Skip to content
2000
image of Therapeutic Potential of Anesthesiology for Sleep Disorders in the

Abstract

Sleep is important to maintain normal physiological functions of the human body. With increased stress in modern society, the number of patients suffering from sleep disorders is gradually increasing. Many studies have shown that general anesthetics induce loss of consciousness by acting on the sleep-wake circuit. In recent years, general anesthesia and other anesthetic agents have been used in the diagnosis and treatment of sleep disorders. This article discusses the mechanism of sleep and sleep disorders, summarizes the effects of anesthetics on sleep and their regulatory mechanisms, and reviews the research progress of using anesthetics in the diagnosis and treatment of sleep disorders.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X368375250611103614
2025-06-30
2025-09-13
Loading full text...

Full text loading...

References

  1. Shafer A. Metaphor and anesthesia. Anesthesiology 1995 83 6 1331 1342 10.1097/00000542‑199512000‑00024 8533926
    [Google Scholar]
  2. Lydic R. Pain: A bridge linking anesthesiology and sleep research. Sleep 2001 24 1 10 12 10.1093/sleep/24.1.10 11204045
    [Google Scholar]
  3. Nelson L.E. Lu J. Guo T. Saper C.B. Franks N.P. Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003 98 2 428 436 10.1097/00000542‑200302000‑00024 12552203
    [Google Scholar]
  4. Nelson L.E. Guo T.Z. Lu J. Saper C.B. Franks N.P. Maze M. The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat. Neurosci. 2002 5 10 979 984 10.1038/nn913 12195434
    [Google Scholar]
  5. Tung A. Lynch J.P. Mendelson W.B. Prolonged sedation with propofol in the rat does not result in sleep deprivation. Anesth. Analg. 2001 92 5 1232 1236 10.1097/00000539‑200105000‑00028 11323352
    [Google Scholar]
  6. Lu T.L. Lu T.J. Wu S.N. Effectiveness in block by dexmedetomidine of hyperpolarization-activated cation current, independent of its agonistic effect on α 2 -adrenergic receptors. Int. J. Mol. Sci. 2020 21 23 9110 10.3390/ijms21239110 33266068
    [Google Scholar]
  7. Lewis S.R. Schofield-Robinson O.J. Alderson P. Smith A.F. Propofol for the promotion of sleep in adults in the intensive care unit. Cochrane Libr. 2018 2019 1 CD012454 10.1002/14651858.CD012454.pub2 29308828
    [Google Scholar]
  8. Hu C.H. Chou W.Y. Improved pittsburgh sleep quality index scores on first postoperative night achieved by propofol anesthesia in patients undergoing ambulatory gynecologic surgery. World J. Clin. Cases 2022 10 21 7256 7264 10.12998/wjcc.v10.i21.7256 36157991
    [Google Scholar]
  9. Yan S. Wang Y. Yu L. Xia W. Xue F. Yu Y. Yuan B. Li N. Li H. Liang H. Ma J. Zhang Z. Stellate ganglion block alleviates postoperative sleep disturbance in patients undergoing radical surgery for gastrointestinal malignancies. J. Clin. Sleep Med. 2023 19 9 1633 1642 10.5664/jcsm.10632 37128727
    [Google Scholar]
  10. Franks N.P. Zecharia A.Y. Sleep and general anesthesia. Can. J. Anaesth. 2011 58 2 139 148 10.1007/s12630‑010‑9420‑3 21170623
    [Google Scholar]
  11. Troester M.M. Quan S.F. Berry R.B. The AASM manual for the scoring of sleep and associated events. 2023 Available from: https://aasm.org/wp-content/uploads/2024/02/SummaryofChanges_Document_3-1.pdf
    [Google Scholar]
  12. Lydic R. Baghdoyan H.A. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology 2005 103 6 1268 1295 10.1097/00000542‑200512000‑00024 16306742
    [Google Scholar]
  13. The AASM international classification of sleep disorders. Third edition, text revision (ICSD-3-TR) 2023 Available from: https://aasm.org/clinical-resources/international-classification-sleep-disorders/
    [Google Scholar]
  14. Sateia M.J. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014 146 5 1387 1394 10.1378/chest.14‑0970 25367475
    [Google Scholar]
  15. O’Brien D.C. Desai Y. Swanson R.T. Parekh U. Schubart J. Carr M.M. Sleep study indices and early post-tonsillectomy outcomes. Am. J. Otolaryngol. 2018 39 5 623 627 10.1016/j.amjoto.2018.07.003 30017372
    [Google Scholar]
  16. Reynolds T. Sankaran S. Chimbira W.T. Phan T. Nafiu O.O. Severe obesity and sleep-disordered breathing as risk factors for emergence agitation in pediatric ambulatory surgery. J. Perianesth. Nurs. 2018 33 3 304 311 10.1016/j.jopan.2016.09.007 29784260
    [Google Scholar]
  17. Dolan R. Huh J. Tiwari N. Sproat T. Camilleri-Brennan J. A prospective analysis of sleep deprivation and disturbance in surgical patients. Ann. Med. Surg. 2016 6 1 5 10.1016/j.amsu.2015.12.046 26909151
    [Google Scholar]
  18. Nowakowski S. Levy-Meeks M.E. Dawson D.B. Meers J.M. Stout-Aguilar J.S. Kilic G.S. Borahay M.A. Association of preoperative sleep pattern with posthysterectomy pain: A pilot study. J. Clin. Sleep Med. 2020 16 11 1901 1908 10.5664/jcsm.8730 32776870
    [Google Scholar]
  19. Roehrs T.A. Roth T. Increasing presurgery sleep reduces postsurgery pain and analgesic use following joint replacement: A feasibility study. Sleep Med. 2017 33 109 113 10.1016/j.sleep.2017.01.012 28449888
