Skip to content
2000
image of Stem Cell Therapy and Models for Autism Spectrum Disorder: Insights and Research

Abstract

Autism Spectrum Disorders (ASD) are complex neurodevelopmental conditions characterized by impaired social communication, repetitive behavior patterns, and atypical sensory perception. The Autism and Developmental Disabilities Monitoring Network reports that approximately 1 in 36 children are diagnosed with ASD, highlighting the increasing prevalence and the pressing need for innovative treatment approaches. Medications commonly used in ASD primarily aim to manage associated symptoms, as there are currently no FDA-approved medications specifically for treating ASD core symptoms. Stem cells have demonstrated significant potential in cell-based therapies for ASD and have been utilized in models to investigate the pathogenesis of the condition. This review focuses on the recent advancements in stem cell-based transplantation in animal models of ASD, aiming to explore the improvement of ASD symptoms and the underlying mechanisms involved. It also discussed the application of stem cell-based transplantation in pediatric and adolescent populations with ASD to evaluate treatment efficacy and potential preventive strategies. Furthermore, recent efforts are addressed in developing stem cell-based models for both syndromic and non-syndromic forms of ASD, emphasizing studies that utilize cerebral organoids for modeling ASD, which facilitate the exploration of disease mechanisms within a tissue-like environment.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X368403250618054913
2025-07-03
2025-09-13
Loading full text...

Full text loading...

References

  1. Kim H. Keifer C.M. Rodriguez-Seijas C. Eaton N.R. Lerner M.D. Gadow K.D. Structural hierarchy of autism spectrum disorder symptoms: An integrative framework. J. Child Psychol. Psychiatry 2018 59 1 30 38 10.1111/jcpp.12698 28195316
    [Google Scholar]
  2. Kim H. Keifer C. Rodriguez-Seijas C. Eaton N. Lerner M. Gadow K. Quantifying the optimal structure of the autism phenotype: A comprehensive comparison of dimensional, categorical, and hybrid models. J. Am. Acad. Child Adolesc. Psychiatry 2019 58 9 876 886.e2 10.1016/j.jaac.2018.09.431 30768420
    [Google Scholar]
  3. Sheldrick R.C. Maye M.P. Carter A.S. Age at first identification of autism spectrum disorder: An analysis of two US surveys. J. Am. Acad. Child Adolesc. Psychiatry 2017 56 4 313 320 10.1016/j.jaac.2017.01.012 28335875
    [Google Scholar]
  4. Maenner M.J. Warren Z. Williams A.R. Amoakohene E. Bakian A.V. Bilder D.A. Durkin M.S. Fitzgerald R.T. Furnier S.M. Hughes M.M. Ladd-Acosta C.M. McArthur D. Pas E.T. Salinas A. Vehorn A. Williams S. Esler A. Grzybowski A. Hall-Lande J. Nguyen R.H.N. Pierce K. Zahorodny W. Hudson A. Hallas L. Mancilla K.C. Patrick M. Shenouda J. Sidwell K. DiRienzo M. Gutierrez J. Spivey M.H. Lopez M. Pettygrove S. Schwenk Y.D. Washington A. Shaw K.A. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023 72 2 1 14 10.15585/mmwr.ss7202a1 36952288
    [Google Scholar]
  5. Howlin P. Magiati I. Charman T. Systematic review of early intensive behavioral interventions for children with autism. Am. J. Intellect. Dev. Disabil. 2009 114 1 23 41 10.1352/2009.114:23;nd41 19143460
    [Google Scholar]
  6. Hirota T. King B.H. Autism spectrum disorder: A review. JAMA 2023 329 2 157 168 10.1001/jama.2022.23661 36625807
    [Google Scholar]
  7. Bölte S. Girdler S. Marschik P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci. 2019 76 7 1275 1297 10.1007/s00018‑018‑2988‑4 30570672
    [Google Scholar]
  8. Grove J. Ripke S. Als T.D. Mattheisen M. Walters R.K. Won H. Pallesen J. Agerbo E. Andreassen O.A. Anney R. Awashti S. Belliveau R. Bettella F. Buxbaum J.D. Bybjerg-Grauholm J. Bækvad-Hansen M. Cerrato F. Chambert K. Christensen J.H. Churchhouse C. Dellenvall K. Demontis D. De Rubeis S. Devlin B. Djurovic S. Dumont A.L. Goldstein J.I. Hansen C.S. Hauberg M.E. Hollegaard M.V. Hope S. Howrigan D.P. Huang H. Hultman C.M. Klei L. Maller J. Martin J. Martin A.R. Moran J.L. Nyegaard M. Nærland T. Palmer D.S. Palotie A. Pedersen C.B. Pedersen M.G. dPoterba T. Poulsen J.B. Pourcain B.S. Qvist P. Rehnström K. Reichenberg A. Reichert J. Robinson E.B. Roeder K. Roussos P. Saemundsen E. Sandin S. Satterstrom F.K. Davey Smith G. Stefansson H. Steinberg S. Stevens C.R. Sullivan P.F. Turley P. Walters G.B. Xu X. Stefansson K. Geschwind D.H. Nordentoft M. Hougaard D.M. Werge T. Mors O. Mortensen P.B. Neale B.M. Daly M.J. Børglum A.D. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019 51 3 431 444 10.1038/s41588‑019‑0344‑8 30804558
    [Google Scholar]
  9. Kim J.Y. Son M.J. Son C.Y. Radua J. Eisenhut M. Gressier F. Koyanagi A. Carvalho A.F. Stubbs B. Solmi M. Rais T.B. Lee K.H. Kronbichler A. Dragioti E. Shin J.I. Fusar-Poli P. Environmental risk factors and biomarkers for autism spectrum disorder: An umbrella review of the evidence. Lancet Psychiatry 2019 6 7 590 600 10.1016/S2215‑0366(19)30181‑6 31230684
    [Google Scholar]
  10. Wang J. Yu J. Wang M. Zhang L. Yang K. Du X. Wu J. Wang X. Li F. Qiu Z. Discovery and validation of novel genes in a large chinese autism spectrum disorder cohort. Biol. Psychiatry 2023 94 10 792 803 10.1016/j.biopsych.2023.06.025 37393044
