. Lett. 2009 453 1 54 57 10.1016/j.neulet.2009.01.079 19429015
    [Google Scholar]
  43. Xiao-Dong L. Zhi-Hong Y. Hui-Wen Y. Repetitive/temporal hypoxia increased P-glycoprotein expression in cultured rat brain microvascular endothelial cells in vitro. Neurosci. Lett. 2008 432 3 184 187 10.1016/j.neulet.2007.12.017 18241990
    [Google Scholar]
  44. Schlichtiger J. Pekcec A. Bartmann H. Winter P. Fuest C. Soerensen J. Potschka H. Celecoxib treatment restores pharmacosensitivity in a rat model of pharmacoresistant epilepsy. Br. J. Pharmacol. 2010 160 5 1062 1071 10.1111/j.1476‑5381.2010.00765.x 20590600
    [Google Scholar]
  45. Keangpraphun T. Towanabut S. Chinvarun Y. Kijsanayotin P. Association of ABCB1 C3435T polymorphism with phenobarbital resistance in Thai patients with epilepsy. J. Clin. Pharm. Ther. 2015 40 3 315 319 10.1111/jcpt.12263 25846690
    [Google Scholar]
  46. Brandt C. Bethmann K. Gastens A.M. Löscher W. The multidrug transporter hypothesis of drug resistance in epilepsy: Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol. Dis. 2006 24 1 202 211 10.1016/j.nbd.2006.06.014 16928449
    [Google Scholar]
  47. Luna-Tortós C. Fedrowitz M. Löscher W. Evaluation of transport of common antiepileptic drugs by human multidrug resistance-associated proteins (MRP1, 2 and 5) that are overexpressed in pharmacoresistant epilepsy. Neuropharmacology 2010 58 7 1019 1032 10.1016/j.neuropharm.2010.01.007 20080116
    [Google Scholar]
  48. Antunes N.J. van Dijkman S.C. Lanchote V.L. Wichert-Ana L. Coelho E.B. Alexandre V. Junior Takayanagui O.M. Tozatto, E.; van Hasselt, J.G.C.; Della Pasqua, O. Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects. Eur. J. Pharm. Sci. 2017 109 109S S116 S123 10.1016/j.ejps.2017.05.034 28528287
    [Google Scholar]
  49. Zhang C. Zuo Z. Kwan P. Baum L. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia 2011 52 10 1894 1904 10.1111/j.1528‑1167.2011.03140.x 21692796
    [Google Scholar]
  50. Ferreira A. Rodrigues M. Marques A. Falcão A. Alves G. Influence of the dual combination of silymarin and (-)- epigallocatechin gallate, natural dietary flavonoids, on the pharmacokinetics of oxcarbazepine in rats. Food. Chem. Toxicol. 2017 106 Pt A 446 454 10.1016/j.fct..2017.06.022
    [Google Scholar]
  51. Clinckers R. Smolders I. Meurs A. Ebinger G. Michotte Y. Quantitative in vivo microdialysis study on the influence of multidrug transporters on the blood-brain barrier passage of oxcarbazepine: concomitant use of hippocampal monoamines as pharmacodynamic markers for the anticonvulsant activity. J. Pharmacol. Exp. Ther. 2005 314 2 725 731 10.1124/jpet.105.085514 15860570
    [Google Scholar]
  52. Potschka H. Fedrowitz M. Löscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001 12 16 3557 3560 10.1097/00001756‑200111160‑00037 11733711
    [Google Scholar]
  53. Nishimura A. Honda N. Sugioka N. Takada K. Shibata N. Evaluation of carbamazepine pharmacokinetic profiles in mice with kainic acid-induced acute seizures. Biol. Pharm. Bull. 2008 31 12 2302 2308 10.1248/bpb.31.2302 19043217
    [Google Scholar]
  54. Ajmi M. Boujaafar S. Zouari N. Amor D. Nasr A. Rejeb N.B. Amor S.B. Omezzine A. Benammou S. Bouslama A. Association between ABCB1 polymorphisms and response to first-generation antiepileptic drugs in a Tunisian epileptic population. Int. J. Neurosci. 2018 128 8 705 714 10.1080/00207454.2017.1412964 29198163
    [Google Scholar]
  55. Seo T. Ishitsu T. Ueda N. Nakada N. Yurube K. Ueda K. Nakagawa K. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006 7 4 551 561 10.2217/14622416.7.4.551 16753003