    [Google Scholar]
  20. Li Q. Zhu Z. Lu J. Chao Y.C. Zhou X. Huang Y. Chen X. Su D. Yu W. Gu X. Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain. Acta Neuropathol. Commun. 2019 7 1 217 10.1186/s40478‑019‑0868‑2 31870460
    [Google Scholar]
  21. Konttinen H. Sjöholm K. Jacobson P. Svensson P.A. Carlsson L.M.S. Peltonen M. Prediction of suicide and nonfatal self-harm after bariatric surgery: A risk score based on sociodemographic factors, lifestyle behavior, and mental health. Ann. Surg. 2021 274 2 339 345 10.1097/SLA.0000000000003742 31850987
    [Google Scholar]
  22. Fadayomi A.B. Ibala R. Bilotta F. Westover M.B. Akeju O. A systematic review and meta-analysis examining the impact of sleep disturbance on postoperative delirium. Crit. Care Med. 2018 46 12 e1204 e1212 10.1097/CCM.0000000000003400 30222634
    [Google Scholar]
  23. Wang H. Zhang L. Luo Q. Li Y. Yan F. Effect of sleep disorder on delirium in post-cardiac surgery patients. Can. J. Neurol. Sci. 2020 47 5 627 633 10.1017/cjn.2020.62 32234103
    [Google Scholar]
  24. Lam E.W.K. Chung F. Wong J. Sleep-disordered breathing, postoperative delirium, and cognitive impairment. Anesth. Analg. 2017 124 5 1626 1635 10.1213/ANE.0000000000001914 28431424
    [Google Scholar]
  25. Ni P. Dong H. Zhou Q. Wang Y. Sun M. Qian Y. Sun J. Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediators Inflamm. 2019 2019 1 12 10.1155/2019/8301725 31011286
    [Google Scholar]
  26. Tung A. Bergmann B.M. Herrera S. Cao D. Mendelson W.B. Recovery from sleep deprivation occurs during propofol anesthesia. Anesthesiology 2004 100 6 1419 1426 10.1097/00000542‑200406000‑00014 15166561
    [Google Scholar]
  27. Zhang J.F. Williams J.P. Zhao Q.N. Liu H. Shi W.R. Wang Y. Fang Q.W. An J.X. Multimodal sleep, an innovation for treating chronic insomnia: Case report and literature review. J. Clin. Sleep Med. 2021 17 8 1737 1742 10.5664/jcsm.9310 34165072
    [Google Scholar]
  28. Su X. Wang D.X. Improve postoperative sleep. Curr. Opin. Anaesthesiol. 2018 31 1 83 88 10.1097/ACO.0000000000000538 29120927
    [Google Scholar]
  29. Mashour G.A. Hudetz A.G. Bottom-up and top-down mechanisms of general anesthetics modulate different dimensions of consciousness. Front. Neural Circuits 2017 11 44 10.3389/fncir.2017.00044 28676745
    [Google Scholar]
  30. Akeju O. Hobbs L.E. Gao L. Burns S.M. Pavone K.J. Plummer G.S. Walsh E.C. Houle T.T. Kim S.E. Bianchi M.T. Ellenbogen J.M. Brown E.N. Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study. Clin. Neurophysiol. 2018 129 1 69 78 10.1016/j.clinph.2017.10.005 29154132
    [Google Scholar]
  31. Chamadia S. Hobbs L. Marota S. Ibala R. Hahm E. Gitlin J. Mekonnen J. Ethridge B. Colon K.M. Sheppard K.S. Manoach D.S. DiBiasio A. Nguyen S. Pedemonte J.C. Akeju O. Oral dexmedetomidine promotes non-rapid eye movement stage 2 sleep in humans. Anesthesiology 2020 133 6 1234 1243 10.1097/ALN.0000000000003567 33001139
    [Google Scholar]
  32. Zhang H. Wheat H. Wang P. Jiang S. Baghdoyan H.A. Neubig R.R. Shi X.Y. Lydic R. RGS proteins and Gαi2 modulate sleep, wakefulness, and disruption of sleep/wake states after isoflurane and sevoflurane anesthesia. Sleep 2016 39 2 393 404 10.5665/sleep.5450
    [Google Scholar]
  33. Jia X. Zhang L. Zhang W. Zhou Y. Song Y. Liu C. Yang N. Sun J. Sun Z. Li Z. Shi C. Han Y. Yuan Y. Shi J. Liu Y. Guo X. Melatonin ameliorates the sleep disorder induced by surgery under sevoflurane anaesthesia in aged mice. Basic Clin. Pharmacol. Toxicol. 2021 128 2 256 267 10.1111/bcpt.13498 32975883
    [Google Scholar]
  34. Dunlap J.C. Molecular bases for circadian clocks. Cell 1999 96 2 271 290 10.1016/S0092‑8674(00)80566‑8 9988221
    [Google Scholar]
  35. Yoshida Y. Nakazato K. Takemori K. Kobayashi K. Sakamoto A. The influences of propofol and dexmedetomidine on circadian gene expression in rat brain. Brain Res. Bull. 2009 79 6 441 444 10.1016/j.brainresbull.2009.04.015 19422889
    [Google Scholar]
  36. Matsuo I. Iijima N. Takumi K. Higo S. Aikawa S. Anzai M. Ishii H. Sakamoto A. Ozawa H. Characterization of sevoflurane effects on Per2 expression using ex vivo bioluminescence imaging of the suprachiasmatic nucleus in transgenic rats. Neurosci. Res. 2016 107 30 37 10.1016/j.neures.2015.11.010 26696094
    [Google Scholar]
  37. Gandhi A.V. Mosser E.A. Oikonomou G. Prober D.A. Melatonin is required for the circadian regulation of sleep. Neuron 2015 85 6 1193 1199 10.1016/j.neuron.2015.02.016 25754820
    [Google Scholar]
  38. Dispersyn G. Pain L. Touitou Y. Propofol anesthesia significantly alters plasma blood levels of melatonin in rats. Anesthesiology 2010 112 2 333 337 10.1097/ALN.0b013e3181c920e2 20098135
    [Google Scholar]
  39. Sakurai T. The neural circuit of orexin (hypocretin): Maintaining sleep and wakefulness. Nat. Rev. Neurosci. 2007 8 3 171 181 10.1038/nrn2092 17299454
    [Google Scholar]