    [Google Scholar]
  11. Tick B. Bolton P. Happé F. Rutter M. Rijsdijk F. Heritability of autism spectrum disorders: A meta‐analysis of twin studies. J. Child Psychol. Psychiatry 2016 57 5 585 595 10.1111/jcpp.12499 26709141
    [Google Scholar]
  12. Atladóttir H.Ó. Thorsen P. Østergaard L. Schendel D.E. Lemcke S. Abdallah M. Parner E.T. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 2010 40 12 1423 1430 10.1007/s10803‑010‑1006‑y 20414802
    [Google Scholar]
  13. Skogheim T.S. Weyde K.V.F. Engel S.M. Aase H. Surén P. Øie M.G. Biele G. Reichborn-Kjennerud T. Caspersen I.H. Hornig M. Haug L.S. Villanger G.D. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ. Int. 2021 152 106468 10.1016/j.envint.2021.106468 33765546
    [Google Scholar]
  14. Atkins H. Stem cell transplantation to treat multiple sclerosis. JAMA 2019 321 2 153 155 10.1001/jama.2018.20777 30644971
    [Google Scholar]
  15. Christodoulou M.V. Petkou E. Atzemoglou N. Gkorla E. Karamitrou A. Simos Y.V. Bellos S. Bekiari C. Kouklis P. Konitsiotis S. Vezyraki P. Peschos D. Tsamis K.I. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Hum. Cell 2023 37 1 9 53 10.1007/s13577‑023‑01006‑1 37985645
    [Google Scholar]
  16. Huang L. Fu C. Xiong F. He C. Wei Q. Stem cell therapy for spinal cord injury. Cell Transplant. 2021 30 0963689721989266 10.1177/0963689721989266 33559479
    [Google Scholar]
  17. Mazzini L. Vescovi A. Cantello R. Gelati M. Vercelli A. Stem cells therapy for ALS. Expert Opin. Biol. Ther. 2016 16 2 187 199 10.1517/14712598.2016.1116516 26558293
    [Google Scholar]
  18. Villarreal-Martínez L. González-Martínez G. Sáenz-Flores M. Bautista-Gómez A.J. González-Martínez A. Ortiz-Castillo M. Robles-Sáenz D.A. Garza-López E. Stem cell therapy in the treatment of patients with autism spectrum disorder: A systematic review and meta-analysis. Stem Cell Rev. Rep. 2022 18 1 155 164 10.1007/s12015‑021‑10257‑0 34515938
    [Google Scholar]
  19. Donegan J.J. Lodge D.J. Stem cells for improving the treatment of neurodevelopmental disorders. Stem Cells Dev. 2020 29 17 1118 1130 10.1089/scd.2019.0265 32008442
    [Google Scholar]
  20. Cheffer A. Flitsch L.J. Krutenko T. Röderer P. Sokhranyaeva L. Iefremova V. Hajo M. Peitz M. Schwarz M.K. Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol. Autism 2020 11 1 99 10.1186/s13229‑020‑00383‑w 33308283
    [Google Scholar]
  21. Zakrzewski W. Dobrzyński M. Szymonowicz M. Rybak Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019 10 1 68 10.1186/s13287‑019‑1165‑5 30808416
    [Google Scholar]
  22. Donegan J.J. Boley A.M. Lodge D.J. Embryonic stem cell transplants as a therapeutic strategy in a rodent model of autism. Neuropsychopharmacology 2018 43 8 1789 1798 10.1038/s41386‑018‑0021‑0 29453447
    [Google Scholar]
  23. Shroff G. Gupta R. Human embryonic stem cells in the treatment of patients with spinal cord injury. Ann. Neurosci. 2015 22 4 208 216 10.5214/ans.0972.7531.220404 26526627
    [Google Scholar]
  24. Biermann M. Reya T. Hematopoietic stem cells and regeneration. Cold Spring Harb. Perspect. Biol. 2022 14 8 a040774 10.1101/cshperspect.a040774 34750175
    [Google Scholar]
  25. Chen Q. Shou P. Zheng C. Jiang M. Cao G. Yang Q. Cao J. Xie N. Velletri T. Zhang X. Xu C. Zhang L. Yang H. Hou J. Wang Y. Shi Y. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016 23 7 1128 1139 10.1038/cdd.2015.168 26868907
    [Google Scholar]
  26. Narita T. Suzuki K. Bone marrow-derived mesenchymal stem cells for the treatment of heart failure. Heart Fail. Rev. 2015 20 1 53 68 10.1007/s10741‑014‑9435‑x 24862087
    [Google Scholar]
  27. Cone A.S. Yuan X. Sun L. Duke L.C. Vreones M.P. Carrier A.N. Kenyon S.M. Carver S.R. Benthem S.D. Stimmell A.C. Moseley S.C. Hike D. Grant S.C. Wilber A.A. Olcese J.M. Meckes D.G. Jr Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics 2021 11 17 8129 8142 10.7150/thno.62069 34373732
    [Google Scholar]
  28. Lin H. Sohn J. Shen H. Langhans M.T. Tuan R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials 2019 203 96 110 10.1016/j.biomaterials.2018.06.026 29980291
    [Google Scholar]
  29. Matsumura T. Kami M. Yamaguchi T. Yuji K. Kusumi E. Taniguchi S. Takahashi S. Okada M. Sakamaki H. Azuma H. Takanashi M. Kodo H. Kai S. Inoue-Nagamura T. Kato K. Kato S. Allogeneic cord blood transplantation for adult acute lymphoblastic leukemia: Retrospective survey involving 256 patients in Japan. Leukemia 2012 26 7 1482 1486 10.1038/leu.2012.11 22290068
    [Google Scholar]
  30. Hsu J. Artz A. Mayer S.A. Guarner D. Bishop M.R. Reich-Slotky R. Smith S.M. Greenberg J. Kline J. Ferrante R. Phillips A.A. Gergis U. Liu H. Stock W. Cushing M. Shore T.B. van Besien K. Combined haploidentical and umbilical cord blood allogeneic stem cell transplantation for high-risk lymphoma and chronic lymphoblastic leukemia. Biol. Blood Marrow Transplant. 2018 24 2 359 365 10.1016/j.bbmt.2017.10.040 29128555
    [Google Scholar]
  31. Damien P. Allan D.S. Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol. Blood Marrow Transplant. 2015 21 9 1545 1554 10.1016/j.bbmt.2015.05.022 26079441
    [Google Scholar]
  32. Zhang Y. Pan Y. Liu Y. Li X. Tang L. Duan M. Li J. Zhang G. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res. Ther. 2021 12 1 434 10.1186/s13287‑021‑02517‑0 34344478