    [Google Scholar]
  56. Subenthiran S. Abdullah N.R. Joseph J.P. Muniandy P.K. Mok B.T. Kee C.C. Ismail Z. Mohamed Z. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PLoS One 2013 8 5 e64827 10.1371/journal.pone.0064827 23717663
    [Google Scholar]
  57. Owen A. Pirmohamed M. Tettey J.N. Morgan P. Chadwick D. Park B.K. Carbamazepine is not a substrate for P‐glycoprotein. Br. J. Clin. Pharmacol. 2001 51 4 345 349 10.1046/j.1365‑2125.2001.01359.x 11318771
    [Google Scholar]
  58. Fortuna A. Alves G. Falcão A. Soares-da-Silva P. Evaluation of the permeability and P‐glycoprotein efflux of carbamazepine and several derivatives across mouse small intestine by the using chamber technique. Epilepsia 2012 53 3 529 538 10.1111/j.1528‑1167.2012.03409.x 22372629
    [Google Scholar]
  59. Sandow N. Kim S. Raue C. Päsler D. Klaft Z.J. Antonio L.L. Hollnagel J.O. Kovaks R. Kann O. Horn P. Vajkozy P. Holtkamp M. Meencke H.L. Carvalheiro E.A. Pragst F. Gabriel S. Lehmann T.M. Heinemann U. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: No significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front. Neurol. 2015 6 30 10.3389/fneur.2015.00030
    [Google Scholar]
  60. Haerian B.S. Lim K.S. Mohamed E.H.M. Tan H.J. Tan C.T. Raymond A.A. Wong C.P. Wong S.W. Mohamed Z. Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy. Seizure 2011 20 5 387 394 10.1016/j.seizure.2011.01.008 21316268
    [Google Scholar]
  61. Haerian B.S. Lim K.S. Mohamed E.H.M. Tan H.J. Tan C.T. Raymond A.A. Wong C.P. Wong S.W. Mohamed Z. Lack of association of ABCB1 haplotypes on five loci with response to treatment in epilepsy. Seizure 2011 20 7 546 553 10.1016/j.seizure.2011.04.003 21530324
    [Google Scholar]
  62. Mairinger S. Bankstahl J.P. Kuntner C. Römermann K. Bankstahl M. Wanek T. Stanek J. Löscher W. Müller M. Erker T. Langer O. The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood–brain barrier: A positron emission tomography study. Epilepsy Res. 2012 100 1-2 93 103 10.1016/j.eplepsyres.2012.01.012 22342565
    [Google Scholar]
  63. Lovrić M. Božina N. Hajnšek S. Kuzman M.R. Sporiš D. Lalić Z. Božina T. Granić P. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients with epilepsy. Ther. Drug Monit. 2012 34 5 518 525 10.1097/FTD.0b013e31826517c6 22972536
    [Google Scholar]
  64. Wang C. Hong Z. Chen Y. Involvement of p38 MAPK in the drug resistance of refractory epilepsy through the regulation multidrug resistance-associated protein 1. Neurochem. Res. 2015 40 7 1546 1553 10.1007/s11064‑015‑1617‑y 26092535
    [Google Scholar]
  65. Zhang C. Chanteux H. Zuo Z. Kwan P. Baum L. Potential role for human P‐glycoprotein in the transport of lacosamide. Epilepsia 2013 54 7 1154 1160 10.1111/epi.12158 23551115
    [Google Scholar]
  66. Zhao T. Li H. Feng J. Zhang H. Ting-ting W. Ma L. Yu J. Zhao W. Sun L. Yu L. Sun Y. Impact of ABCB1 polymorphisms on lacosamide serum concentrations in Uygur pediatric patients with epilepsy in China. Ther. Drug Monit. 2022 44 3 455 464 10.1097/FTD.0000000000000927 34610620
    [Google Scholar]
  67. Luna-Tortós C. Rambeck B. Jürgens U.H. Löscher W. The antiepileptic drug topiramate is a substrate for human P-glycoprotein but not multidrug resistance proteins. Pharm. Res. 2009 26 11 2464 2470 10.1007/s11095‑009‑9961‑8 19730994
    [Google Scholar]
  68. Potschka H. Baltes S. Löscher W. Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res. 2004 58 2-3 85 91 10.1016/j.eplepsyres.2003.12.007 15120740
    [Google Scholar]