  40. Zecharia A.Y. Nelson L.E. Gent T.C. Schumacher M. Jurd R. Rudolph U. Brickley S.G. Maze M. Franks N.P. The involvement of hypothalamic sleep pathways in general anesthesia: Testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J. Neurosci. 2009 29 7 2177 2187 10.1523/JNEUROSCI.4997‑08.2009 19228970
    [Google Scholar]
  41. De Zen L. Del Rizzo I. Robazza M. Barbieri F. Campagna M. Vaccher S. Barbi E. Dall’Amico R. Home use of intranasal dexmedetomidine in a child with an intractable sleep disorder. J. Pediatr. Pharmacol. Ther. 2020 25 4 332 335 10.5863/1551‑6776‑25.4.332 32461748
    [Google Scholar]
  42. De Zen L. Divisic A. Molinaro G. Solidoro S. Barbi E. Dexmedetomidine at home for intractable dystonia and insomnia in children with special needs: A case series. J. Pain Symptom Manage. 2023 66 6 e653 e657 10.1016/j.jpainsymman.2023.07.018 37544550
    [Google Scholar]
  43. An J.X. Williams J.P. Fang Q.W. Wang Y. Liu H. Shi L. Zhang W.H. Feasibility of patient-controlled sleep with dexmedetomidine in treating chronic intractable insomnia. Nat. Sci. Sleep 2020 12 1033 1042 10.2147/NSS.S262991 33239930
    [Google Scholar]
  44. Wu J. Liu X. Ye C. Hu J. Ma D. Wang E. Intranasal dexmedetomidine improves postoperative sleep quality in older patients with chronic insomnia: A randomized double-blind controlled trial. Front. Pharmacol. 2023 14 1223746 10.3389/fphar.2023.1223746 38034987
    [Google Scholar]
  45. Zeng W. Chen L. Liu X. Deng X. Huang K. Zhong M. Zhou S. Zhan L. Jiang Y. Liang W. Intranasal dexmedetomidine for the treatment of pre-operative anxiety and insomnia: A prospective, randomized, controlled, and clinical trial. Front. Psychiatry 2022 13 816893 10.3389/fpsyt.2022.816893 35711602
    [Google Scholar]
  46. Yang W.Y. Huang K. Lin Z.J. Zeng W. Liu X. Liu H.B. Zhong M.L. Wei J. Liang W.D. Wang L.F. Chen L. Intranasal dexmedetomidine for the management of preoperative anxiety-related insomnia: A randomized, three-blinded, clinical trial compared with lorazepam and placebo. Drug Des. Devel. Ther. 2024 18 6061 6073 10.2147/DDDT.S487463 39717197
    [Google Scholar]
  47. Xu Z. Jiang X. Li W. Gao D. Li X. Liu J. Propofol-induced sleep: Efficacy and safety in patients with refractory chronic primary insomnia. Cell Biochem. Biophys. 2011 60 3 161 166 10.1007/s12013‑010‑9135‑7 21107748
    [Google Scholar]
  48. Wu Y. Ma R. Zhou Q. Lau H.Y. Wang Y. Li J. Wen W. Dexmedetomidine-induced polysomnography as a diagnostic method in obstructive sleep apnea: A reliable alternative method? Sleep Med. 2021 79 145 151 10.1016/j.sleep.2021.01.005 33524840
    [Google Scholar]
  49. Rabelo F.A.W. Küpper D.S. Sander H.H. Fernandes R.M.F. Valera F.C.P. Polysomnographic evaluation of propofol‐induced sleep in patients with respiratory sleep disorders and controls. Laryngoscope 2013 123 9 2300 2305 10.1002/lary.23664 23801248
    [Google Scholar]
  50. Heiser C. Fthenakis P. Hapfelmeier A. Berger S. Hofauer B. Hohenhorst W. Kochs E.F. Wagner K.J. Edenharter G.M. Drug-induced sleep endoscopy with target-controlled infusion using propofol and monitored depth of sedation to determine treatment strategies in obstructive sleep apnea. Sleep Breath. 2017 21 3 737 744 10.1007/s11325‑017‑1491‑8 28364198
    [Google Scholar]
  51. De Vito A. Agnoletti V. Berrettini S. Piraccini E. Criscuolo A. Corso R. Campanini A. Gambale G. Vicini C. Drug-induced sleep endoscopy: Conventional versus target controlled infusion techniques—a randomized controlled study. Eur. Arch. Otorhinolaryngol. 2011 268 3 457 462 10.1007/s00405‑010‑1376‑y 20811901
    [Google Scholar]
  52. De Vito A. Agnoletti V. Zani G. Corso R.M. D’Agostino G. Firinu E. Marchi C. Hsu Y.S. Maitan S. Vicini C. The importance of drug-induced sedation endoscopy (D.I.S.E.) techniques in surgical decision making: Conventional versus target controlled infusion techniques—a prospective randomized controlled study and a retrospective surgical outcomes analysis. Eur. Arch. Otorhinolaryngol. 2017 274 5 2307 2317 10.1007/s00405‑016‑4447‑x 28213776
    [Google Scholar]
  53. Yoon B.W. Hong J.M. Hong S.L. Koo S.K. Roh H.J. Cho K.S. A comparison of dexmedetomidine versus propofol during drug-induced sleep endoscopy in sleep apnea patients. Laryngoscope 2016 126 3 763 767 10.1002/lary.25801 26649458
    [Google Scholar]
  54. Viana A. Zhao C. Rosa T. Couto A. Neves D.D. Araújo-Melo M.H. Capasso R. The effect of sedating agents on drug‐induced sleep endoscopy findings. Laryngoscope 2019 129 2 506 513 10.1002/lary.27298 30194726
    [Google Scholar]
  55. Wu X.H. Cui F. Zhang C. Meng Z.T. Wang D.X. Ma J. Wang G.F. Zhu S.N. Ma D. Low-dose dexmedetomidine improves sleep quality pattern in elderly patients after noncardiac surgery in the intensive care unit. Anesthesiology 2016 125 5 979 991 10.1097/ALN.0000000000001325 27571256
    [Google Scholar]
  56. Lu W. Fu Q. Luo X. Fu S. Hu K. Effects of dexmedetomidine on sleep quality of patients after surgery without mechanical ventilation in ICU. Medicine 2017 96 23 e7081 10.1097/MD.0000000000007081 28591048
    [Google Scholar]