    [Google Scholar]
  33. Dawson G. Sun J.M. Davlantis K.S. Murias M. Franz L. Troy J. Simmons R. Sabatos-DeVito M. Durham R. Kurtzberg J. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl. Med. 2017 6 5 1332 1339 10.1002/sctm.16‑0474 28378499
    [Google Scholar]
  34. Zuk P.A. Zhu M. Mizuno H. Huang J. Futrell J.W. Katz A.J. Benhaim P. Lorenz H.P. Hedrick M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001 7 2 211 228 10.1089/107632701300062859 11304456
    [Google Scholar]
  35. Bacakova L. Zarubova J. Travnickova M. Musilkova J. Pajorova J. Slepicka P. Kasalkova N.S. Svorcik V. Kolska Z. Motarjemi H. Molitor M. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – A review. Biotechnol. Adv. 2018 36 4 1111 1126 10.1016/j.biotechadv.2018.03.011 29563048
    [Google Scholar]
  36. González M.A. Gonzalez-Rey E. Rico L. Büscher D. Delgado M. Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009 136 3 978 989 10.1053/j.gastro.2008.11.041 19135996
    [Google Scholar]
  37. Ha S. Park H. Mahmood U. Ra J.C. Suh Y.H. Chang K.A. Human adipose-derived stem cells ameliorate repetitive behavior, social deficit and anxiety in a VPA-induced autism mouse model. Behav. Brain Res. 2017 317 479 484 10.1016/j.bbr.2016.10.004 27717813
    [Google Scholar]
  38. Min Q. Yang L. Tian H. Tang L. Xiao Z. Shen J. Immunomodulatory mechanism and potential application of dental pulp-derived stem cells in immune-mediated diseases. Int. J. Mol. Sci. 2023 24 9 8068 10.3390/ijms24098068 37175774
    [Google Scholar]
  39. Apel C. Forlenza O.V. de Paula V.J.R. Talib L.L. Denecke B. Eduardo C.P. Gattaz W.F. The neuroprotective effect of dental pulp cells in models of Alzheimer’s and Parkinson’s disease. J. Neural Transm. 2009 116 1 71 78 10.1007/s00702‑008‑0135‑3 18972063
    [Google Scholar]
  40. Zhao L. Li Y. Kou X. Chen B. Cao J. Li J. Zhang J. Wang H. Zhao J. Shi S. Stem cells from human exfoliated deciduous teeth ameliorate autistic-like behaviors of SHANK3 mutant beagle dogs. Stem Cells Transl. Med. 2022 11 7 778 789 10.1093/stcltm/szac028 35608372
    [Google Scholar]
  41. McDonald C.A. Payne N.L. Sun G. Moussa L. Siatskas C. Lim R. Wallace E.M. Jenkin G. Bernard C.C.A. Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis. J. Neuroinflammation 2015 12 1 112 10.1186/s12974‑015‑0322‑8 26036872
    [Google Scholar]
  42. Zhang R. Cai Y. Xiao R. Zhong H. Li X. Guo L. Xu H. Fan X. Human amniotic epithelial cell transplantation promotes neurogenesis and ameliorates social deficits in BTBR mice. Stem Cell Res. Ther. 2019 10 1 153 10.1186/s13287‑019‑1267‑0 31151403
    [Google Scholar]
  43. Lancaster M.A. Knoblich J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014 9 10 2329 2340 10.1038/nprot.2014.158 25188634
    [Google Scholar]
  44. Huang WK Wong SZH Pather SR Nguyen PTT Zhang F Zhang DY Zhang Z Lu L Fang W Chen L Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021 28 9 1657 1670 10.1016/j.stem.2021.04.006 33961804
    [Google Scholar]
  45. Dong X. Xu S.B. Chen X. Tao M. Tang X.Y. Fang K.H. Xu M. Pan Y. Chen Y. He S. Liu Y. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol. Psychiatry 2021 26 7 2964 2976 10.1038/s41380‑020‑00910‑4 33051604
    [Google Scholar]
  46. Abud E.M. Ramirez R.N. Martinez E.S. Healy L.M. Nguyen C.H.H. Newman S.A. Yeromin A.V. Scarfone V.M. Marsh S.E. Fimbres C. Caraway C.A. Fote G.M. Madany A.M. Agrawal A. Kayed R. Gylys K.H. Cahalan M.D. Cummings B.J. Antel J.P. Mortazavi A. Carson M.J. Poon W.W. Blurton-Jones M. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017 94 2 278 293.e9 10.1016/j.neuron.2017.03.042 28426964
    [Google Scholar]
  47. Marton R.M. Miura Y. Sloan S.A. Li Q. Revah O. Levy R.J. Huguenard J.R. Pașca S.P. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 2019 22 3 484 491 10.1038/s41593‑018‑0316‑9 30692691
    [Google Scholar]
  48. Sloan S.A. Darmanis S. Huber N. Khan T.A. Birey F. Caneda C. Reimer R. Quake S.R. Barres B.A. Paşca S.P. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 2017 95 4 779 790.e6 10.1016/j.neuron.2017.07.035 28817799
    [Google Scholar]
  49. Camp J.G. Badsha F. Florio M. Kanton S. Gerber T. Wilsch-Bräuninger M. Lewitus E. Sykes A. Hevers W. Lancaster M. Knoblich J.A. Lachmann R. Pääbo S. Huttner W.B. Treutlein B. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA 2015 112 51 15672 15677 10.1073/pnas.1520760112 26644564
    [Google Scholar]
  50. Kim S.W. Woo H.J. Kim E.H. Kim H.S. Suh H.N. Kim S.H. Song J.J. Wulansari N. Kang M. Choi S.Y. Choi S.J. Jang W.H. Lee J. Kim K.H. Lee W. Kim S.H. Yang J. Kyung J. Lee H.S. Park S.M. Chang M.Y. Lee S.H. Neural stem cells derived from human midbrain organoids as a stable source for treating Parkinson’s disease: Midbrain organoid-NSCs (Og-NSC) as a stable source for PD treatment. Prog. Neurobiol. 2021 204 102086 10.1016/j.pneurobio.2021.102086 34052305
    [Google Scholar]
  51. Xiang A.H. Wang X. Martinez M.P. Walthall J.C. Curry E.S. Page K. Buchanan T.A. Coleman K.J. Getahun D. Association of maternal diabetes with autism in offspring. JAMA 2015 313 14 1425 1434 10.1001/jama.2015.2707 25871668
    [Google Scholar]
