Skip to content
2000
Volume 23, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Advances in mass spectrometry-based proteomic analysis have generated extensive protein data from cells involved in neurodegenerative diseases. The field of neuroproteomics is expanding to include the study of extracellular vesicles (EVs) to identify potential biomarkers for disease prevention and endogenous factors involved in neuroprotection.

Methods

In this study, rat cortical astrocytes in normoxia were cultured under normoxic conditions and subsequently exposed to hypoxia. Astrocyte-derived EVs released into the supernatant were collected separately from both conditions. Label-free mass spectrometry-based proteomics was then performed to assess the effects of hypoxia on the EV protein cargo. A meta-analysis comparing the results with previously published EV proteomic datasets was also conducted.

Results

This study revealed a differential expression of 83 upregulated proteins under hypoxic conditions and 61 downregulated proteins under normoxic conditions, highlighting the protective protein signatures elicited by astrocytes. The dataset has been deposited in the ProteomeXchange Consortium with the identified PXD050160.

Conclusion

The present study makes a novel contribution by employing proteomic techniques to characterize the protein cargo of EVs isolated from primary rat astrocytes. This approach enables a more refined analysis of astrocyte-specific intercellular signaling under hypoxic conditions and provides valuable insights into the roles of astrocytes in maintaining brain homeostasis and contributing to pathological processes.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X359837250611052037
2025-06-19
2025-12-08
Loading full text...

Full text loading...

