Skip to content
2000
image of Therapeutic Approaches Interfering with Nuclear Localization Signals: An Emerging Strategy for CNS-Related Diseases

Abstract

Although medicinal chemistry is constantly looking for new therapeutic approaches against pathological conditions affecting the central nervous system (CNS), such as neurodegeneration and cancer, this quest has not been fully successful yet. The lack of understanding of all the complex mechanisms underlying these conditions makes the identification of new effective drugs challenging. A wide variety of pathophysiological events are regulated at both nuclear and cytoplasmic levels, and in this context, targeting the shuttle system composed of the karyopherin superfamily and their cargoes may provide an alternative strategy. Molecular recognition is highly specific and strictly related to the presence of special “tag” regions, known as nuclear localization signals, that are localized in the amino acid sequences of cargoes. Importantly, their trafficking is involved in various pathophysiological processes, including CNS diseases. Curiously, although this system has been studied intensively, much remains to be discovered to date. Throughout the years, drug discovery allowed the identification of small molecules and peptides able to target karyopherin-cargo complexes to provide new potential pharmacological treatments. Indeed, the first examples of drug candidates targeting this mechanism that reached clinical trials are appearing in the literature. With this mini-review, this study aims at presenting an updated overview on the most recent reports investigating the use of the karyopherin shuttle system as a new therapeutic target especially for CNS-related diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X384321250627071259
2025-07-14
2025-09-13
Loading full text...

Full text loading...

References

  1. Miller G. Is pharma running out of brainy ideas? Science 2010 329 5991 502 504 10.1126/science.329.5991.502 20671165
    [Google Scholar]
  2. Abbott A. Novartis to shut brain research facility. Nature 2011 480 7376 161 162 10.1038/480161a 22158218
    [Google Scholar]
  3. Gribkoff V.K. Kaczmarek L.K. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017 120 11 19 10.1016/j.neuropharm.2016.03.021 26979921
    [Google Scholar]
  4. Morofuji Y. Nakagawa S. Drug development for central nervous system diseases using in vitro blood-brain barrier models and drug repositioning. Curr. Pharm. Des. 2020 26 13 1466 1485 10.2174/1381612826666200224112534 32091330
    [Google Scholar]
  5. Miller K.D. Fidler-Benaoudia M. Keegan T.H. Hipp H.S. Jemal A. Siegel R.L. Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin. 2020 70 6 443 459 10.3322/caac.21637 32940362
    [Google Scholar]
  6. Bazi Alahri M. Jibril Ibrahim A. Barani M. Arkaban H. Shadman S.M. Salarpour S. Zarrintaj P. Jaberi J. Turki J.A. Management of brain cancer and neurodegenerative disorders with polymer-based nanoparticles as a biocompatible platform. Molecules 2023 28 2 841 10.3390/molecules28020841 36677899
    [Google Scholar]
  7. Fayazi N. Sheykhhasan M. Soleimani A.S. Najafi R. Stem cell-derived exosomes: A new strategy of neurodegenerative disease treatment. Mol. Neurobiol. 2021 58 7 3494 3514 10.1007/s12035‑021‑02324‑x 33745116
    [Google Scholar]
  8. Khalil B. Linsenmeier M. Smith C.L. Shorter J. Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol. Neurodegener. 2024 19 1 8 10.1186/s13024‑023‑00698‑1 38254150
    [Google Scholar]
  9. Gregory J.V. Kadiyala P. Doherty R. Cadena M. Habeel S. Ruoslahti E. Lowenstein P.R. Castro M.G. Lahann J. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nat. Commun. 2020 11 1 5687 10.1038/s41467‑020‑19225‑7 33173024
    [Google Scholar]
  10. Freeman B.B. Yang L. Rankovic Z. Practical approaches to evaluating and optimizing brain exposure in early drug discovery. Eur. J. Med. Chem. 2019 182 111643 10.1016/j.ejmech.2019.111643 31514017
    [Google Scholar]
  11. Lipinski C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000 44 1 235 249 10.1016/S1056‑8719(00)00107‑6 11274893
    [Google Scholar]
  12. Martin I. Prediction of blood-brain barrier penetration: Are we missing the point? Drug Discov. Today 2004 9 4 161 162 10.1016/S1359‑6446(03)02961‑1 14960394
    [Google Scholar]
  13. Giacomini K.M. Huang S.M. Tweedie D.J. Benet L.Z. Brouwer K.L.R. Chu X. Dahlin A. Evers R. Fischer V. Hillgren K.M. Hoffmaster K.A. Ishikawa T. Keppler D. Kim R.B. Lee C.A. Niemi M. Polli J.W. Sugiyama Y. Swaan P.W. Ware J.A. Wright S.H. Wah Yee S. Zamek-Gliszczynski M.J. Zhang L. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010 9 3 215 236 10.1038/nrd3028 20190787
    [Google Scholar]