  52. Wang X. Lu J. Xie W. Lu X. Liang Y. Li M. Wang Z. Huang X. Tang M. Pfaff D.W. Tang Y.P. Yao P. Maternal diabetes induces autism-like behavior by hyperglycemia-mediated persistent oxidative stress and suppression of superoxide dismutase 2. Proc. Natl. Acad. Sci. USA 2019 116 47 23743 23752 10.1073/pnas.1912625116 31685635
    [Google Scholar]
  53. Zeng J. Liang Y. Sun R. Huang S. Wang Z. Xiao L. Lu J. Yu H. Yao P. Hematopoietic stem cell transplantation ameliorates maternal diabetes-mediated gastrointestinal symptoms and autism-like behavior in mouse offspring. Ann. N. Y. Acad. Sci. 2022 1512 1 98 113 10.1111/nyas.14766 35220596
    [Google Scholar]
  54. Chen Q. Deister C.A. Gao X. Guo B. Lynn-Jones T. Chen N. Wells M.F. Liu R. Goard M.J. Dimidschstein J. Feng S. Shi Y. Liao W. Lu Z. Fishell G. Moore C.I. Feng G. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat. Neurosci. 2020 23 4 520 532 10.1038/s41593‑020‑0598‑6 32123378
    [Google Scholar]
  55. Al-Otaish H. Al-Ayadhi L. Bjørklund G. Chirumbolo S. Urbina M.A. El-Ansary A. Relationship between absolute and relative ratios of glutamate, glutamine and GABA and severity of autism spectrum disorder. Metab. Brain Dis. 2018 33 3 843 854 10.1007/s11011‑018‑0186‑6 29397522
    [Google Scholar]
  56. El-Ansary A. Al-Ayadhi L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J. Neuroinflammation 2014 11 189 10.1186/s12974‑014‑0189‑0 25407263
    [Google Scholar]
  57. Yip J. Soghomonian J.J. Blatt G.J. Increased GAD67 mRNA expression in cerebellar interneurons in autism: Implications for Purkinje cell dysfunction. J. Neurosci. Res. 2008 86 3 525 530 10.1002/jnr.21520 17918742
    [Google Scholar]
  58. Yip J. Soghomonian J.J. Blatt G.J. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Res. 2009 2 1 50 59 10.1002/aur.62 19358307
    [Google Scholar]
  59. Lionel A.C. Tammimies K. Vaags A.K. Rosenfeld J.A. Ahn J.W. Merico D. Noor A. Runke C.K. Pillalamarri V.K. Carter M.T. Gazzellone M.J. Thiruvahindrapuram B. Fagerberg C. Laulund L.W. Pellecchia G. Lamoureux S. Deshpande C. Clayton-Smith J. White A.C. Leather S. Trounce J. Melanie Bedford H. Hatchwell E. Eis P.S. Yuen R.K. Walker S. Uddin M. Geraghty M.T. Nikkel S.M. Tomiak E.M. Fernandez B.A. Soreni N. Crosbie J. Arnold P.D. Schachar R.J. Roberts W. Paterson A.D. So J. Szatmari P. Chrysler C. Woodbury-Smith M. Brian Lowry R. Zwaigenbaum L. Mandyam D. Wei J. Macdonald J.R. Howe J.L. Nalpathamkalam T. Wang Z. Tolson D. Cobb D.S. Wilks T.M. Sorensen M.J. Bader P.I. An Y. Wu B.L. Musumeci S.A. Romano C. Postorivo D. Nardone A.M. Monica M.D. Scarano G. Zoccante L. Novara F. Zuffardi O. Ciccone R. Antona V. Carella M. Zelante L. Cavalli P. Poggiani C. Cavallari U. Argiropoulos B. Chernos J. Brasch-Andersen C. Speevak M. Fichera M. Ogilvie C.M. Shen Y. Hodge J.C. Talkowski M.E. Stavropoulos D.J. Marshall C.R. Scherer S.W. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Hum. Mol. Genet. 2014 23 10 2752 2768 10.1093/hmg/ddt669 24381304
    [Google Scholar]
  60. Zhu J.W. Zou M.M. Li Y.F. Chen W.J. Liu J.C. Chen H. Fang L.P. Zhang Y. Wang Z.T. Chen J.B. Huang W. Li S. Jia W.Q. Wang Q.Q. Zhen X.C. Liu C.F. Li S. Xiao Z.C. Xu G.Q. Schwamborn J.C. Schachner M. Ma Q.H. Xu R.X. Absence of TRIM32 leads to reduced gabaergic interneuron generation and autism-like behaviors in mice via suppressing mTOR signaling. Cereb. Cortex 2020 30 5 3240 3258 10.1093/cercor/bhz306 31828304
    [Google Scholar]
  61. Andrzejewska A. Dabrowska S. Lukomska B. Janowski M. Mesenchymal stem cells for neurological disorders. Adv. Sci. 2021 8 7 2002944 10.1002/advs.202002944 33854883
    [Google Scholar]
  62. Noshadian M. Ragerdi Kashani I. Asadi-Golshan R. Zarini D. Ghafari N. Zahedi E. Pasbakhsh P. Benefits of bone marrow mesenchymal stem cells compared to their conditioned medium in valproic acid-induced autism in rats. Mol. Biol. Rep. 2024 51 1 353 10.1007/s11033‑024‑09292‑0 38401030
    [Google Scholar]
  63. Gobshtis N. Tfilin M. Wolfson M. Fraifeld V.E. Turgeman G. Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget 2017 8 11 17443 17452 10.18632/oncotarget.15245 28407680
    [Google Scholar]
  64. Segal-Gavish H Karvat G Barak N Barzilay R Ganz J Edry L Aharony I Offen D Kimchi T Mesenchymal stem cell transplantation promotes neurogenesis and ameliorates autism related behaviors in BTBR mice. Autism Res 2016 9 1 17 32 10.1002/aur.1530 26257137
    [Google Scholar]
  65. Jingyi L. Lin W. Yuan C. Lingling Z. Qianqian J. Anlong X. Yansong G. Intravenous transplantation of bone marrow-derived mesenchymal stem cells improved behavioral deficits and altered fecal microbiota composition of BTBR mice. Life Sci. 2024 336 122330 10.1016/j.lfs.2023.122330 38065352
    [Google Scholar]
  66. Perets N. Segal-Gavish H. Gothelf Y. Barzilay R. Barhum Y. Abramov N. Hertz S. Morozov D. London M. Offen D. Long term beneficial effect of neurotrophic factors-secreting mesenchymal stem cells transplantation in the BTBR mouse model of autism. Behav. Brain Res. 2017 331 254 260 10.1016/j.bbr.2017.03.047 28392323
    [Google Scholar]
  67. Chen X. Chen A. Wei J. Huang Y. Deng J. Chen P. Yan Y. Lin M. Chen L. Zhang J. Huang Z. Zeng X. Gong C. Zheng X. Dexmedetomidine alleviates cognitive impairment by promoting hippocampal neurogenesis via BDNF/TrkB/CREB signaling pathway in hypoxic–ischemic neonatal rats. CNS Neurosci. Ther. 2024 30 1 e14486 10.1111/cns.14486 37830170