References

  1. PantazopoulouM. LamprokostopoulouA. KarampelaD.S. AlexakiA. DelisA. CoensA. SamiotakiM. KriebardisA.G. MelkiR. PagakisS.N. StefanisL. VekrellisK. Differential intracellular trafficking of extracellular vesicles in microglia and astrocytes.Cell. Mol. Life Sci.202380719310.1007/s00018‑023‑04841‑537391572
    [Google Scholar]
  2. KhanN.A. AsimM. El-MenyarA. BiswasK.H. RizoliS. Al-ThaniH. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications.Front. Aging Neurosci.20221493343410.3389/fnagi.2022.933434
    [Google Scholar]
  3. Lizarraga-ValderramaL.R. SheridanG.K. Extracellular vesicles and intercellular communication in the central nervous system.FEBS Lett.2021595101391141010.1002/1873‑3468.1407433728650
    [Google Scholar]
  4. VinaiphatA. SzeS.K. Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease.Exp. Neurol.202235511414910.1016/j.expneurol.2022.11414935732219
    [Google Scholar]
  5. AllenS.P. SeehraR.S. HeathP.R. HallB.P.C. BatesJ. GarwoodC.J. MatuszykM.M. WhartonS.B. SimpsonJ.E. Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response.Int. J. Mol. Sci.20202121802810.3390/ijms2121802833126586
    [Google Scholar]
  6. VangeisonG. RempeD.A. The Janus-faced effects of hypoxia on astrocyte function.Neuroscientist200915657958810.1177/107385840933240519359669
    [Google Scholar]
  7. BaumannJ. TsaoC.C. HuangS.F. GassmannM. OgunsholaO.O. Astrocyte-specific hypoxia-inducible factor 1 (HIF-1) does not disrupt the endothelial barrier during hypoxia in vitro.Fluids Barriers CNS20211811310.1186/s12987‑021‑00247‑233736658
    [Google Scholar]
  8. GuoM. MaX. FengY. HanS. DongQ. CuiM. ZhaoY. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes.FASEB J.20193310111231113610.1096/fj.201900402RR31298941
    [Google Scholar]
  9. SchwanhäusserB. BusseD. LiN. DittmarG. SchuchhardtJ. WolfJ. ChenW. SelbachM. Global quantification of mammalian gene expression control.Nature2011473734733734210.1038/nature1009821593866
    [Google Scholar]
  10. KowalJ. ArrasG. ColomboM. JouveM. MorathJ.P. Primdal-BengtsonB. DingliF. LoewD. TkachM. ThéryC. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes.Proc. Natl. Acad. Sci. USA20161138E968E97710.1073/pnas.152123011326858453
    [Google Scholar]
  11. Heras-RomeroY. Morales-GuadarramaA. Santana-MartínezR. PonceI. Rincón-HerediaR. Poot-HernándezA.C. Martínez-MorenoA. UrrietaE. Bernal-VicenteB.N. Campero-RomeroA.N. Moreno-CastillaP. GreigN.H. EscobarM.L. ConchaL. Tovar-y-RomoL.B. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles.Mol. Ther.202230279881510.1016/j.ymthe.2021.09.02334563674
    [Google Scholar]
  12. Campero-RomeroA.N. RealF.H. Santana-MartínezR.A. Molina-VillaT. ArandaC. Ríos-CastroE. Tovar-y-RomoL.B. Extracellular vesicles from neural progenitor cells promote functional recovery after stroke in mice with pharmacological inhibition of neurogenesis.Cell Death Discov.20239127210.1038/s41420‑023‑01561‑437507361
    [Google Scholar]
  13. PhanN.V. RathbunE.M. OuyangY. CarmichaelS.T. SeguraT. Biology-driven material design for ischaemic stroke repair.Nat. Rev. Bioeng.202321446310.1038/s44222‑023‑00117‑6
    [Google Scholar]
  14. Percie du SertN. HurstV. AhluwaliaA. AlamS. AveyM.T. BakerM. BrowneW.J. ClarkA. CuthillI.C. DirnaglU. EmersonM. GarnerP. HolgateS.T. HowellsD.W. KarpN.A. LazicS.E. LidsterK. MacCallumC.J. MacleodM. PearlE.J. PetersenO.H. RawleF. ReynoldsP. RooneyK. SenaE.S. SilberbergS.D. StecklerT. WürbelH. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.PLoS Biol.2020187e300041010.1371/journal.pbio.300041032663219
    [Google Scholar]
  15. Ríos-CastroE. SouzaG.H.M.F. Delgadillo-ÁlvarezD.M. Ramírez-ReyesL. Torres-HuertaA.L. Velasco-SuárezA. Cruz-CruzC. Hernández-HernándezJ.M. Tapia-RamírezJ. Quantitative proteomic analysis of MARC-145 cells infected with a mexican porcine reproductive and respiratory syndrome virus strain using a label-free based DIA approach.J. Am. Soc. Mass Spectrom.20203161302131210.1021/jasms.0c0013432379441
    [Google Scholar]
  16. DelgadilloD.M. Céspedes-CruzA.I. Ríos-CastroE. MaldonadoR.M.G. López-NoguedaM. Márquez-GutiérrezM. Villalobos-ManzoR. Ramírez-ReyesL. Domínguez-FuentesM. Tapia-RamírezJ. Differential expression of proteins in an atypical presentation of autoimmune lymphoproliferative syndrome.Int. J. Mol. Sci.20222310536610.3390/ijms2310536635628184
    [Google Scholar]
  17. LiG.Z. VissersJ.P.C. SilvaJ.C. GolickD. GorensteinM.V. GeromanosS.J. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.Proteomics2009961696171910.1002/pmic.20080056419294629
    [Google Scholar]
  18. KällL. StoreyJ.D. MacCossM.J. NobleW.S. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases.J. Proteome Res.200871293410.1021/pr700600n18067246