  14. Md S. Bhattmisra S.K. Zeeshan F. Shahzad N. Mujtaba M.A. Srikanth Meka V. Radhakrishnan A. Kesharwani P. Baboota S. Ali J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol. 2018 43 295 310 10.1016/j.jddst.2017.09.022
    [Google Scholar]
  15. Di L. Artursson P. Avdeef A. Ecker G.F. Faller B. Fischer H. Houston J.B. Kansy M. Kerns E.H. Krämer S.D. Lennernäs H. Sugano K. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discov. Today 2012 17 15-16 905 912 10.1016/j.drudis.2012.03.015 22507594
    [Google Scholar]
  16. Dickens D. Radisch S. Pirmohamed M. Chapter 5: Drug transporters at the blood-brain barrier. Drug Transporters: Role and Importance in ADME and Drug Development. The Royal Society of Chemistry 2016 Vol. 1 151 183
    [Google Scholar]
  17. Stephens R.H. O’Neill C.A. Bennett J. Humphrey M. Henry B. Rowland M. Warhurst G. Resolution of P‐glycoprotein and non‐P‐glycoprotein effects on drug permeability using intestinal tissues from mdr1a (−/−) mice. Br. J. Pharmacol. 2002 135 8 2038 2046 10.1038/sj.bjp.0704668 11959808
    [Google Scholar]
  18. Gomez-Zepeda D. Taghi M. Scherrmann J.M. Decleves X. Menet M.C. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics 2019 12 1 20 10.3390/pharmaceutics12010020 31878061
    [Google Scholar]
  19. Hitchcock S.A. Pennington L.D. Structure-brain exposure relationships. J. Med. Chem. 2006 49 26 7559 7583 10.1021/jm060642i 17181137
    [Google Scholar]
  20. Rankovic Z. Designing CNS drugs for optimal brain exposure. Blood-Brain Barrier in Drug Discovery; 2015 385 424 10.1002/9781118788523.ch18
    [Google Scholar]
  21. Upadhyay R.K. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Res. Int. 2014 2014 1 37 10.1155/2014/869269 25136634
    [Google Scholar]
  22. Nau R. Sörgel F. Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010 23 4 858 883 10.1128/CMR.00007‑10 20930076
    [Google Scholar]
  23. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25. 1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  24. Gupta M. Feng J. Bhisetti G. Experimental and computational methods to assess central nervous system penetration of small molecules. Molecules 2024 29 6 1264 10.3390/molecules29061264 38542901
    [Google Scholar]
  25. Leeson P.D. Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007 6 11 881 890 10.1038/nrd2445 17971784
    [Google Scholar]
  26. Hitchcock S.A. Structural modifications that alter the P-glycoprotein efflux properties of compounds. J. Med. Chem. 2012 55 11 4877 4895 10.1021/jm201136z 22506484
    [Google Scholar]
  27. Pajouhesh H. Lenz G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005 2 4 541 553 10.1602/neurorx.2.4.541 16489364
    [Google Scholar]
  28. Hu E. Kunz R.K. Chen N. Rumfelt S. Siegmund A. Andrews K. Chmait S. Zhao S. Davis C. Chen H. Lester-Zeiner D. Ma J. Biorn C. Shi J. Porter A. Treanor J. Allen J.R. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A). J. Med. Chem. 2013 56 21 8781 8792 10.1021/jm401234w 24102193
    [Google Scholar]
  29. Veber D.F. Johnson S.R. Cheng H.Y. Smith B.R. Ward K.W. Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002 45 12 2615 2623 10.1021/jm020017n 12036371
    [Google Scholar]
  30. van de Waterbeemd H. Camenisch G. Folkers G. Chretien J.R. Raevsky O.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 1998 6 2 151 165 10.3109/10611869808997889 9886238
    [Google Scholar]
  31. Kelder J. Grootenhuis P.D.J. Bayada D.M. Delbressine L.P.C. Ploemen J.P. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 1999 16 10 1514 1519 10.1023/A:1015040217741 10554091
    [Google Scholar]
  32. McCoull W. Thomson C. Braybrooke E. Chan C. Colclough N. Cortés González M.A. Cosulich S. Davies N.L. Floc’h N. Greenwood R. Hargreaves D. Huang P. Hunt T.A. Johnson T. Johnström P. Kettle J.G. Kondrashov M. Kostomiris D.H. Li S. Lister A. Martin S. McKerrecher D. McLean N. Nissink J.W.M. Orme J.P. Orwig P. Packer M.J. Pearson S. Qin L. Felisberto-Rodrigues C. Savoca A. Schou M. Stokes S. Swaih A.M. Talbot S. Tucker M.J. Ward R.A. Wadforth E. Wang C. Wilson J. Yang Y. Highly optimized CNS penetrant inhibitors of EGFR Exon20 insertion mutations. J. Med. Chem. 2025 68 3 3700 3748 10.1021/acs.jmedchem.4c02811 39869768
    [Google Scholar]
  33. Chan B.W.G.L. Lynch N.B. Tran W. Joyce J.M. Savage G.P. Meutermans W. Montgomery A.P. Kassiou M. Fragment-based drug discovery for disorders of the central nervous system: Designing better drugs piece by piece. Front Chem. 2024 12 1379518 10.3389/fchem.2024.1379518 38698940
    [Google Scholar]
  34. Kato R. Zhang L. Kinatukara N. Huang R. Asthana A. Weber C. Xia M. Xu X. Shah P. Investigating blood-brain barrier penetration and neurotoxicity of natural products for central nervous system drug development. Sci. Rep. 2025 15 1 7431 10.1038/s41598‑025‑90888‑2 40032960