    [Google Scholar]
  68. Quesseveur G. David D.J. Gaillard M.C. Pla P. Wu M.V. Nguyen H.T. Nicolas V. Auregan G. David I. Dranovsky A. Hantraye P. Hen R. Gardier A.M. Déglon N. Guiard B.P. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry 2013 3 4 e253 10.1038/tp.2013.30 23632457
    [Google Scholar]
  69. Liu H. Xue X. Shi H. Qi L. Gong D. Osthole upregulates BDNF to enhance adult hippocampal neurogenesis in APP/PS1 transgenic mice. Biol. Pharm. Bull. 2015 38 10 1439 1449 10.1248/bpb.b15‑00013 26424009
    [Google Scholar]
  70. Perets N. Hertz S. London M. Offen D. Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol. Autism 2018 9 1 57 10.1186/s13229‑018‑0240‑6 30479733
    [Google Scholar]
  71. Perets N. Oron O. Herman S. Elliott E. Offen D. Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism Shank3B. Mol. Autism 2020 11 1 65 10.1186/s13229‑020‑00366‑x 32807217
    [Google Scholar]
  72. Fu Y. Zhang Y. Liu R. Xu M. Xie J. Zhang X. Xie G. Han Y. Zhang X.M. Zhang W. Zhang J. Zhang J. Exosome lncRNA IFNG-AS1 derived from mesenchymal stem cells of human adipose ameliorates neurogenesis and ASD-like behavior in BTBR mice. J. Nanobiotechnology 2024 22 1 66 10.1186/s12951‑024‑02338‑2 38368393
    [Google Scholar]
  73. Liang Y. Duan L. Xu X. Li X. Liu M. Chen H. Lu J. Xia J. Mesenchymal stem cell-derived exosomes for treatment of autism spectrum disorder. ACS Appl. Bio Mater. 2020 3 9 6384 6393 10.1021/acsabm.0c00831 35021769
    [Google Scholar]
  74. Qin Q. Shan Z. Xing L. Jiang Y. Li M. Fan L. Zeng X. Ma X. Zheng D. Wang H. Wang H. Liu H. Liang S. Wu L. Liang S. Synergistic effect of mesenchymal stem cell-derived extracellular vesicle and miR-137 alleviates autism-like behaviors by modulating the NF-κB pathway. J. Transl. Med. 2024 22 1 446 10.1186/s12967‑024‑05257‑w 38741170
    [Google Scholar]
  75. Wang J. Liu X. Lu H. Jiang C. Cui X. Yu L. Fu X. Li Q. Wang J. CXCR4+CD45− BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav. Immun. 2015 45 98 108 10.1016/j.bbi.2014.12.015 25526817
    [Google Scholar]
  76. Nguyen Q.T. Thanh L.N. Hoang V.T. Phan T.T.K. Heke M. Hoang D.M. Bone marrow-derived mononuclear cells in the treatment of neurological diseases: Knowns and unknowns. Cell. Mol. Neurobiol. 2023 43 7 3211 3250 10.1007/s10571‑023‑01377‑x 37356043
    [Google Scholar]
  77. Savitz S.I. Misra V. Kasam M. Juneja H. Cox C.S. Jr Alderman S. Aisiku I. Kar S. Gee A. Grotta J.C. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 2011 70 1 59 69 10.1002/ana.22458 21786299
    [Google Scholar]
  78. Sharma A.K. Sane H.M. Kulkarni P.P. Gokulchandran N. Biju H. Badhe P.B. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- A clinical study. Cell Regen. 2020 9 1 3 10.1186/s13619‑020‑00043‑7 32588151
    [Google Scholar]
  79. Sharma A.K. Sane H.M. Paranjape A.A. Gokulchandran N. Nagrajan A. D’sa M. Badhe P.B. The effect of autologous bone marrow mononuclear cell transplantation on the survival duration in Amyotrophic Lateral Sclerosis - a retrospective controlled study. Am. J. Stem Cells 2015 4 1 50 65 25973331
    [Google Scholar]
  80. Sharma A. Sane H. Gokulchandran N. Kulkarni P. Jose A. Nair V. Das R. Lakhanpal V. Badhe P. Intrathecal transplantation of autologous bone marrow mononuclear cells in patients with sub-acute and chronic spinal cord injury: An open-label study. Int. J. Health Sci. 2020 14 2 24 32 32206057
    [Google Scholar]
  81. Sharma A. Gokulchandran N. Sane H. Nagrajan A. Paranjape A. Kulkarni P. Shetty A. Mishra P. Kali M. Biju H. Badhe P. Autologous bone marrow mononuclear cell therapy for autism: An open label proof of concept study. Stem Cells Int. 2013 2013 623875 10.1155/2013/623875 24062774
    [Google Scholar]
  82. Sharma A. Badhe P. An improved case of autism as revealed by PET CT scan in patient transplanted with autologous bone marrow derived mononuclear cells. J. Stem Cell Res. Ther. 2013 3 2 1 4 10.4172/2157‑7633.1000139
    [Google Scholar]
  83. Sharma A Intrathecal autologous bone marrow mononuclear cell transplantation in a case of adult autism. Autism OA 2013 3 2 1 5 10.4172/2165‑7890.1000113
    [Google Scholar]
  84. Sharma A. Gokulchandran N. Shetty A. Sane H. Kulkarni P. Badhe P. Autologous bone marrow mononuclear cells may be explored as a novel potential therapeutic option for autism. J. Clin. Case Rep. 2013 3 7 1 5 10.4172/2165‑7920.1000282
    [Google Scholar]
  85. Alok S. Nandini G. Hemangi S. Avantika P. Akshata S. Hema B. Pooja K. Prerna B. Amelioration of autism by autologous bone marrow mononuclear cells and neurorehabilitation: A case report. Am. J. Med. Case Rep. 2015 3 10 304 309 10.12691/ajmcr‑3‑10‑1
    [Google Scholar]
  86. Pooja K. A case of autism showing clinical improvements after cellular therapy along with PET CT evidence. J. Stem Cell Res. Ther. 2017 2 4 10.15406/jsrt.2017.02.00070
    [Google Scholar]
  87. Sharma A Gokulchandran N Sane H Kulkarni P Nivins S Maheshwari M Badhe PJIB Therapeutic effects of cellular therapy in a case of adult autism spectrum of disorder. Int Biol Biomed J 2018 4 2 98 103
    [Google Scholar]