  57. Alexopoulou C. Kondili E. Diamantaki E. Psarologakis C. Kokkini S. Bolaki M. Georgopoulos D. Effects of dexmedetomidine on sleep quality in critically ill patients: A pilot study. Anesthesiology 2014 121 4 801 807 10.1097/ALN.0000000000000361 24988068
    [Google Scholar]
  58. Sun Y.M. Zhu S.N. Zhang C. Li S.L. Wang D.X. Effect of low-dose dexmedetomidine on sleep quality in postoperative patients with mechanical ventilation in the intensive care unit: A pilot randomized trial. Front. Med. 2022 9 931084 10.3389/fmed.2022.931084 36117973
    [Google Scholar]
  59. Shi C. Jin J. Pan Q. Song S. Li K. Ma J. Li T. Li Z. Intraoperative use of dexmedetomidine promotes postoperative sleep and recovery following radical mastectomy under general anesthesia. Oncotarget 2017 8 45 79397 79403 10.18632/oncotarget.18157 29108318
    [Google Scholar]
  60. Li H.J. Li C.J. Wei X.N. Hu J. Mu D.L. Wang D.X. Dexmedetomidine in combination with morphine improves postoperative analgesia and sleep quality in elderly patients after open abdominal surgery: A pilot randomized control trial. PLoS One 2018 13 8 e0202008 10.1371/journal.pone.0202008 30106963
    [Google Scholar]
  61. Wu Y. Miao Y. Chen X. Wan X. A randomized placebo-controlled double-blind study of dexmedetomidine on postoperative sleep quality in patients with endoscopic sinus surgery. BMC Anesthesiol. 2022 22 1 172 10.1186/s12871‑022‑01711‑8 35650554
    [Google Scholar]
  62. Wang Y. Jin Z. Xu W. Chen K. Wei L. Yang D. Deng X. Tong S. Clinical observation of dexmedetomidine nasal spray in the treatment of sleep disorders on the first night after undergoing maxillofacial surgery: A single-center double-blind randomized controlled study. J. Pharm. Pharm. Sci. 2023 26 11699 10.3389/jpps.2023.11699 37854323
    [Google Scholar]
  63. Zhang Z.F. Su X. Zhao Y. Zhong C.L. Mo X.Q. Zhang R. Wang K. Zhu S.N. Shen Y.E. Zhang C. Wang D.X. Effect of mini-dose dexmedetomidine supplemented intravenous analgesia on sleep structure in older patients after major noncardiac surgery: A randomized trial. Sleep Med. 2023 102 9 18 10.1016/j.sleep.2022.12.006 36587547
    [Google Scholar]
  64. Ding F. Wang X. Zhang L. Li J. Liu F. Wang L. Effect of propofol‐based total intravenous anaesthesia on postoperative cognitive function and sleep quality in elderly patients. Int. J. Clin. Pract. 2021 75 7 e14266 10.1111/ijcp.14266 33893705
    [Google Scholar]
  65. Wu X. Deng J. Li X. Yang L. Zhao G. Yin Q. Shi Y. Tong Z. Effects of propofol on perioperative sleep quality in patients undergoing gastrointestinal endoscopy: A prospective cohort study. J. Perianesth. Nurs. 2023 38 5 787 791 10.1016/j.jopan.2023.02.001 37269278
    [Google Scholar]
  66. Niu Z. Gao X. Shi Z. Liu T. Wang M. Guo L. Qi D. Effect of total intravenous anesthesia or inhalation anesthesia on postoperative quality of recovery in patients undergoing total laparoscopic hysterectomy: A randomized controlled trial. J. Clin. Anesth. 2021 73 110374 10.1016/j.jclinane.2021.110374 34090183
    [Google Scholar]
  67. Li S. Song B. Li Y. Zhu J. Effects of intravenous anesthetics vs. inhaled anesthetics on early postoperative sleep quality and complications of patients after laparoscopic surgery under general anesthesia. Nat. Sci. Sleep 2021 13 375 382 10.2147/NSS.S300803 33758567
    [Google Scholar]
  68. Gu C. Zhai M. Lü A. Liu L. Hu H. Liu X. Li X. Cheng X. Ultrasound-guided stellate ganglion block improves sleep quality in elderly patients early after thoracoscopic surgery for lung cancer: A randomized controlled study. Nan Fang Yi Ke Da Xue Xue Bao 2022 42 12 1807 1814 10.12122/j.issn.1673‑4254.2022.12.08 36651248
    [Google Scholar]
  69. Yang X. Wu Q. Wang H. Zhang Y. Peng X. Chen L. Effects of ultrasound-guided stellate ganglion block on postoperative quality of recovery in patients undergoing breast cancer surgery: A randomized controlled clinical trial. J. Healthc. Eng. 2022 2022 1 7 10.1155/2022/7628183 36046011
    [Google Scholar]
  70. Liu Y. Zhang L. Sun Y. Zhao J. Shen Y. Wang C.H. Luo S.Z. Li Y.W. Efficacy and safety of stellate ganglion block with different volumes of ropivacaine to improve sleep quality in patients with insomnia: A comparative study. Eur. Rev. Med. Pharmacol. Sci. 2023 27 21 10233 10239 10.26355/eurrev_202311_34298 37975347
    [Google Scholar]
  71. Luo D. Su Y. Pang Y. Effects of ultrasound-guided stellate ganglion block on postoperative sore throat and postoperative sleep disturbance after lumbar spine surgery: A randomized controlled trial. BMC Anesthesiol. 2023 23 1 343 10.1186/s12871‑023‑02301‑y 37838663
    [Google Scholar]
  72. Hu F.Y. Hanna G.M. Han W. Mardini F. Thomas S.A. Wyner A.J. Kelz M.B. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology 2012 117 5 1006 1017 10.1097/ALN.0b013e3182700ab9 23042227
    [Google Scholar]
  73. Zhang Z. Ferretti V. Güntan, İ. Moro, A.; Steinberg, E.A.; Ye, Z.; Zecharia, A.Y.; Yu, X.; Vyssotski, A.L.; Brickley, S.G.; Yustos, R.; Pillidge, Z.E.; Harding, E.C.; Wisden, W.; Franks, N.P. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci. 2015 18 4 553 561 10.1038/nn.3957 25706476