    [Google Scholar]
  35. Yadav A. Pandey D. Ashraf G.M. Rachana, Peptide based therapy for neurological disorders. Curr. Protein Pept. Sci. 2021 22 9 656 665 10.2174/1389203722666210920151810 34544337
    [Google Scholar]
  36. Ayo A. Laakkonen P. Peptide-based strategies for targeted tumor treatment and imaging. Pharmaceutics 2021 13 4 481 10.3390/pharmaceutics13040481 33918106
    [Google Scholar]
  37. Raucher D. Tumor targeting peptides: Novel therapeutic strategies in glioblastoma. Curr. Opin. Pharmacol. 2019 47 14 19 10.1016/j.coph.2019.01.006 30776641
    [Google Scholar]
  38. Kakinen A. Jiang Y. Davis T. Teesalu T. Saarma M. Brain targeting nanomedicines: Pitfalls and promise. Int. J. Nanomedicine 2024 19 4857 4875 10.2147/IJN.S454553 38828195
    [Google Scholar]
  39. Bose M. Farias Quipildor G. Ehrlich M.E. Salton S.R. Intranasal peptide therapeutics: A promising avenue for overcoming the challenges of traditional cns drug development. Cells 2022 11 22 3629 10.3390/cells11223629 36429060
    [Google Scholar]
  40. Parrasia S. Szabò I. Zoratti M. Biasutto L. Peptides as pharmacological carriers to the brain: Promises, shortcomings and challenges. Mol. Pharm. 2022 19 11 3700 3729 10.1021/acs.molpharmaceut.2c00523 36174227
    [Google Scholar]
  41. Parthsarathy V. McClean P.L. Hölscher C. Taylor M. Tinker C. Jones G. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. PLoS One 2013 8 54769
    [Google Scholar]
  42. Gregori M. Taylor M. Salvati E. Re F. Mancini S. Balducci C. Forloni G. Zambelli V. Sesana S. Michael M. Michail C. Tinker-Mill C. Kolosov O. Sherer M. Harris S. Fullwood N.J. Masserini M. Allsop D. Retro-inverso peptide inhibitor nanoparticles as potent inhibitors of aggregation of the Alzheimer’s Aβ peptide. Nanomedicine 2017 13 2 723 732 10.1016/j.nano.2016.10.006 27769888
    [Google Scholar]
  43. Offen D. Peptides for the treatment of neurodegenerative diseases W.O. Patent 2014057484A1 2014
  44. Popiel H.A. Burke J.R. Strittmatter W.J. Oishi S. Fujii N. Takeuchi T. Toda T. Wada K. Nagai Y. The aggregation inhibitor peptide QBP1 as a therapeutic molecule for the polyglutamine neurodegenerative diseases. J. Amino Acids 2011 2011 1 10 10.4061/2011/265084 22312459
    [Google Scholar]
  45. Belwal V.K. Datta D. Chaudhary N. The β‐turn‐supporting motif in the polyglutamine binding peptide QBP1 is essential for inhibiting huntingtin aggregation. FEBS Lett. 2020 594 17 2894 2903 10.1002/1873‑3468.13873 32592593
    [Google Scholar]
  46. Nath A. Pandey S. Nisar K.S. Tiwari A.K. Gaining insights into the physicochemical properties and sequence space of blood-brain barrier penetrating peptides. Egypt Inform. J. 2024 28 100557 10.1016/j.eij.2024.100557
    [Google Scholar]
  47. Mahipal A. Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol. Ther. 2016 164 135 143 10.1016/j.pharmthera.2016.03.020 27113410
    [Google Scholar]
  48. Nofrini V. Di Giacomo D. Mecucci C. Nucleoporin genes in human diseases. Eur. J. Hum. Genet. 2016 24 10 1388 1395 10.1038/ejhg.2016.25 27071718
    [Google Scholar]
  49. Strambio-De-Castillia C. Niepel M. Rout M.P. The nuclear pore complex: Bridging nuclear transport and gene regulation. Nat. Rev. Mol. Cell Biol. 2010 11 7 490 501 10.1038/nrm2928 20571586
    [Google Scholar]
  50. Yang Y. Guo L. Chen L. Gong B. Jia D. Sun Q. Nuclear transport proteins: Structure, function and disease relevance. Signal Transduct. Target. Ther. 2023 8 1 425 10.1038/s41392‑023‑01649‑4 37945593
    [Google Scholar]
  51. Pumroy R.A. Cingolani G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 2015 466 1 13 28 10.1042/BJ20141186 25656054
    [Google Scholar]
  52. Pasha T. Zatorska A. Sharipov D. Rogelj B. Hortobágyi T. Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021 144 10 2915 2932 10.1093/brain/awab201 34019093
    [Google Scholar]
  53. Yoshimura S.H. Hirano T. HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments? J. Cell Sci. 2016 129 21 3963 3970 10.1242/jcs.185710 27802131
    [Google Scholar]
  54. Milles S. Mercadante D. Aramburu I.V. Jensen M.R. Banterle N. Koehler C. Tyagi S. Clarke J. Shammas S.L. Blackledge M. Gräter F. Lemke E.A. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015 163 3 734 745 10.1016/j.cell.2015.09.047 26456112
    [Google Scholar]
  55. Goodsell D.S. Dutta S. Zardecki C. Voigt M. Berman H.M. Burley S.K. The RCSB PDB “molecule of the month”: Inspiring a molecular view of biology. PLoS Biol. 2015 13 5 1002140 10.1371/journal.pbio.1002140 25942442
    [Google Scholar]
  56. Wing C.E. Fung H.Y.J. Chook Y.M. Karyopherin-mediated nucleocytoplasmic transport. Nat. Rev. Mol. Cell Biol. 2022 23 5 307 328 10.1038/s41580‑021‑00446‑7 35058649