  88. Maric D.M. Papic V. Radomir M. Stanojevic I. Sokolovac I. Milosavljevic K. Maric D.L. Abazovic D. Autism treatment with stem cells: A case report. Eur. Rev. Med. Pharmacol. Sci. 2020 24 15 8075 8080 10.26355/eurrev_202008_22491 32767334
    [Google Scholar]
  89. Nguyen Thanh L. Nguyen H.P. Ngo M.D. Bui V.A. Dam P.T.M. Bui H.T.P. Ngo D.V. Tran K.T. Dang T.T.T. Duong B.D. Nguyen P.A.T. Forsyth N. Heke M. Outcomes of bone marrow mononuclear cell transplantation combined with interventional education for autism spectrum disorder. Stem Cells Transl. Med. 2021 10 1 14 26 10.1002/sctm.20‑0102 32902182
    [Google Scholar]
  90. Sharma A.K. Gokulchandran N. Kulkarni P.P. Sane H.M. Sharma R. Jose A. Badhe P.B. Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: A clinical study. Am. J. Stem Cells 2020 9 5 89 100 33489466
    [Google Scholar]
  91. Villarreal-Martinez L. MartÍnez-Garza L.E. Rodriguez-Sanchez I.P. Alvarez-Villalobos N. Guzman-Gallardo F. Pope-Salazar S. Salinas-Silva C. Cepeda-Cepeda M.G. Garza-Bedolla A. Dominguez-Varela I.A. Villarreal-Martinez D.Z. Treviño-Villarreal J.H. Gomez-Almaguer D. Correlation between CD133+ stem cells and clinical improvement in patients with autism spectrum disorders treated with intrathecal bone marrow-derived mononuclear cells. Innov. Clin. Neurosci. 2022 19 4-6 78 86 35958968
    [Google Scholar]
  92. Sharifzadeh N. Ghasemi A. Tavakol Afshari J. Moharari F. Soltanifar A. Talaei A. Pouryousof H.R. Nahidi M. Fayyazi Bordbar M.R. Ziaee M. Intrathecal autologous bone marrow stem cell therapy in children with autism: A randomized controlled trial. Asia-Pac. Psychiatry 2021 13 2 e12445 10.1111/appy.12445 33150703
    [Google Scholar]
  93. Zakerinia M. Kamgarpour A. Nemati H. Zare H.R. Ghasemfar M. Rezvani A.R. Karimi M. Nourani Khojasteh H. Dehghani M. Vojdani R. Haghighat S. Namdari N. Rekabpoor J. Tavazo M. Amirghofran S. Amirghofran Z. Yosefipour G.A. Ramzi M. Intrathecal autologous bone marrow-derived hematopoietic stem cell therapy in neurological diseases. Int. J. Organ Transplant. Med. 2018 9 4 157 167 30863518
    [Google Scholar]
  94. Kobinia G.S. Zaknun J.J. Pabinger C. Laky B. Case report: Autologous bone marrow derived intrathecal stem cell transplant for autistic children - A report of four cases and literature review. Front Pediatr. 2021 9 620188 10.3389/fped.2021.620188 34692600
    [Google Scholar]
  95. Croonenberghs J. Bosmans E. Deboutte D. Kenis G. Maes M. Activation of the inflammatory response system in autism. Neuropsychobiology 2002 45 1 1 6 10.1159/000048665 11803234
    [Google Scholar]
  96. Jyonouchi H. Sun S. Le H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J. Neuroimmunol. 2001 120 1-2 170 179 10.1016/S0165‑5728(01)00421‑0 11694332
    [Google Scholar]
  97. Careaga M. Rogers S. Hansen R.L. Amaral D.G. Van de Water J. Ashwood P. Immune endophenotypes in children with autism spectrum disorder. Biol. Psychiatry 2017 81 5 434 441 10.1016/j.biopsych.2015.08.036 26493496
    [Google Scholar]
  98. Bradstreet J.J. Sych N. Antonucci N. Klunnik M. Ivankova O. Matyashchuk I. Demchuk M. Siniscalco D. Efficacy of fetal stem cell transplantation in autism spectrum disorders: An open-labeled pilot study. Cell Transplant. 2014 23 1_suppl Suppl. 1 105 112 10.3727/096368914X684916 25302490
    [Google Scholar]
  99. Lv Y.T. Zhang Y. Liu M. Qiuwaxi J. Ashwood P. Cho S.C. Huan Y. Ge R.C. Chen X.W. Wang Z.J. Kim B.J. Hu X. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J. Transl. Med. 2013 11 1 196 10.1186/1479‑5876‑11‑196 23978163
    [Google Scholar]
  100. Dawson G. Sun J.M. Baker J. Carpenter K. Compton S. Deaver M. Franz L. Heilbron N. Herold B. Horrigan J. Howard J. Kosinski A. Major S. Murias M. Page K. Prasad V.K. Sabatos-DeVito M. Sanfilippo F. Sikich L. Simmons R. Song A. Vermeer S. Waters-Pick B. Troy J. Kurtzberg J. A phase II randomized clinical trial of the safety and efficacy of intravenous umbilical cord blood infusion for treatment of children with autism spectrum disorder. J. Pediatr. 2020 222 164 173.e5 10.1016/j.jpeds.2020.03.011 32444220
    [Google Scholar]
  101. Murias M. Major S. Compton S. Buttinger J. Sun J.M. Kurtzberg J. Dawson G. Electrophysiological biomarkers predict clinical improvement in an open-label trial assessing efficacy of autologous umbilical cord blood for treatment of autism. Stem Cells Transl. Med. 2018 7 11 783 791 10.1002/sctm.18‑0090 30070044
    [Google Scholar]
  102. Chez M. Lepage C. Parise C. Dang-Chu A. Hankins A. Carroll M. Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism. Stem Cells Transl. Med. 2018 7 4 333 341 10.1002/sctm.17‑0042 29405603
    [Google Scholar]
  103. Petriv T. Tatarchuk M. Skuratov A. Rybachuk O. Tsymbaliuk V. Safety of combined autistic spectrum disorders treatment with umbilical cord mesenchymal stem cells application: Clinical investigation. Stem Cells Transl. Med. 2021 10 S1 S10 10.1002/sct3.13017 35599373
    [Google Scholar]
  104. Sun J.M. Song A.W. Case L.E. Mikati M.A. Gustafson K.E. Simmons R. Goldstein R. Petry J. McLaughlin C. Waters-Pick B. Chen L.W. Wease S. Blackwell B. Worley G. Troy J. Kurtzberg J. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: A randomized, placebo-controlled trial. Stem Cells Transl. Med. 2017 6 12 2071 2078 10.1002/sctm.17‑0102 29080265
    [Google Scholar]