    [Google Scholar]
  74. Guldenmund P. Vanhaudenhuyse A. Sanders R.D. Sleigh J. Bruno M.A. Demertzi A. Bahri M.A. Jaquet O. Sanfilippo J. Baquero K. Boly M. Brichant J.F. Laureys S. Bonhomme V. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 2017 119 4 674 684 10.1093/bja/aex257 29121293
    [Google Scholar]
  75. Solt K. Van Dort C.J. Chemali J.J. Taylor N.E. Kenny J.D. Brown E.N. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 2014 121 2 311 319 10.1097/ALN.0000000000000117 24398816
    [Google Scholar]
  76. Taylor N.E. Van Dort C.J. Kenny J.D. Pei J. Guidera J.A. Vlasov K.Y. Lee J.T. Boyden E.S. Brown E.N. Solt K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc. Natl. Acad. Sci. USA 2016 113 45 12826 12831 10.1073/pnas.1614340113 27791160
    [Google Scholar]
  77. Qiu G. Wu Y. Yang Z. Li L. Zhu X. Wang Y. Sun W. Dong H. Li Y. Hu J. Dexmedetomidine activation of dopamine neurons in the ventral tegmental area attenuates the depth of sedation in mice. Anesthesiology 2020 133 2 377 392 10.1097/ALN.0000000000003347 32412932
    [Google Scholar]
  78. Patel S.R. Obstructive sleep apnea. Ann. Intern. Med. 2019 171 11 ITC81 ITC96 10.7326/AITC201912030 31791057
    [Google Scholar]
  79. Hsu Y.W. Cortinez L.I. Robertson K.M. Keifer J.C. Sum-Ping S.T. Moretti E.W. Young C.C. Wright D.R. MacLeod D.B. Somma J. Dexmedetomidine pharmacodynamics: Part I: Crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 2004 101 5 1066 1076 10.1097/00000542‑200411000‑00005 15505441
    [Google Scholar]
  80. Hall J.E. Uhrich T.D. Barney J.A. Arain S.R. Ebert T.J. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth. Analg. 2000 90 3 699 705 10.1097/00000539‑200003000‑00035 10702460
    [Google Scholar]
  81. Xu J.K. Ye J.Y. Cao X. Zhang Y.H. Yuan X.M. Zhao C.M. Polysomnographic comparation between dexmedetomidine-induced sleep and natural sleep. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2019 54 6 405 409 10.3760/cma.j.issn.1673‑0860.2019.06.002 31262103
    [Google Scholar]
  82. Ehsan Z. Mahmoud M. Shott S.R. Amin R.S. Ishman S.L. The effects of anesthesia and opioids on the upper airway: A systematic review. Laryngoscope 2016 126 1 270 284 10.1002/lary.25399 26198715
    [Google Scholar]
  83. Shteamer J.W. Dedhia R.C. Sedative choice in drug‐induced sleep endoscopy: A neuropharmacology‐based review. Laryngoscope 2017 127 1 273 279 10.1002/lary.26132 27363604
    [Google Scholar]
  84. Murabito P. Serra A. Zappia M. Maiolino L. Cocuzza S. Castorina S. D’Amico E. Sciacca G. Di Mauro P. Comparison of genioglossus muscle activity and efficiency of dexmedetomidine or propofol during drug-induced sleep endoscopy in patients with obstructive sleep apnea/hypopnea syndrome. Eur. Rev. Med. Pharmacol. Sci. 2019 23 1 389 396 10.26355/eurrev_201901_16787 30657581
    [Google Scholar]
  85. Chang E.T. Certal V. Song S.A. Zaghi S. Carrasco-Llatas M. Torre C. Capasso R. Camacho M. Dexmedetomidine versus propofol during drug-induced sleep endoscopy and sedation: A systematic review. Sleep Breath. 2017 21 3 727 735 10.1007/s11325‑017‑1465‑x 28130737
    [Google Scholar]
  86. Liu H. Wei H. Qian S. Liu J. Xu W. Luo X. Fang J. Liu Q. Cai F. Effects of dexmedetomidine on postoperative sleep quality: A systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol. 2023 23 1 88 10.1186/s12871‑023‑02048‑6 36944937
    [Google Scholar]
  87. Halle I.H. Westgaard T.K. Wahba A. Oksholm T. Rustøen T. Gjeilo K.H. Trajectory of sleep disturbances in patients undergoing lung cancer surgery: A prospective study. Interact. Cardiovasc. Thorac. Surg. 2017 25 2 285 291 10.1093/icvts/ivx076 28486702
    [Google Scholar]
  88. Gögenur I. Bisgaard T. Burgdorf S. van Someren E. Rosenberg J. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery. Surg. Endosc. 2009 23 5 1026 1031 10.1007/s00464‑008‑0112‑9 18830755
    [Google Scholar]
  89. Oto J. Yamamoto K. Koike S. Onodera M. Imanaka H. Nishimura M. Sleep quality of mechanically ventilated patients sedated with dexmedetomidine. Intens. Care Med. 2012 38 12 1982 1989 10.1007/s00134‑012‑2685‑y 22961436
    [Google Scholar]
  90. Cai J. Chen Y. Hao X. Zhu X. Tang Y. Wang S. Zhu T. Effect of intraoperative dexmedetomidine dose on postoperative first night sleep quality in elderly surgery patients: A retrospective study with propensity score-matched analysis. Front. Med. 2020 7 528 10.3389/fmed.2020.00528 33117823
    [Google Scholar]
  91. Oxlund J. Knudsen T. Sörberg M. Strøm T. Toft P. Jennum P.J. Sleep quality and quantity determined by polysomnography in mechanically ventilated critically ill patients randomized to dexmedetomidine or placebo. Acta Anaesthesiol. Scand. 2023 67 1 66 75 10.1111/aas.14154 36194395
    [Google Scholar]
  92. Moher D. Liberati A. Tetzlaff J. Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009 6 7 e1000097 10.1371/journal.pmed.1000097 19621072
    [Google Scholar]