    [Google Scholar]
  57. Barbato S. Kapinos L.E. Rencurel C. Lim R.Y.H. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J. Cell Sci. 2020 133 3 jcs238121 10.1242/jcs.238121 31932502
    [Google Scholar]
  58. Conti E. Müller C.W. Stewart M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 2006 16 2 237 244 10.1016/j.sbi.2006.03.010 16567089
    [Google Scholar]
  59. Kim Y.H. Han M.E. Oh S.O. The molecular mechanism for nuclear transport and its application. Anat. Cell Biol. 2017 50 2 77 85 10.5115/acb.2017.50.2.77 28713609
    [Google Scholar]
  60. Springhower C.E. Rosen M.K. Chook Y.M. Karyopherins and condensates. Curr. Opin. Cell Biol. 2020 64 112 123 10.1016/j.ceb.2020.04.003 32474299
    [Google Scholar]
  61. Çağatay T. Chook Y.M. Karyopherins in cancer. Curr. Opin. Cell Biol. 2018 52 30 42 10.1016/j.ceb.2018.01.006 29414591
    [Google Scholar]
  62. Jans D.A. Martin A.J. Wagstaff K.M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 2019 58 50 60 10.1016/j.ceb.2019.01.001 30826604
    [Google Scholar]
  63. Indrigo M. Morella I. Orellana D. d’Isa R. Papale A. Parra R. Gurgone A. Lecca D. Cavaccini A. Tigaret C.M. Cagnotto A. Jones K. Brooks S. Ratto G.M. Allen N.D. Lelos M.J. Middei S. Giustetto M. Carta A.R. Tonini R. Salmona M. Hall J. Thomas K. Brambilla R. Fasano S. Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2. EMBO Mol. Med. 2023 15 11 15984 10.15252/emmm.202215984 37792911
    [Google Scholar]
  64. Marchi M. D’Antoni A. Formentini I. Parra R. Brambilla R. Ratto G.M. Costa M. The N-terminal domain of ERK1 accounts for the functional differences with ERK2. PLoS One 2008 3 12 3873 10.1371/journal.pone.0003873 19052640
    [Google Scholar]
  65. Yang S.N.Y. Atkinson S.C. Wang C. Lee A. Bogoyevitch M.A. Borg N.A. Jans D.A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 2020 177 104760 10.1016/j.antiviral.2020.104760 32135219
    [Google Scholar]
  66. Atkinson S.C. Audsley M.D. Lieu K.G. Marsh G.A. Thomas D.R. Heaton S.M. Paxman J.J. Wagstaff K.M. Buckle A.M. Moseley G.W. Jans D.A. Borg N.A. Recognition by host nuclear transport proteins drives disorder-to-order transition in Hendra virus V. Sci. Rep. 2018 8 1 358 10.1038/s41598‑017‑18742‑8 29321677
    [Google Scholar]
  67. Wagstaff K.M. Rawlinson S.M. Hearps A.C. Jans D.A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. SLAS Discov. 2011 16 2 192 200 10.1177/1087057110390360 21297106
    [Google Scholar]
  68. Kosyna F.K. Nagel M. Kluxen L. Kraushaar K. Depping R. The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biol. Chem. 2015 396 12 1357 1367 10.1515/hsz‑2015‑0171 26351913
    [Google Scholar]
  69. Kosugi S. Hasebe M. Entani T. Takayama S. Tomita M. Yanagawa H. Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol. 2008 15 9 940 949 10.1016/j.chembiol.2008.07.019 18804031
    [Google Scholar]
  70. Zienkiewicz J. Armitage A. Hawiger J. Targeting nuclear import shuttles, importins/karyopherins alpha by a peptide mimicking the NFκB1/p50 nuclear localization sequence. J. Am. Heart Assoc. 2013 2 5 000386 10.1161/JAHA.113.000386 24042087
    [Google Scholar]
  71. Li X. Rasul A. Sharif F. Hassan M. PIAS family in cancer: From basic mechanisms to clinical applications. Front. Oncol. 2024 14 1376633 10.3389/fonc.2024.1376633 38590645
    [Google Scholar]
  72. Wirt S.E. Sage J. p107 in the public eye: An Rb understudy and more. Cell Div. 2010 5 1 9 10.1186/1747‑1028‑5‑9 20359370
    [Google Scholar]
  73. Cansizoglu A.E. Lee B.J. Zhang Z.C. Fontoura B.M.A. Chook Y.M. Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 2007 14 5 452 454 10.1038/nsmb1229 17435768
    [Google Scholar]
  74. Hintersteiner M. Ambrus G. Bednenko J. Schmied M. Knox A.J.S. Meisner N.C. Gstach H. Seifert J.M. Singer E.L. Gerace L. Auer M. Identification of a small molecule inhibitor of importin β mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem. Biol. 2010 5 10 967 979 10.1021/cb100094k 20677820
    [Google Scholar]
  75. Soderholm J.F. Bird S.L. Kalab P. Sampathkumar Y. Hasegawa K. Uehara-Bingen M. Weis K. Heald R. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 2011 6 7 700 708 10.1021/cb2000296 21469738
    [Google Scholar]
  76. Pathak G.K. Ornstein H. Aranda-Espinoza H. Karlsson A.J. Shah S.B. Increases in retrograde injury signaling complex-related transcripts in central axons following injury. Neural Plast. 2016 2016 1 13 10.1155/2016/3572506 27847648
    [Google Scholar]
  77. Chen W.S. Chen Y.J. Huang Y.A. Hsieh B.Y. Chiu H.C. Kao P.Y. Chao C.Y. Hwang E. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci. Rep. 2017 7 1 42297 10.1038/srep42297 28205572
    [Google Scholar]