  105. Alavi O. Alizadeh A. Dehghani F. Alipour H. Tanideh N. Anti-inflammatory effects of umbilical cord mesenchymal stem cell and autologous conditioned serum on oligodendrocyte, astrocyte, and microglial specific gene in cuprizone animal model. Curr. Stem Cell Res. Ther. 2024 19 1 71 82 10.2174/1574888X18666230228102731 36852798
    [Google Scholar]
  106. Carpenter K.L.H. Major S. Tallman C. Chen L.W. Franz L. Sun J. Kurtzberg J. Song A. Dawson G. White matter tract changes associated with clinical improvement in an open-label trial assessing autologous umbilical cord blood for treatment of young children with autism. Stem Cells Transl. Med. 2019 8 2 138 147 10.1002/sctm.18‑0251 30620122
    [Google Scholar]
  107. Simhal A.K. Carpenter K.L.H. Nadeem S. Kurtzberg J. Song A. Tannenbaum A. Sapiro G. Dawson G. Measuring robustness of brain networks in autism spectrum disorder with Ricci curvature. Sci. Rep. 2020 10 1 10819 10.1038/s41598‑020‑67474‑9 32616759
    [Google Scholar]
  108. Cha B. Kwak H. Bang J.I. Jang S.J. Suh M.R. Choi J.I. Kim M. Safety and efficacy of allogeneic umbilical cord blood therapy for global development delay and intellectual disability. Stem Cells Dev. 2023 32 7-8 170 179 10.1089/scd.2022.0252 36734415
    [Google Scholar]
  109. Sun J.M. Dawson G. Franz L. Howard J. McLaughlin C. Kistler B. Waters-Pick B. Meadows N. Troy J. Kurtzberg J. Infusion of human umbilical cord tissue mesenchymal stromal cells in children with autism spectrum disorder. Stem Cells Transl. Med. 2020 9 10 1137 1146 10.1002/sctm.19‑0434 32531111
    [Google Scholar]
  110. Aigner S. Heckel T. Zhang J.D. Andreae L.C. Jagasia R. Human pluripotent stem cell models of autism spectrum disorder: Emerging frontiers, opportunities, and challenges towards neuronal networks in a dish. Psychopharmacology 2014 231 6 1089 1104 10.1007/s00213‑013‑3332‑1 24232378
    [Google Scholar]
  111. Marchetto M.C.N. Carromeu C. Acab A. Yu D. Yeo G.W. Mu Y. Chen G. Gage F.H. Muotri A.R. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010 143 4 527 539 10.1016/j.cell.2010.10.016 21074045
    [Google Scholar]
  112. Telias M. Molecular mechanisms of synaptic dysregulation in fragile x syndrome and autism spectrum disorders. Front. Mol. Neurosci. 2019 12 51 10.3389/fnmol.2019.00051 30899214
    [Google Scholar]
  113. Deneault E. Faheem M. White S.H. Rodrigues D.C. Sun S. Wei W. Piekna A. Thompson T. Howe J.L. Chalil L. Kwan V. Walker S. Pasceri P. Roth F.P. Yuen R.K.C. Singh K.K. Ellis J. Scherer S.W. CNTN5-/+or EHMT2-/+human iPSC-derived neurons from individuals with autism develop hyperactive neuronal networks. eLife 2019 8 e40092 10.7554/eLife.40092 30747104
    [Google Scholar]
  114. Martin P. Wagh V. Reis S.A. Erdin S. Beauchamp R.L. Shaikh G. Talkowski M. Thiele E. Sheridan S.D. Haggarty S.J. Ramesh V. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol. Autism 2020 11 1 2 10.1186/s13229‑019‑0311‑3 31921404
    [Google Scholar]
  115. Wang M. Wei P.C. Lim C.K. Gallina I.S. Marshall S. Marchetto M.C. Alt F.W. Gage F.H. Increased neural progenitor proliferation in a hiPSC model of autism induces replication stress-associated genome instability. Cell Stem Cell 2020 26 2 221 233.e6 10.1016/j.stem.2019.12.013 32004479
    [Google Scholar]
  116. Marchetto M.C. Belinson H. Tian Y. Freitas B.C. Fu C. Vadodaria K.C. Beltrao-Braga P.C. Trujillo C.A. Mendes A.P.D. Padmanabhan K. Nunez Y. Ou J. Ghosh H. Wright R. Brennand K.J. Pierce K. Eichenfield L. Pramparo T. Eyler L.T. Barnes C.C. Courchesne E. Geschwind D.H. Gage F.H. Wynshaw-Boris A. Muotri A.R. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 2017 22 6 820 835 10.1038/mp.2016.95 27378147
    [Google Scholar]
  117. Adhya D. Swarup V. Nagy R. Dutan L. Shum C. Valencia-Alarcón E.P. Jozwik K.M. Mendez M.A. Horder J. Loth E. Nowosiad P. Lee I. Skuse D. Flinter F.A. Murphy D. McAlonan G. Geschwind D.H. Price J. Carroll J. Srivastava D.P. Baron-Cohen S. Atypical neurogenesis in induced pluripotent stem cells from autistic individuals. Biol. Psychiatry 2021 89 5 486 496 10.1016/j.biopsych.2020.06.014 32826066
    [Google Scholar]
  118. Avazzadeh S. McDonagh K. Reilly J. Wang Y. Boomkamp S.D. McInerney V. Krawczyk J. Fitzgerald J. Feerick N. O’Sullivan M. Jalali A. Forman E.B. Lynch S.A. Ennis S. Cosemans N. Peeters H. Dockery P. O’Brien T. Quinlan L.R. Gallagher L. Shen S. Increased Ca 2+ signaling in NRXN1α +/−neurons derived from ASD induced pluripotent stem cells. Mol. Autism 2019 10 1 52 10.1186/s13229‑019‑0303‑3 31893021
    [Google Scholar]
  119. Russo F.B. Freitas B.C. Pignatari G.C. Fernandes I.R. Sebat J. Muotri A.R. Beltrão-Braga P.C.B. Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells. Biol. Psychiatry 2018 83 7 569 578 10.1016/j.biopsych.2017.09.021 29129319
    [Google Scholar]
  120. Lancaster M.A. Renner M. Martin C.A. Wenzel D. Bicknell L.S. Hurles M.E. Homfray T. Penninger J.M. Jackson A.P. Knoblich J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013 501 7467 373 379 10.1038/nature12517 23995685
    [Google Scholar]
  121. Paulsen B. Velasco S. Kedaigle A.J. Pigoni M. Quadrato G. Deo A.J. Adiconis X. Uzquiano A. Sartore R. Yang S.M. Simmons S.K. Symvoulidis P. Kim K. Tsafou K. Podury A. Abbate C. Tucewicz A. Smith S.N. Albanese A. Barrett L. Sanjana N.E. Shi X. Chung K. Lage K. Boyden E.S. Regev A. Levin J.Z. Arlotta P. Autism genes converge on asynchronous development of shared neuron classes. Nature 2022 602 7896 268 273 10.1038/s41586‑021‑04358‑6 35110736