  93. Krenk L. Jennum P. Kehlet H. Sleep disturbances after fast-track hip and knee arthroplasty. Br. J. Anaesth. 2012 109 5 769 775 10.1093/bja/aes252 22831887
    [Google Scholar]
  94. Rosenberg-Adamsen S. Kehlet H. Dodds C. Rosenberg J. Postoperative sleep disturbances: Mechanisms and clinical implications. Br. J. Anaesth. 1996 76 4 552 559 10.1093/bja/76.4.552 8652329
    [Google Scholar]
  95. Chouchou F. Khoury S. Chauny J.M. Denis R. Lavigne G.J. Postoperative sleep disruptions: A potential catalyst of acute pain? Sleep Med. Rev. 2014 18 3 273 282 10.1016/j.smrv.2013.07.002 24074687
    [Google Scholar]
  96. Chen Z. Tang R. Zhang R. Jiang Y. Liu Y. Effects of dexmedetomidine administered for postoperative analgesia on sleep quality in patients undergoing abdominal hysterectomy. J. Clin. Anesth. 2017 36 118 122 10.1016/j.jclinane.2016.10.022 28183547
    [Google Scholar]
  97. Coull J.T. Jones M.E.P. Egan T.D. Frith C.D. Maze M. Attentional effects of noradrenaline vary with arousal level: Selective activation of thalamic pulvinar in humans. Neuroimage 2004 22 1 315 322 10.1016/j.neuroimage.2003.12.022 15110021
    [Google Scholar]
  98. Miyazaki S. Uchida S. Mukai J. Nishihara K. Clonidine effects on all‐night human sleep: Opposite action of low‐ and medium‐dose clonidine on human NREM–REM sleep proportion. Psychiatry Clin. Neurosci. 2004 58 2 138 144 10.1111/j.1440‑1819.2003.01207.x 15009817
    [Google Scholar]
  99. Duan G. Wang K. Peng T. Wu Z. Li H. The effects of intraoperative dexmedetomidine use and its different dose on postoperative sleep disturbance in patients who have undergone non-cardiac major surgery: A real-world cohort study. Nat. Sci. Sleep 2020 12 209 219 10.2147/NSS.S239706 32210652
    [Google Scholar]
  100. Jiang Z. Zhou G. Song Q. Bao C. Wang H. Chen Z. Effect of intravenous oxycodone in combination with different doses of dexmedetomdine on sleep quality and visceral pain in patients after abdominal surgery. Clin. J. Pain 2018 34 12 1126 1132 10.1097/AJP.0000000000000645 30134283
    [Google Scholar]
  101. Sterniczuk R. Rusak B. Rockwood K. Sleep disturbance in older ICU patients. Clin. Interv. Aging 2014 9 969 977 10.2147/CIA.S59927 25018625
    [Google Scholar]
  102. Kamath J. Prpich G. Jillani S. Sleep disturbances in patients with medical conditions. Psychiatr. Clin. North Am. 2015 38 4 825 841 10.1016/j.psc.2015.07.011 26600111
    [Google Scholar]
  103. Song B. Li Y. Teng X. Li X. Yang Y. Zhu J. The effect of intraoperative use of dexmedetomidine during the daytime operation vs the nighttime operation on postoperative sleep quality and pain under general anesthesia. Nat. Sci. Sleep 2019 11 207 215 10.2147/NSS.S225041 31686933
    [Google Scholar]
  104. Tan W. Miao E. Jin F. Ma H. Lu H. Changes in first postoperative night bispectral index after daytime sedation induced by dexmedetomidine or midazolam under regional anesthesia. Reg. Anesth. Pain Med. 2016 41 3 380 386 10.1097/AAP.0000000000000370 26928796
    [Google Scholar]
  105. Ohshita N. Yamagata K. Himejima A. Kaneda K. Yasutome T. Matsuda Y. Tsutsumi Y.M. Momota Y. Anesthetic management of a patient with restless legs syndrome: A case report. Anesth. Prog. 2020 67 4 226 229 10.2344/anpr‑67‑02‑10 33393604
    [Google Scholar]
  106. Uskur T. Barlas M.A. Akkan A.G. Shahzadi A. Uzbay T. Dexmedetomidine induces conditioned place preference in rats: Involvement of opioid receptors. Behav. Brain Res. 2016 296 163 168 10.1016/j.bbr.2015.09.017 26376284
    [Google Scholar]
  107. Uskur T. Şenöz, A.Ö.; Çevreli, B.; Barlas, A.; Uzbay, T. Propofol but not dexmedetomidine produce locomotor sensitization via nitric oxide in rats. Psychopharmacology 2021 238 2 569 577 10.1007/s00213‑020‑05707‑5 33169201
    [Google Scholar]
  108. Whalen L.D. Di Gennaro J.L. Irby G.A. Yanay O. Zimmerman J.J. Long-term dexmedetomidine use and safety profile among critically ill children and neonates. Pediatr. Crit. Care Med. 2014 15 8 706 714 10.1097/PCC.0000000000000200 25068249
    [Google Scholar]
  109. Haenecour A.S. Seto W. Urbain C.M. Stephens D. Laussen P.C. Balit C.R. Prolonged dexmedetomidine infusion and drug withdrawal in critically Ill children. J. Pediatr. Pharmacol. Ther. 2017 22 6 453 460 10.5863/1551‑6776‑22.6.453 29290746
    [Google Scholar]
  110. Shutes B.L. Gee S.W. Sargel C.L. Fink K.A. Tobias J.D. Dexmedetomidine as single continuous sedative during noninvasive ventilation: Typical usage, hemodynamic effects, and withdrawal. Pediatr. Crit. Care Med. 2018 19 4 287 297 10.1097/PCC.0000000000001451 29341985
    [Google Scholar]
  111. Pathan S. Kaplan J.B. Adamczyk K. Chiu S.H. Shah C.V. Evaluation of dexmedetomidine withdrawal in critically ill adults. J. Crit. Care 2021 62 19 24 10.1016/j.jcrc.2020.10.024 33227592
    [Google Scholar]
  112. Salah J. Grgurich P. Nault K. Lei Y. Identification of risk factors for hypertension and tachycardia upon dexmedetomidine discontinuation. J. Crit. Care 2020 59 81 85 10.1016/j.jcrc.2020.06.006 32580122
    [Google Scholar]