  78. Sheng K.L. Pridham K.J. Sheng Z. Lamouille S. Varghese R.T. Functional blockade of small GTPase RAN inhibits glioblastoma cell viability. Front. Oncol. 2019 8 662 10.3389/fonc.2018.00662 30671385
    [Google Scholar]
  79. Zhu Z.C. Liu J.W. Li K. Zheng J. Xiong Z.Q. KPNB1 inhibition disrupts proteostasis and triggers unfolded protein response-mediated apoptosis in glioblastoma cells. Oncogene 2018 37 22 2936 2952 10.1038/s41388‑018‑0180‑9 29520102
    [Google Scholar]
  80. van der Watt P.J. Chi A. Stelma T. Stowell C. Strydom E. Carden S. Angus L. Hadley K. Lang D. Wei W. Birrer M.J. Trent J.O. Leaner V.D. Targeting the nuclear import receptor kpnβ1 as an anticancer therapeutic. Mol. Cancer Ther. 2016 15 4 560 573 10.1158/1535‑7163.MCT‑15‑0052 26832790
    [Google Scholar]
  81. Ajayi-Smith A. van der Watt P. Mkwanazi N. Carden S. Trent J.O. Leaner V.D. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp. Cell Res. 2021 404 2 112637 10.1016/j.yexcr.2021.112637 34019908
    [Google Scholar]
  82. Ambrus G. Whitby L.R. Singer E.L. Trott O. Choi E. Olson A.J. Boger D.L. Gerace L. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Bioorg. Med. Chem. 2010 18 21 7611 7620 10.1016/j.bmc.2010.08.038 20869252
    [Google Scholar]
  83. Huang J.L. Yan X.L. Li W. Fan R.Z. Li S. Chen J. Zhang Z. Sang J. Gan L. Tang G.H. Chen H. Wang J. Yin S. Discovery of highly potent daphnane diterpenoids uncovers importin-β1 as a druggable vulnerability in castration-resistant prostate cancer. J. Am. Chem. Soc. 2022 144 38 17522 17532 10.1021/jacs.2c06449 36103720
    [Google Scholar]
  84. Huang J.L. Yan X.L. Huang D. Gan L. Gao H. Fan R.Z. Li S. Yuan F.Y. Zhu X. Tang G.H. Chen H.W. Wang J. Yin S. Discovery of a highly potent and orally available importin-β1 inhibitor that overcomes enzalutamide-resistance in advanced prostate cancer. Acta Pharm. Sin. B 2023 13 12 4934 4944 10.1016/j.apsb.2023.07.017 38045040
    [Google Scholar]
  85. Liu W. Patouret R. Barluenga S. Plank M. Loewith R. Winssinger N. Identification of a covalent importin-5 inhibitor, goyazensolide, from a collective synthesis of furanoheliangolides. ACS Cent. Sci. 2021 7 6 954 962 10.1021/acscentsci.1c00056 34235256
    [Google Scholar]
  86. Izumi C. Laure H.J. Barbosa N.G. Hassibe Thomé C. Aguiar Ferreira G. Paulo Barreto Sousa J. Peporine Lopes N. César Rosa J. Sequesterpene lactones isolated from a brazilian cerrado plant (Eremanthus spp.) as anti-proliferative compounds, characterized by functional and proteomic analysis, are candidates for new therapeutics in glioblastoma. Int. J. Mol. Sci. 2020 21 13 4713 10.3390/ijms21134713 32630308
    [Google Scholar]
  87. Wagstaff K.M. Headey S. Telwatte S. Tyssen D. Hearps A.C. Thomas D.R. Tachedjian G. Jans D.A. Molecular dissection of an inhibitor targeting the HIV integrase dependent preintegration complex nuclear import. Cell. Microbiol. 2019 21 1 12953 10.1111/cmi.12953 30216959
    [Google Scholar]
  88. Fraser J.E. Watanabe S. Wang C. Chan W.K.K. Maher B. Lopez-Denman A. Hick C. Wagstaff K.M. Mackenzie J.M. Sexton P.M. Vasudevan S.G. Jans D.A. A nuclear transport inhibitor that modulates the unfolded protein response and provides in vivo protection against lethal dengue virus infection. J. Infect. Dis. 2014 210 11 1780 1791 10.1093/infdis/jiu319 24903662
    [Google Scholar]
  89. Wang C. Yang S.N.Y. Smith K. Forwood J.K. Jans D.A. Nuclear import inhibitor N -(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection. Biochem. Biophys. Res. Commun. 2017 493 4 1555 1559 10.1016/j.bbrc.2017.10.016 28988109
    [Google Scholar]
  90. Lopez-Denman A.J. Russo A. Wagstaff K.M. White P.A. Jans D.A. Mackenzie J.M. Nucleocytoplasmic shuttling of the West Nile virus RNA ‐dependent RNA polymerase NS5 is critical to infection. Cell. Microbiol. 2018 20 8 12848 10.1111/cmi.12848 29582535
    [Google Scholar]
  91. Li C. Zhang Q. Huang W. Huang L. Long Q. Lei Y. Jia D. Yang S. Yang Y. Zhang X. Sun Q. Discovery of a hidden pocket beneath the nes groove by novel noncovalent CRM1 inhibitors. J. Med. Chem. 2023 66 24 17044 17058 10.1021/acs.jmedchem.3c01867 38105606
    [Google Scholar]
  92. Kudo N. Matsumori N. Taoka H. Fujiwara D. Schreiner E.P. Wolff B. Yoshida M. Horinouchi S. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 1999 96 16 9112 9117 10.1073/pnas.96.16.9112 10430904
    [Google Scholar]
  93. Sun Q. Carrasco Y.P. Hu Y. Guo X. Mirzaei H. MacMillan J. Chook Y.M. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc. Natl. Acad. Sci. USA 2013 110 4 1303 1308 10.1073/pnas.1217203110 23297231
    [Google Scholar]
  94. Dey A. Tergaonkar V. Lane D.P. Double-edged swords as cancer therapeutics: Simultaneously targeting p53 and NF-κB pathways. Nat. Rev. Drug Discov. 2008 7 12 1031 1040 10.1038/nrd2759 19043452