    [Google Scholar]
  122. Mariani J. Coppola G. Zhang P. Abyzov A. Provini L. Tomasini L. Amenduni M. Szekely A. Palejev D. Wilson M. Gerstein M. Grigorenko E.L. Chawarska K. Pelphrey K.A. Howe J.R. Vaccarino F.M. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 2015 162 2 375 390 10.1016/j.cell.2015.06.034 26186191
    [Google Scholar]
  123. Jourdon A. Wu F. Mariani J. Capauto D. Norton S. Tomasini L. Amiri A. Suvakov M. Schreiner J.D. Jang Y. Panda A. Nguyen C.K. Cummings E.M. Han G. Powell K. Szekely A. McPartland J.C. Pelphrey K. Chawarska K. Ventola P. Abyzov A. Vaccarino F.M. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nat. Neurosci. 2023 26 9 1505 1515 10.1038/s41593‑023‑01399‑0 37563294
    [Google Scholar]
  124. Li C. Fleck J.S. Martins-Costa C. Burkard T.R. Themann J. Stuempflen M. Peer A.M. Vertesy Á. Littleboy J.B. Esk C. Elling U. Kasprian G. Corsini N.S. Treutlein B. Knoblich J.A. Single-cell brain organoid screening identifies developmental defects in autism. Nature 2023 621 7978 373 380 10.1038/s41586‑023‑06473‑y 37704762
    [Google Scholar]
  125. Wang P. Mokhtari R. Pedrosa E. Kirschenbaum M. Bayrak C. Zheng D. Lachman H.M. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol. Autism 2017 8 1 11 10.1186/s13229‑017‑0124‑1 28321286
    [Google Scholar]
  126. Villa C.E. Cheroni C. Dotter C.P. López-Tóbon A. Oliveira B. Sacco R. Yahya A.Ç. Morandell J. Gabriele M. Tavakoli M.R. Lyudchik J. Sommer C. Gabitto M. Danzl J.G. Testa G. Novarino G. CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories. Cell Rep. 2022 39 1 110615 10.1016/j.celrep.2022.110615 35385734
    [Google Scholar]
  127. Astorkia M. Liu Y. Pedrosa E.M. Lachman H.M. Zheng D. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids. Heliyon 2024 10 14 e34862 10.1016/j.heliyon.2024.e34862 39149047
    [Google Scholar]
  128. Fair S.R. Schwind W. Julian D.L. Biel A. Guo G. Rutherford R. Ramadesikan S. Westfall J. Miller K.E. Kararoudi M.N. Hickey S.E. Mosher T.M. McBride K.L. Neinast R. Fitch J. Lee D.A. White P. Wilson R.K. Bedrosian T.A. Koboldt D.C. Hester M.E. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2023 146 1 387 404 10.1093/brain/awac244 35802027
    [Google Scholar]
  129. Fetit R. Barbato M.I. Theil T. Pratt T. Price D.J. 16p11.2 deletion accelerates subpallial maturation and increases variability in human iPSC-derived ventral telencephalic organoids. Development 2023 150 4 dev201227 10.1242/dev.201227 36826401
    [Google Scholar]
  130. Wang Y. Chiola S. Yang G. Russell C. Armstrong C.J. Wu Y. Spampanato J. Tarboton P. Ullah H.M.A. Edgar N.U. Chang A.N. Harmin D.A. Bocchi V.D. Vezzoli E. Besusso D. Cui J. Cattaneo E. Kubanek J. Shcheglovitov A. Modeling human telencephalic development and autism-associated SHANK3 deficiency using organoids generated from single neural rosettes. Nat. Commun. 2022 13 1 5688 10.1038/s41467‑022‑33364‑z 36202854
    [Google Scholar]
  131. de Jong J.O. Llapashtica C. Genestine M. Strauss K. Provenzano F. Sun Y. Zhu H. Cortese G.P. Brundu F. Brigatti K.W. Corneo B. Migliori B. Tomer R. Kushner S.A. Kellendonk C. Javitch J.A. Xu B. Markx S. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat. Commun. 2021 12 1 4087 10.1038/s41467‑021‑24358‑4 34471112
    [Google Scholar]
  132. Wu J. Zhang J. Chen X. Wettschurack K. Que Z. Deming B.A. Olivero-Acosta M.I. Cui N. Eaton M. Zhao Y. Li S.M. Suzuki M. Chen I. Xiao T. Halurkar M.S. Mandal P. Yuan C. Xu R. Koss W.A. Du D. Chen F. Wu L. Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol. Psychiatry 2024 29 8 2424 2437 10.1038/s41380‑024‑02518‑4 38499656
    [Google Scholar]
  133. Sarieva K. Kagermeier T. Khakipoor S. Atay E. Yentür Z. Becker K. Mayer S. Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. Mol. Psychiatry 2023 28 12 5077 5089 10.1038/s41380‑023‑01997‑1 36878967
    [Google Scholar]
  134. Cui K. Wang Y. Zhu Y. Tao T. Yin F. Guo Y. Liu H. Li F. Wang P. Chen Y. Qin J. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model. Microsyst. Nanoeng. 2020 6 1 49 10.1038/s41378‑020‑0165‑z 34567661
    [Google Scholar]
  135. Meng Q. Zhang W. Wang X. Jiao C. Xu S. Liu C. Tang B. Chen C. Human forebrain organoids reveal connections between valproic acid exposure and autism risk. Transl. Psychiatry 2022 12 1 130 10.1038/s41398‑022‑01898‑x 35351869
    [Google Scholar]
  136. Zang Z. Yin H. Du Z. Xie R. Yang L. Cai Y. Wang L. Zhang D. Li X. Liu T. Gong H. Gao J. Yang H. Warner M. Gustafsson J.A. Xu H. Fan X. Valproic acid exposure decreases neurogenic potential of outer radial glia in human brain organoids. Front. Mol. Neurosci. 2022 15 1023765 36523605
    [Google Scholar]
  137. Nie L. Irwin C. Geahchan S. Singh K.K. Human pluripotent stem cell (hPSC)-derived models for autism spectrum disorder drug discovery. Expert Opin. Drug Discov. 2025 20 2 233 251 10.1080/17460441.2024.2416484 39718245
    [Google Scholar]
/content/journals/cn/10.2174/011570159X368403250618054913
Loading
/content/journals/cn/10.2174/011570159X368403250618054913
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test