  69. Rogawski M.A. Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol. Scand. 2013 127 197 19 24 10.1111/ane.12100 23480152
    [Google Scholar]
  70. Chang C. Bahadduri P.M. Polli J.E. Swaan P.W. Ekins S. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos. 2006 34 12 1976 1984 10.1124/dmd.106.012351 16997908
    [Google Scholar]
  71. Behmard E. Barzegari E. Najafipour S. Kouhpayeh A. Ghasemi Y. Asadi-Pooya A.A. Efflux dynamics of the antiseizure drug, levetiracetam, through the P-glycoprotein channel revealed by advanced comparative molecular simulations. Sci. Rep. 2022 12 1 13674 10.1038/s41598‑022‑17994‑3 35953704
    [Google Scholar]
  72. Nicolas J.M. Hannestad J. Holden D. Kervyn S. Nabulsi N. Tytgat D. Huang Y. Chanteux H. Staelens L. Matagne A. Mathy F.X. Mercier J. Stockis A. Carson R.E. Klitgaard H. Brivaracetam, a selective high‐affinity synaptic vesicle protein 2A (SV 2A) ligand with preclinical evidence of high brain permeability and fast onset of action. Epilepsia 2016 57 2 201 209 10.1111/epi.13267 26663401
    [Google Scholar]
  73. Chan P.S. Zhang C. Zuo Z. Kwan P. Baum L. In vitro transport assays of rufinamide, pregabalin, and zonisamide by human P-glycoprotein. Epilepsy Res. 2014 108 3 359 366 10.1016/j.eplepsyres.2014.01.011 24530088
    [Google Scholar]
  74. Batrakova E.V. Li S. Miller D.W. Kabanov A.V. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm. Res. 1999 16 9 1366 1372 10.1023/A:1018990706838 10496651
    [Google Scholar]
  75. Yang L. Lin I.H. Ting C.T. Tsai T.H. Modulation of the transport of valproic acid through the blood-brain barrier in rats by the Gastrodia elata extracts. J. Ethnopharmacol. 2021 278 114276 10.1016/j.jep.2021.114276 34082013
    [Google Scholar]
  76. Haerian B.S. Lim K.S. Tan H.J. Mohamed E.H.M. Tan C.T. Raymond A.A. Wong C.P. Wong S.W. Omar H. Roslan H. Mohamed Z. Association between ABCB1 polymorphism and response to sodium valproate treatment in Malaysian epilepsy patients. Epileptic Disord. 2011 13 1 65 75 10.1684/epd.2011.0419 21388909
    [Google Scholar]
  77. Baltes S. Fedrowitz M. Tortós C.L. Potschka H. Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J. Pharmacol. Exp. Ther. 2007 320 1 331 343 10.1124/jpet.106.102491 17043155
    [Google Scholar]
  78. Patsalos P.N. The clinical pharmacology profile of the new antiepileptic drug perampanel: A novel noncompetitive AMPA receptor antagonist. Epilepsia 2015 56 1 12 27 10.1111/epi.12865 25495693
    [Google Scholar]
  79. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/202834s016,208277s004lbl.pdf
  80. Tran P. Yoo H.D. Ngo L. Cho H.Y. Lee Y.B. Population pharmacokinetics of gabapentin in healthy Korean subjects with influence of genetic polymorphisms of ABCB1. J. Pharmacokinet. Pharmacodyn. 2017 44 6 567 579 10.1007/s10928‑017‑9549‑6 29018999
    [Google Scholar]
  81. Kang H.A. Chol H-Y. Lee Y.B. The Effect ofMDR1 G2677T/A polymorphism on pharmacokinetics of gabapentin in healthy Korean subjects. Arch. Pharm. Res. 2007 30 1 96 101 10.1007/BF02977784 17328248
    [Google Scholar]
  82. Gabapentin differs from pregabalin in several key ways. 2015 Available from: https://www.pharmacytimes.com/view/how-gabapentin-differs-from-pregabalin
  83. Werremeyer A.B. New Drug Review: Gabapentin enacarbil extended release (Horizant™) – A new formulation on the horizon. Ment. Health Clin. 2011 1 6 128 130 10.9740/mhc.n89391
    [Google Scholar]
/content/journals/cn/10.2174/011570159X381818250612061802
Loading
/content/journals/cn/10.2174/011570159X381818250612061802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test