    [Google Scholar]
  95. Rodriguez M.S. Thompson J. Hay R.T. Dargemont C. Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation. J. Biol. Chem. 1999 274 13 9108 9115 10.1074/jbc.274.13.9108 10085161
    [Google Scholar]
  96. Newlands E.S. Rustin G.J.S. Brampton M.H. Phase I trial of elactocin. Br. J. Cancer 1996 74 4 648 649 10.1038/bjc.1996.415 8761384
    [Google Scholar]
  97. Niu M. Chong Y. Han Y. Liu X. Novel reversible selective inhibitor of nuclear export shows that CRM1 is a target in colorectal cancer cells. Cancer Biol. Ther. 2015 16 7 1110 1118 10.1080/15384047.2015.1047569 25996664
    [Google Scholar]
  98. Theodoropoulos N. Lancman G. Chari A. Targeting nuclear export proteins in multiple myeloma therapy. Target. Oncol. 2020 15 6 697 708 10.1007/s11523‑020‑00758‑2 33074469
    [Google Scholar]
  99. Bonazzi S. Eidam O. Güttinger S. Wach J.Y. Zemp I. Kutay U. Gademann K. Anguinomycins and derivatives: Total syntheses, modeling, and biological evaluation of the inhibition of nucleocytoplasmic transport. J. Am. Chem. Soc. 2010 132 4 1432 1442 10.1021/ja9097093 20055390
    [Google Scholar]
  100. Wach J.Y. Güttinger S. Kutay U. Gademann K. The cytotoxic styryl lactone goniothalamin is an inhibitor of nucleocytoplasmic transport. Bioorg. Med. Chem. Lett. 2010 20 9 2843 2846 10.1016/j.bmcl.2010.03.049 20381347
    [Google Scholar]
  101. Walker J.S. Hing Z.A. Harrington B. Baumhardt J. Ozer H.G. Lehman A. Giacopelli B. Beaver L. Williams K. Skinner J.N. Cempre C.B. Sun Q. Shacham S. Stromberg B.R. Summers M.K. Abruzzo L.V. Rassenti L. Kipps T.J. Parikh S. Kay N.E. Rogers K.A. Woyach J.A. Coppola V. Chook Y.M. Oakes C. Byrd J.C. Lapalombella R. Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. J. Hematol. Oncol. 2021 14 1 17 10.1186/s13045‑021‑01032‑2 33451349
    [Google Scholar]
  102. Ferreira-Cerca S. Sagar V. Schäfer T. Diop M. Wesseling A.M. Lu H. Chai E. Hurt E. LaRonde-LeBlanc N. ATPase-dependent role of the atypical kinase Rio2 on the evolving pre-40S ribosomal subunit. Nat. Struct. Mol. Biol. 2012 19 12 1316 1323 10.1038/nsmb.2403 23104056
    [Google Scholar]
  103. Niu M. Wu S. Mao L. Yang Y. CRM1 is a cellular target of curcumin: New insights for the myriad of biological effects of an ancient spice. Traffic 2013 14 10 1042 1052 10.1111/tra.12090 23829533
    [Google Scholar]
  104. Beevers C.S. Chen L. Liu L. Luo Y. Webster N.J.G. Huang S. Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res. 2009 69 3 1000 1008 10.1158/0008‑5472.CAN‑08‑2367 19176385
    [Google Scholar]
  105. Gradišar H. Keber M.M. Pristovšek P. Jerala R. MD-2 as the target of curcumin in the inhibition of response to LPS. J. Leukoc. Biol. 2007 82 4 968 974 10.1189/jlb.1206727 17609337
    [Google Scholar]
  106. Zhang Z. Luo D. Xie J. Lin G. Zhou J. Liu W. Li H. Yi T. Su Z. Chen J. Octahydrocurcumin, a final hydrogenated metabolite of curcumin, possesses superior anti-tumor activity through induction of cellular apoptosis. Food Funct. 2018 9 4 2005 2014 10.1039/C7FO02048A 29616245
    [Google Scholar]
  107. Ramakrishna R. Diamond T.H. Alexander W. Manoharan A. Golombick T. Use of curcumin in multiple myeloma patients intolerant of steroid therapy. Clin. Case Rep. 2020 8 4 739 744 10.1002/ccr3.2735 32274049
    [Google Scholar]
  108. Liu X. Niu M. Xu X. Cai W. Zeng L. Zhou X. Yu R. Xu K. CRM1 is a direct cellular target of the natural anti-cancer agent plumbagin. J. Pharmacol. Sci. 2014 124 4 486 493 10.1254/jphs.13240FP 24739265
    [Google Scholar]
  109. Abedinpour P. Baron V.T. Chrastina A. Rondeau G. Pelayo J. Welsh J. Borgström P. Plumbagin improves the efficacy of androgen deprivation therapy in prostate cancer: A pre‐clinical study. Prostate 2017 77 16 1550 1562 10.1002/pros.23428 28971491
    [Google Scholar]
  110. Jiang Z.B. Xu C. Wang W. Zhang Y.Z. Huang J.M. Xie Y.J. Wang Q.Q. Fan X.X. Yao X.J. Xie C. Wang X.R. Yan P.Y. Ma Y.P. Wu Q.B. Leung E.L.H. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacol. Res. 2021 169 105656 10.1016/j.phrs.2021.105656 33964470
    [Google Scholar]
  111. Sakakibara K. Saito N. Sato T. Suzuki A. Hasegawa Y. Friedman J.M. Kufe D.W. VonHoff D.D. Iwami T. Kawabe T. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood 2011 118 14 3922 3931 10.1182/blood‑2011‑01‑333138 21841164
    [Google Scholar]
  112. SB17170 phase 1 clinical trial in solid tumors. Patent NCT05522868 2025
  113. A trial of a novel XPO1 inhibitor in participants with advanced solid tumors. Patent NCT02667873 2025 Available from: https://clinicaltrials.gov/study/NCT02667873
  114. SB17170 phase1 trial in healthy volunteer. Patent NCT05795192 2024