  113. Liu H. Yang C. Wang X. Yu B. Han Y. Wang X. Wang Z. Zhang M. Wang H. Propofol improves sleep deprivation‐induced sleep structural and cognitive deficits via upregulating the BMAL1 expression and suppressing microglial M1 polarization. CNS Neurosci. Ther. 2024 30 7 e14798 10.1111/cns.14798 39015099
    [Google Scholar]
  114. Boveroux P. Vanhaudenhuyse A. Bruno M.A. Noirhomme Q. Lauwick S. Luxen A. Degueldre C. Plenevaux A. Schnakers C. Phillips C. Brichant J.F. Bonhomme V. Maquet P. Greicius M.D. Laureys S. Boly M. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 2010 113 5 1038 1053 10.1097/ALN.0b013e3181f697f5 20885292
    [Google Scholar]
  115. Murphy M. Bruno M.A. Riedner B.A. Boveroux P. Noirhomme Q. Landsness E.C. Brichant J.F. Phillips C. Massimini M. Laureys S. Tononi G. Boly M. Propofol anesthesia and sleep: A high-density EEG study. Sleep 2011 34 3 283 291 10.1093/sleep/34.3.283 21358845
    [Google Scholar]
  116. Chamberlin N.L. Eikermann M. This is no humbug: Anesthetic agent-induced unconsciousness and sleep are visibly different. Anesthesiology 2010 113 5 1007 1009 10.1097/ALN.0b013e3181f69825 20881591
    [Google Scholar]
  117. Zhu J. Chen C. Wu J. He M. Li S. Fang Y. Zhou Y. Xu H. Sadigh-Eteghad S. Manyande A. Zheng F. Chen T. Xu F. Ma D. Wang J. Zhang Z. Effects of propofol and sevoflurane on social and anxiety-related behaviours in sleep-deprived rats. Br. J. Anaesth. 2023 131 3 531 541 10.1016/j.bja.2023.05.025 37543435
    [Google Scholar]
  118. Xie F. Li X. Bao M. Shi R. Yue Y. Guan Y. Wang Y. Anesthetic propofol normalized the increased release of glutamate and γ-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol. Res. 2015 37 12 1102 1107 10.1080/01616412.2015.1114231 26923580
    [Google Scholar]
  119. van Praag H. Fleshner M. Schwartz M.W. Mattson M.P. Exercise, energy intake, glucose homeostasis, and the brain. J. Neurosci. 2014 34 46 15139 15149 10.1523/JNEUROSCI.2814‑14.2014 25392482
    [Google Scholar]
  120. Hodkinson D.J. O’Daly O. Zunszain P.A. Pariante C.M. Lazurenko V. Zelaya F.O. Howard M.A. Williams S.C.R. Circadian and homeostatic modulation of functional connectivity and regional cerebral blood flow in humans under normal entrained conditions. J. Cereb. Blood Flow Metab. 2014 34 9 1493 1499 10.1038/jcbfm.2014.109 24938404
    [Google Scholar]
  121. Krause A.J. Simon E.B. Mander B.A. Greer S.M. Saletin J.M. Goldstein-Piekarski A.N. Walker M.P. The sleep-deprived human brain. Nat. Rev. Neurosci. 2017 18 7 404 418 10.1038/nrn.2017.55 28515433
    [Google Scholar]
  122. Dai W. Xiao Y. Tu Y. Xiao F. Lu Y. Qin Y. Xie Y. Propofol protects hippocampal neurons in sleep-deprived rats by inhibiting mitophagy and autophagy. Ann. Transl. Med. 2021 9 18 1427 10.21037/atm‑21‑3872 34733979
    [Google Scholar]
  123. Zhang H. Yin J. Jia L. Qin X. Du T. Ma K. Yin J. Li Y. Effects of dopamine transporter in the ventral tegmental area on sleep recovery after propofol anesthesia in sleep-deprived rats. Sleep Med. 2022 100 269 279 10.1016/j.sleep.2022.08.020 36148759
    [Google Scholar]
  124. Daskalopoulos R. Korcok J. Farhangkhgoee P. Karmazyn M. Gelb A.W. Wilson J.X. Propofol protection of sodium-hydrogen exchange activity sustains glutamate uptake during oxidative stress. Anesth. Analg. 2001 93 5 1199 1204 10.1097/00000539‑200111000‑00030 11682397
    [Google Scholar]
  125. Nakahata K. Kinoshita H. Azma T. Matsuda N. Hama-Tomioka K. Haba M. Hatano Y. Propofol restores brain microvascular function impaired by high glucose via the decrease in oxidative stress. Anesthesiology 2008 108 2 269 275 10.1097/01.anes.0000299830.13203.60 18212572
    [Google Scholar]
  126. Kotecha B.T. Hannan S.A. Khalil H.M.B. Georgalas C. Bailey P. Sleep nasendoscopy: A 10-year retrospective audit study. Eur. Arch. Otorhinolaryngol. 2007 264 11 1361 1367 10.1007/s00405‑007‑0366‑1 17579877
    [Google Scholar]
  127. Hillman D.R. Walsh J.H. Maddison K.J. Platt P.R. Kirkness J.P. Noffsinger W.J. Eastwood P.R. Evolution of changes in upper airway collapsibility during slow induction of anesthesia with propofol. Anesthesiology 2009 111 1 63 71 10.1097/ALN.0b013e3181a7ec68 19512872
    [Google Scholar]
  128. Yoon B.W. Hong J.M. Hong S.L. Koo S.K. Roh H.J. Cho K.S. A comparison of dexmedetomidine versus propofol during drug‐induced sleep endoscopy in sleep apnea patients. Laryngoscope 2016 126 3 763 7 10.1002/lary.25801 26649458
    [Google Scholar]
  129. Kezirian E.J. White D.P. Malhotra A. Ma W. McCulloch C.E. Goldberg A.N. Interrater reliability of drug-induced sleep endoscopy. Arch. Otolaryngol. Head Neck Surg. 2010 136 4 393 397 10.1001/archoto.2010.26 20403857
    [Google Scholar]
  130. Georgopoulos D. Kondili E. Alexopoulou C. Younes M. Effects of sedatives on sleep architecture measured with odds ratio product in critically Ill patients. Crit. Care Explor. 2021 3 8 e0503 10.1097/CCE.0000000000000503 34396142
    [Google Scholar]
  131. Engelmann C. Wallenborn J. Olthoff D. Kaisers U.X. Rüffert H. Propofol versus flunitrazepam for inducing and maintaining sleep in postoperative ICU patients. Indian J. Crit. Care Med. 2014 18 4 212 219 10.4103/0972‑5229.130572 24872650