    [Google Scholar]
  19. Perez-RiverolY. BaiJ. BandlaC. García-SeisdedosD. HewapathiranaS. KamatchinathanS. KunduD.J. PrakashA. Frericks-ZipperA. EisenacherM. WalzerM. WangS. BrazmaA. VizcaínoJ.A. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences.Nucleic Acids Res.202250D1D543D55210.1093/nar/gkab103834723319
    [Google Scholar]
  20. GuoH. FanZ. WangS. MaL. WangJ. YuD. ZhangZ. WuL. PengZ. LiuW. HouW. CaiY. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke.J. Neuroinflammation202118123010.1186/s12974‑021‑02284‑y34645472
    [Google Scholar]
  21. KyungJ.W. ChoI.H. LeeS. SongW.K. RyanT.A. HoppaM.B. KimS.H. Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons.Sci. Rep.2017714162010.1038/srep4162028139716
    [Google Scholar]
  22. JeppesenD.K. FenixA.M. FranklinJ.L. HigginbothamJ.N. ZhangQ. ZimmermanL.J. LieblerD.C. PingJ. LiuQ. EvansR. FissellW.H. PattonJ.G. RomeL.H. BurnetteD.T. CoffeyR.J. Reassessment of exosome composition.Cell20191772428445.e1810.1016/j.cell.2019.02.02930951670
    [Google Scholar]
  23. DengF. MillerJ. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization.J. Histotechnol.201942422623910.1080/01478885.2019.164698431432761
    [Google Scholar]
  24. MorelL. ReganM. HigashimoriH. NgS.K. EsauC. VidenskyS. RothsteinJ. YangY. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1.J. Biol. Chem.2013288107105711610.1074/jbc.M112.41094423364798
    [Google Scholar]
  25. SimanR. RobertsV.L. McNeilE. DangA. BavariaJ.E. RamchandrenS. McGarveyM. Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest.Brain Res.2008121311110.1016/j.brainres.2008.03.03418456245
    [Google Scholar]
  26. ShimadaT. FournierA.E. YamagataK. Neuroprotective function of 14-3-3 proteins in neurodegeneration.BioMed Res. Int.2013201311110.1155/2013/56453424364034
    [Google Scholar]
  27. SemenzaG.L. Hypoxia-inducible factors in physiology and medicine.Cell2012148339940810.1016/j.cell.2012.01.02122304911
    [Google Scholar]
  28. HartlF.U. Hayer-HartlM. Molecular chaperones in the cytosol: From nascent chain to folded protein.Science200229555611852185810.1126/science.106840811884745
    [Google Scholar]
  29. HochrainerK. YangW. Stroke proteomics: From discovery to diagnostic and therapeutic applications.Circ. Res.202213081145116610.1161/CIRCRESAHA.122.32011035420912
    [Google Scholar]
  30. LiL. LiR. ZacharekA. WangF. Landschoot-WardJ. ChoppM. ChenJ. CuiX. ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke.Int. J. Mol. Sci.20202112436910.3390/ijms2112436932575457
    [Google Scholar]
  31. JongD.O.G. VerhaarM.C. ChenY. VaderP. GremmelsH. PosthumaG. SchiffelersR.M. GucekM. BalkomV.B.W.M. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes.J. Extracell. Vesicles201211910.3402/jev.v1i0.18396
    [Google Scholar]
  32. LeeJ.Y. KimE. ChoiS.M. KimD.W. KimK.P. LeeI. KimH.S. Microvesicles from brain-extract—treated mesenchymal stem cells improve neurological functions in a rat model of ischemic stroke.Sci. Rep.2016613303810.1038/srep3303827609711
    [Google Scholar]
  33. CouchY. AkbarN. DavisS. FischerR. DickensA.M. NeuhausA.A. BurgessA.I. RothwellP.M. BuchanA.M. Inflammatory stroke extracellular vesicles induce macrophage activation.Stroke20174882292229610.1161/STROKEAHA.117.01723628536169
    [Google Scholar]
  34. DickensA.M. Tovar-y-RomoL.B. YooS.W. TroutA.L. BaeM. KanmogneM. MegraB. WilliamsD.W. WitwerK.W. GaciasM. TabatadzeN. ColeR.N. CasacciaP. BermanJ.W. AnthonyD.C. HaugheyN.J. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions.Sci. Signal.201710473eaai769610.1126/scisignal.aai769628377412
    [Google Scholar]
  35. CosmeJ. GuoH. Hadipour-LakmehsariS. EmiliA. GramoliniA.O. Hypoxia-induced changes in the fibroblast secretome, exosome, and whole-cell proteome using cultured, cardiac-derived cells isolated from neonatal mice.J. Proteome Res.20171682836284710.1021/acs.jproteome.7b0014428641008
    [Google Scholar]
  36. ChandranI.V. WelinderC. Gonçalves de OliveiraK. Cerezo-MagañaM. MånssonA.S. JohanssonM.C. Marko-VargaG. BeltingM. Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics.J. Neurooncol.2019144347748810.1007/s11060‑019‑03262‑431414377
    [Google Scholar]
  37. WangX. WangJ. ShiX. PanC. LiuH. DongY. DongR. MangJ. XuZ. Proteomic analyses identify a potential mechanism by which extracellular vesicles aggravate ischemic stroke.Life Sci.201923111652710.1016/j.lfs.2019.06.00231176783
    [Google Scholar]
  38. YouY. BorgmannK. EdaraV.V. StacyS. GhorpadeA. IkezuT. Activated human astrocyte-derived extracellular vesicles modulate neuronal uptake, differentiation and firing.J. Extracell. Vesicles202091170680110.1080/20013078.2019.170680132002171