  115. Wang J. Barve M. Chiorean E. LoRusso P. Courtney K. Qi D. Bullington J. Sardone M. Chen J. Brooks C. Shemesh S. Bauer T.M. Interim results from trial of SL-801, a novel XPO-1 inhibitor, in patients with advanced solid tumours. Ann. Oncol. 2019 30 v175 10.1093/annonc/mdz244.028
    [Google Scholar]
  116. Sun Q. Chen X. Zhou Q. Burstein E. Yang S. Jia D. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct. Target. Ther. 2016 1 1 16010 10.1038/sigtrans.2016.10 29263896
    [Google Scholar]
  117. Daelemans D. Afonina E. Nilsson J. Werner G. Kjems J. De Clercq E. Pavlakis G.N. Vandamme A.M. A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc. Natl. Acad. Sci. USA 2002 99 22 14440 14445 10.1073/pnas.212285299 12374846
    [Google Scholar]
  118. XPO1 inhibitor approved for multiple myeloma. Cancer Discov. 2019 9 9 1150 1151 10.1158/2159‑8290.CD‑NB2019‑085 31332020
    [Google Scholar]
  119. Peterson T.J. Orozco J. Buege M. Selinexor: A first-in-class nuclear export inhibitor for management of multiply relapsed multiple myeloma. Ann. Pharmacother. 2020 54 6 577 582 10.1177/1060028019892643 31793336
    [Google Scholar]
  120. Ben-Barouch S. Kuruvilla J. Selinexor (KTP-330) - a selective inhibitor of nuclear export (SINE): Anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin. Investig. Drugs 2020 29 1 15 21 10.1080/13543784.2020.1706087 31847605
    [Google Scholar]
  121. Kasamon Y.L. Price L.S.L. Okusanya O.O. Richardson N.C. Li R.J. Ma L. Wu Y.T. Theoret M. Pazdur R. Gormley N.J. FDA approval summary: Selinexor for relapsed or refractory diffuse large b-cell lymphoma. Oncologist 2021 26 10 879 886 10.1002/onco.13859 34132444
    [Google Scholar]
  122. Miao H. Qin Y. Shao D. Chen Q. Pan Y. Lei M. Wu R. Ye X. Wang X. Zhu Y. Discovery of SZJK-0421: A novel potent, low toxicity, selective second generation of CRM1 inhibitor for the treatment of both hematological and solid tumors. J. Med. Chem. 2024 67 22 20595 20618 10.1021/acs.jmedchem.4c02169 39509481
    [Google Scholar]
  123. Lai C. Xu L. Dai S. The nuclear export protein exportin‐1 in solid malignant tumours: From biology to clinical trials. Clin. Transl. Med. 2024 14 5 1684 10.1002/ctm2.1684 38783482
    [Google Scholar]
  124. Liu S. Wang S. Gu R. Che N. Wang J. Cheng J. Yuan Z. Cheng Y. Liao Y. The XPO1 inhibitor KPT-8602 ameliorates Parkinson’s disease by inhibiting the NF-κB/NLRP3 pathway. Front. Pharmacol. 2022 13 847605 10.3389/fphar.2022.847605 35721113
    [Google Scholar]
  125. Lassman A.B. Wen P.Y. van den Bent M.J. Plotkin S.R. Walenkamp A.M.E. Green A.L. Li K. Walker C.J. Chang H. Tamir S. Henegar L. Shen Y. Alvarez M.J. Califano A. Landesman Y. Kauffman M.G. Shacham S. Mau-Sørensen M. A phase II study of the efficacy and safety of oral selinexor in recurrent glioblastoma. Clin. Cancer Res. 2022 28 3 452 460 10.1158/1078‑0432.CCR‑21‑2225 34728525
    [Google Scholar]
  126. Hoosemans L. Vooijs M. Hoeben A. Opportunities and challenges of small molecule inhibitors in glioblastoma treatment: Lessons learned from clinical trials. Cancers 2024 16 17 3021 10.3390/cancers16173021 39272879
    [Google Scholar]
  127. Selinexor (KPT-330) in combination with temozolomide and radiation therapy in patients with newly diagnosed glioblastoma. Patent NCT04216329 2024
  128. A study of selinexor in combination with standard of care therapy for newly diagnosed or recurrent glioblastoma. Patent NCT04421378 2024
  129. Study Evaluating the Efficacy and Safety of Selinexor (KPT-330) in Participants With Recurrent Gliomas (KING). Patent NCT01986348 2023
  130. Testing the addition of an anti-cancer drug, selinexor, to the usual chemotherapy treatment (temozolomide) for brain tumors that have returned after previous treatment. Patent NCT05432804 2025
  131. Cornell R.F. Baz R. Richter J.R. Rossi A. Vogl D.T. Chen C. Shustik C. Alvarez M.J. Shen Y. Unger T.J. Ben-Shahar O. Wang H. Baloglu E. Senapedis W. Ma X. Landesman Y. Bai X. Bader J. Xu H. Marshall T. Chang H. Walker C.J. Shah J. Shacham S. Kauffman M.G. Hofmeister C.C. A phase 1 clinical trial of oral eltanexor in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 2022 97 2 E54 E58 10.1002/ajh.26420 34817872
    [Google Scholar]
  132. Chari A. Vogl D.T. Gavriatopoulou M. Nooka A.K. Yee A.J. Huff C.A. Moreau P. Dingli D. Cole C. Lonial S. Dimopoulos M. Stewart A.K. Richter J. Vij R. Tuchman S. Raab M.S. Weisel K.C. Delforge M. Cornell R.F. Kaminetzky D. Hoffman J.E. Costa L.J. Parker T.L. Levy M. Schreder M. Meuleman N. Frenzel L. Mohty M. Choquet S. Schiller G. Comenzo R.L. Engelhardt M. Illmer T. Vlummens P. Doyen C. Facon T. Karlin L. Perrot A. Podar K. Kauffman M.G. Shacham S. Li L. Tang S. Picklesimer C. Saint-Martin J.R. Crochiere M. Chang H. Parekh S. Landesman Y. Shah J. Richardson P.G. Jagannath S. Oral selinexor-dexamethasone for triple-class refractory multiple myeloma. N. Engl. J. Med. 2019 381 8 727 738 10.1056/NEJMoa1903455 31433920