    [Google Scholar]
  132. Yue X.F. Wang A.Z. Hou Y.P. Fan K. Effects of propofol on sleep architecture and sleep-wake systems in rats. Behav. Brain Res. 2021 411 113380 10.1016/j.bbr.2021.113380 34033853
    [Google Scholar]
  133. Rampes S. Ma K. Divecha Y.A. Alam A. Ma D. Postoperative sleep disorders and their potential impacts on surgical outcomes. J. Biomed. Res. 2020 34 4 271 280 10.7555/JBR.33.20190054 32519977
    [Google Scholar]
  134. Zhang Y. Shan G.J. Zhang Y.X. Cao S.J. Zhu S.N. Li H.J. Ma D. Wang D.X. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br. J. Anaesth. 2018 121 3 595 604 10.1016/j.bja.2018.05.059 30115258
    [Google Scholar]
  135. Man Y. Xiao H. Zhu T. Ji F. Study on the effectiveness and safety of ciprofol in anesthesia in gynecological day surgery: A randomized double-blind controlled study. BMC Anesthesiol. 2023 23 1 92 10.1186/s12871‑023‑02051‑x 36964501
    [Google Scholar]
  136. Luo Z. Tu H. Zhang X. Wang X. Ouyang W. Wei X. Zou X. Zhu Z. Li Y. Shangguan W. Wu H. Wang Y. Guo Q. Efficacy and safety of HSK3486 for anesthesia/sedation in patients undergoing fiberoptic bronchoscopy: A multicenter, double-blind, propofol-controlled, randomized, phase 3 study. CNS Drugs 2022 36 3 301 313 10.1007/s40263‑021‑00890‑1 35157236
    [Google Scholar]
  137. Hug C.C. McLeskey C.H. Nahrwold M.L. Roizen M.F. Stanley T.H. Thisted R.A. Walawander C.A. White P.F. Apfelbaum J.L. Grasela T.H. Hemodynamic effects of propofol: Data from over 25,000 patients. Anesth. Analg. 1993 77 4 S21 S29 8214693
    [Google Scholar]
  138. Ebert T.J. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology 2005 103 1 20 24 10.1097/00000542‑200507000‑00007 15983452
    [Google Scholar]
  139. Jonsson M.M. Lindahl S.G.E. Eriksson L.I. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology 2005 102 1 110 116 10.1097/00000542‑200501000‑00019 15618794
    [Google Scholar]
  140. Nieuwenhuijs D. Sarton E. Teppema L.J. Kruyt E. Olievier I. van Kleef J. Dahan A. Respiratory sites of action of propofol: Absence of depression of peripheral chemoreflex loop by low-dose propofol. Anesthesiology 2001 95 4 889 895 10.1097/00000542‑200110000‑00017 11605929
    [Google Scholar]
  141. Nieuwenhuijs D. Sarton E. Teppema L. Dahan A. Propofol for monitored anesthesia care: Implications on hypoxic control of cardiorespiratory responses. Anesthesiology 2000 92 1 46 54 10.1097/00000542‑200001000‑00013 10638898
    [Google Scholar]
  142. Yamakage M. Kamada Y. Toriyabe M. Honma Y. Namiki A. Changes in respiratory pattern and arterial blood gases during sedation with propofol or midazolam in spinal anesthesia. J. Clin. Anesth. 1999 11 5 375 379 10.1016/S0952‑8180(99)00064‑1 10526807
    [Google Scholar]
  143. Uzbay T. Shahzadi A. A comprehensive analysis of propofol abuse, addiction and neuropharmacological aspects: An updated review. Korean J. Anesthesiol. 2025 78 2 91 104 10.4097/kja.24707 39676519
    [Google Scholar]
  144. Kim S.Y. Cho N.W. Social network analysis for medical narcotics in South Korea: Focusing on patients and healthcare organizations. BMC Health Serv. Res. 2024 24 1 591 10.1186/s12913‑024‑11005‑z 38715107
    [Google Scholar]
  145. Cho H.Y. Hwang Y. Shin S. Yoon S. Lee H.J. Propofol abuse among healthcare workers: An analysis of criminal cases using the database of the Supreme Court of South Korea’s judgments. Korean J. Anesthesiol. 2022 75 5 391 396 10.4097/kja.21507 35287258
    [Google Scholar]
  146. Liu Q. Zhong Q. Tang G. Ye L. Ultrasound-guided stellate ganglion block for central post-stroke pain: A case report and review. J. Pain Res. 2020 13 461 464 10.2147/JPR.S236812 32161490
    [Google Scholar]
  147. Wu C.N. Wu X.H. Yu D.N. Ma W.H. Shen C.H. Cao Y. A single-dose of stellate ganglion block for the prevention of postoperative dysrhythmias in patients undergoing thoracoscopic surgery for cancer. Eur. J. Anaesthesiol. 2020 37 4 323 331 10.1097/EJA.0000000000001137 31860606
    [Google Scholar]
  148. Zhang Y. Qian Y. Bao H. Shi H. Zhou J. Effect of stellate ganglion block on bilateral regional cerebral oxygen saturation and postoperative cognitive function. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih 2016 33 1 132 135 27382753
    [Google Scholar]
  149. Uchida K. Tateda T. Hino H. Novel mechanism of action hypothesized for stellate ganglion block related to melatonin. Med. Hypotheses 2002 59 4 446 449 10.1016/S0306‑9877(02)00158‑5 12208186
    [Google Scholar]
  150. Bryant P.A. Trinder J. Curtis N. Sick and tired: Does sleep have a vital role in the immune system? Nat. Rev. Immunol. 2004 4 6 457 467 10.1038/nri1369 15173834
    [Google Scholar]
/content/journals/cn/10.2174/011570159X368375250611103614
Loading
/content/journals/cn/10.2174/011570159X368375250611103614
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: dexmedetomidine ; insomnia ; propofol ; sleep ; sleep apnea ; Anesthesia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test