    [Google Scholar]
  39. DeitmerJ.W. TheparambilS.M. RuminotI. NoorS.I. BeckerH.M. Energy dynamics in the brain: Contributions of astrocytes to metabolism and ph homeostasis.Front. Neurosci.201913130110.3389/fnins.2019.0130131866811
    [Google Scholar]
  40. LiJ. PanL. PembrokeW.G. RexachJ.E. GodoyM.I. CondroM.C. AlvaradoA.G. HarteniM. ChenY.W. StilesL. ChenA.Y. WannerI.B. YangX. GoldmanS.A. GeschwindD.H. KornblumH.I. ZhangY. Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes.Nat. Commun.2021121395810.1038/s41467‑021‑24232‑334172753
    [Google Scholar]
  41. SmoličT. TavčarP. HorvatA. ČerneU. VasleH.A. TratnjekL. KreftM.E. ScholzN. MatisM. PetanT. ZorecR. VardjanN. Astrocytes in stress accumulate lipid droplets.Glia20216961540156210.1002/glia.2397833609060
    [Google Scholar]
  42. YamagataK. Lactate supply from astrocytes to neurons and its role in ischemic stroke-induced neurodegeneration.Neuroscience202248121923110.1016/j.neuroscience.2021.11.03534843897
    [Google Scholar]
  43. GencS. KurnazI.A. OzilgenM. Astrocyte - neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions - in silico study supported by in vitro expression data.BMC Syst. Biol.20115116210.1186/1752‑0509‑5‑16221995951
    [Google Scholar]
  44. PantazopoulouV. JeannotP. RosbergR. BergT.J. PietrasA. Hypoxia-induced reactivity of tumor-associated astrocytes affects glioma cell properties.Cells202110361310.3390/cells1003061333802060
    [Google Scholar]
  45. Mojsilovic-PetrovicJ. CallaghanD. CuiH. DeanC. StanimirovicD.B. ZhangW. Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes.J. Neuroinflammation2007411210.1186/1742‑2094‑4‑1217474992
    [Google Scholar]
  46. PerriotS. MathiasA. PerriardG. CanalesM. JonkmansN. MerienneN. MeunierC. KassarE.L. PerrierA.L. LaplaudD.A. SchluepM. DéglonN. PasquierD.R. Human induced pluripotent stem cell-derived astrocytes are differentially activated by multiple sclerosis-associated cytokines.Stem Cell Reports20181151199121010.1016/j.stemcr.2018.09.01530409508
    [Google Scholar]
  47. ZamanianJ.L. XuL. FooL.C. NouriN. ZhouL. GiffardR.G. BarresB.A. Genomic analysis of reactive astrogliosis.J. Neurosci.201232186391641010.1523/JNEUROSCI.6221‑11.201222553043
    [Google Scholar]
  48. KhakhB.S. SofroniewM.V. Diversity of astrocyte functions] and phenotypes in neural circuits.Nat. Neurosci.201518794295210.1038/nn.404326108722
    [Google Scholar]
  49. NealM. RichardsonJ.R. Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.20181864243244310.1016/j.bbadis.2017.11.00429113750
    [Google Scholar]
  50. ThompsonJ.W. DaveK.R. YoungJ.I. Perez-PinzonM.A. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance.Neurotherapeutics201310478979710.1007/s13311‑013‑0202‑923868468
    [Google Scholar]
  51. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature2102928099414
    [Google Scholar]
  52. WheelerM.A. JaronenM. CovacuR. ZandeeS.E.J. ScalisiG. RothhammerV. TjonE.C. ChaoC.C. KenisonJ.E. BlainM. RaoV.T.S. HewsonP. BarrosoA. Gutiérrez-VázquezC. PratA. AntelJ.P. HauserR. QuintanaF.J. Environmental control of astrocyte pathogenic activities in cns inflammation.Cell20191763581596.e1810.1016/j.cell.2018.12.01230661753
    [Google Scholar]
  53. KaurC. SivakumarV. ZhangY. LingE.A. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum.Glia200654882683910.1002/glia.2042016977604
    [Google Scholar]
  54. WangY. FuA.K.Y. IpN.Y. Instructive roles of astrocytes in hippocampal synaptic plasticity: Neuronal activity-dependent regulatory mechanisms.FEBS J.202228982202221810.1111/febs.1587833864430
    [Google Scholar]
  55. WangY. FuW.Y. CheungK. HungK.W. ChenC. GengH. YungW.H. QuJ.Y. FuA.K.Y. IpN.Y. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus.Proc. Natl. Acad. Sci. USA20211181e202081011810.1073/pnas.202081011833443211
    [Google Scholar]
  56. ItoM. AswendtM. LeeA.G. IshizakaS. CaoZ. WangE.H. LevyS.L. SmerinD.L. McNabJ.A. ZeinehM. LeuzeC. GoubranM. ChengM.Y. SteinbergG.K. RNA-sequencing analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke.Stroke20184992191219910.1161/STROKEAHA.118.02150830354987
    [Google Scholar]
  57. Quiroz-BaezR. Hernández-OrtegaK. Martínez-MartínezE. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration.Front. Neurol.20201158003010.3389/fneur.2020.58003033362690
    [Google Scholar]
/content/journals/cn/10.2174/011570159X359837250611052037
Loading
/content/journals/cn/10.2174/011570159X359837250611052037
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Astrocyte; EV cargo; extracellular vesicles; hypoxia; neuroprotection; proteomics; stroke
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test