    [Google Scholar]
  133. Lei Y. An Q. Shen X. Sui M. Li C. Jia D. Luo Y. Sun Q. Structure-guided design of the first noncovalent small-molecule inhibitor of CRM1. J. Med. Chem. 2021 64 10 6596 6607 10.1021/acs.jmedchem.0c01675 33974430
    [Google Scholar]
  134. Klahn P. Fetz V. Ritter A. Collisi W. Hinkelmann B. Arnold T. Tegge W. Rox K. Hüttel S. Mohr K.I. Wink J. Stadler M. Wissing J. Jänsch L. Brönstrup M. The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates. Chem. Sci. 2019 10 20 5197 5210 10.1039/C8SC05542D 31191875
    [Google Scholar]
  135. Jian L. Zscherp R. Beutling U. Shen X. Xu S. Zhang X. Brönstrup M. Klahn P. Sun Q. Discovery of aminoratjadone derivatives as potent noncovalent CRM1 inhibitors. J. Med. Chem. 2023 66 17 11940 11950 10.1021/acs.jmedchem.3c00549 37595020
    [Google Scholar]
  136. Huang W. Wang J.X. Shen X. Lei Y. Chen X. Jia D. Zhang X. Sun Q. Searching for novel noncovalent nuclear export inhibitors through a drug repurposing approach. J. Med. Chem. 2023 66 2 1574 1582 10.1021/acs.jmedchem.2c01772 36622814
    [Google Scholar]
  137. Nagel D.J. Aizawa T. Jeon K.I. Liu W. Mohan A. Wei H. Miano J.M. Florio V.A. Gao P. Korshunov V.A. Berk B.C. Yan C. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ. Res. 2006 98 6 777 784 10.1161/01.RES.0000215576.27615.fd 16514069
    [Google Scholar]
  138. Martinez J.M. Shen A. Xu B. Jovanovic A. de Chabot J. Zhang J. Xiang Y.K. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci. Signal. 2023 16 778 eade3380 10.1126/scisignal.ade3380 36976866
    [Google Scholar]
  139. Ribaudo G. Giannangeli M. Anyanwu M. Gianoncelli A. Phosphodiesterase 9 localization in cytoplasm and nucleus: the gateway to selective targeting in neuroprotection? Neural Regen. Res. 2025 20 6 1701 1702 10.4103/NRR.NRR‑D‑24‑00373 39104101
    [Google Scholar]
  140. Landucci E. Ribaudo G. Anyanwu M. Oselladore E. Giannangeli M. Mazzantini C. Lana D. Giovannini M.G. Memo M. Pellegrini-Giampietro D.E. Gianoncelli A. Virtual screening-accelerated discovery of a phosphodiesterase 9 inhibitor with neuroprotective effects in the kainate toxicity in vitro model. ACS Chem. Neurosci. 2023 14 20 3826 3838 10.1021/acschemneuro.3c00431 37726213
    [Google Scholar]
  141. Tropea M.R. Gulisano W. Vacanti V. Arancio O. Puzzo D. Palmeri A. Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: From physiology to Alzheimer’s disease. Free Radic. Biol. Med. 2022 193 Pt 2 657 668 10.1016/j.freeradbiomed.2022.11.022 36400326
    [Google Scholar]
  142. Saavedra A. Giralt A. Arumí H. Alberch J. Pérez-Navarro E. Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntington’s disease. PLoS One 2013 8 73664 10.1371/journal.pone.0073664
    [Google Scholar]
  143. Kalaria R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathol. 2016 131 5 659 685 10.1007/s00401‑016‑1571‑z 27062261
    [Google Scholar]
  144. Saravani R. Karami-Tehrani F. Hashemi M. Aghaei M. Edalat R. Inhibition of phosphodiestrase 9 induces c GMP accumulation and apoptosis in human breast cancer cell lines, MCF ‐7 and MDA ‐ MB ‐468. Cell Prolif. 2012 45 3 199 206 10.1111/j.1365‑2184.2012.00819.x 22469131
    [Google Scholar]
  145. Susmi T.F. Rahman A. Khan M.M.R. Yasmin F. Islam M.S. Nasif O. Alharbi S.A. Batiha G.E.S. Hossain M.U. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021 21 1 577 10.1186/s12885‑021‑08332‑3 34016083
    [Google Scholar]
  146. Wang P. Wu P. Egan R.W. Billah M.M. Identification and characterization of a new human type 9 cGMP-specific phosphodiesterase splice variant (PDE9A5). Gene 2003 314 15 27 10.1016/S0378‑1119(03)00733‑9 14527714
    [Google Scholar]
  147. Kim K.M. Girdhar A. Cicardi M.E. Kankate V. Hayashi M. Yang R. Carey J.L. Fare C.M. Shorter J. Cingolani G. Trotti D. Guo L. NLS-binding deficient Kapβ2 reduces neurotoxicity via selective interaction with C9orf72-ALS/FTD dipeptide repeats. Commun. Biol. 2025 8 1 2 10.1038/s42003‑024‑07412‑x 39747573
    [Google Scholar]
  148. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  149. Ocana A. Pandiella A. Privat C. Bravo I. Luengo-Oroz M. Amir E. Gyorffy B. Integrating artificial intelligence in drug discovery and early drug development: A transformative approach. Biomark. Res. 2025 13 1 45 10.1186/s40364‑025‑00758‑2 40087789
    [Google Scholar]
/content/journals/cn/10.2174/011570159X384321250627071259
Loading
/content/journals/cn/10.2174/011570159X384321250627071259
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: karyopherins ; cancer ; peptides ; neurodegeneration ; antivirals ; small molecules ; CNS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test