Skip to content
2000
image of Targeting the cGAS-STING Pathway: Modulating Inflammation, Oxidative Stress, and Autophagy for Novel Depression Therapies

Abstract

The pathological mechanisms underlying depression, a prevalent mental disorder, remain only partially elucidated despite extensive research efforts. Recent advancements have underscored the pivotal roles of multiple biological processes in the onset and progression of depression, including inflammation, oxidative stress, and autophagy. Inflammation is associated with the disruption of neurotransmitter systems and neural plasticity, whereas oxidative stress contributes to neuronal damage and impaired brain function. Moreover, moderate autophagy is essential for maintaining neuronal health. Dysregulation of autophagy may lead to the accumulation of damaged proteins and organelles, which can exacerbate depressive symptoms. Among the various molecular pathways involved, the cGAS-STING signalling pathway has emerged as a key regulator of these processes. Traditionally known for its role in detecting cytosolic DNA and initiating innate immune defences against pathogens, the cGAS-STING pathway has recently been implicated in regulating inflammatory responses, oxidative stress levels, and autophagy in the central nervous system. This dual function positions the cGAS-STING pathway as a potential link between immune dysregulation and the neurobiological foundations of depression. This paper offers a systematic overview of existing studies on the role of the cGAS-STING pathway in inflammation, oxidative stress, and autophagy within the central nervous system, particularly in the context of depression. The review reveals how modulation of the cGAS-STING pathway may influence these critical biological processes and thereby ameliorate depressive symptoms. Furthermore, the review discusses the therapeutic potential of targeting the cGAS-STING pathway and offers promising research directions. Ultimately, this paper aims to provide novel insights and approaches for developing more effective treatments for depression.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X386374250623095520
2025-07-11
2025-09-13
Loading full text...

Full text loading...

References

  1. Zuo C. Cao H. Song Y. Gu Z. Huang Y. Yang Y. Miao J. Zhu L. Chen J. Jiang Y. Wang F. Nrf2: An all-rounder in depression. Redox Biol. 2022 58 102522 10.1016/j.redox.2022.102522 36335763
    [Google Scholar]
  2. Marwaha S. Palmer E. Suppes T. Cons E. Young A.H. Upthegrove R. Novel and emerging treatments for major depression. Lancet 2023 401 10371 141 153 10.1016/S0140‑6736(22)02080‑3 36535295
    [Google Scholar]
  3. Collaborators C-M.D. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021 398 10312 1700 1712 10.1016/S0140‑6736(21)02143‑7 34634250
    [Google Scholar]
  4. Price J.L. Drevets W.C. Neurocircuitry of mood disorders. Neuropsychopharmacology 2010 35 1 192 216 10.1038/npp.2009.104 19693001
    [Google Scholar]
  5. Cipriani A. Furukawa T.A. Salanti G. Chaimani A. Atkinson L.Z. Ogawa Y. Leucht S. Ruhe H.G. Turner E.H. Higgins J.P.T. Egger M. Takeshima N. Hayasaka Y. Imai H. Shinohara K. Tajika A. Ioannidis J.P.A. Geddes J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018 391 10128 1357 1366 10.1016/S0140‑6736(17)32802‑7 29477251
    [Google Scholar]
  6. Beurel E. Toups M. Nemeroff C.B. The bidirectional relationship of depression and inflammation: Double trouble. Neuron 2020 107 2 234 256 10.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  7. Syed S.A. Beurel E. Loewenstein D.A. Lowell J.A. Craighead W.E. Dunlop B.W. Mayberg H.S. Dhabhar F. Dietrich W.D. Keane R.W. de Rivero Vaccari J.P. Nemeroff C.B. Defective inflammatory pathways in never-treated depressed patients are associated with poor treatment response. Neuron 2018 99 5 914 924.e3 10.1016/j.neuron.2018.08.001 30146307
    [Google Scholar]
  8. Cao H. Zuo C. Gu Z. Huang Y. Yang Y. Zhu L. Jiang Y. Wang F. High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis. Redox Biol. 2022 54 102354 10.1016/j.redox.2022.102354 35660628
    [Google Scholar]
  9. Lindqvist D. Dhabhar F.S. James S.J. Hough C.M. Jain F.A. Bersani F.S. Reus V.I. Verhoeven J.E. Epel E.S. Mahan L. Rosser R. Wolkowitz O.M. Mellon S.H. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 2017 76 197 205 10.1016/j.psyneuen.2016.11.031 27960139
    [Google Scholar]
  10. Tripathi A. Scaini G. Barichello T. Quevedo J. Pillai A. Mitophagy in depression: Pathophysiology and treatment targets. Mitochondrion 2021 61 1 10 10.1016/j.mito.2021.08.016 34478906
    [Google Scholar]
  11. Ma X. Li W. Ma J. Han Z. Deng S. Wang S. Autophagy is a promising process for linking inflammation and redox homeostasis in Down syndrome. Front. Pharmacol. 2024 15 1491563 10.3389/fphar.2024.1491563 39415838
    [Google Scholar]
  12. Alcocer-Gómez E. Casas-Barquero N. Núñez-Vasco J. Navarro-Pando J.M. Bullón P. Psychological status in depressive patients correlates with metabolic gene expression. CNS Neurosci. Ther. 2017 23 10 843 845 10.1111/cns.12755 28879683
    [Google Scholar]
  13. Zhang K. Huang Q. Li X. Zhao Z. Hong C. Sun Z. Deng B. Li C. Zhang J. Wang S. The cGAS-STING pathway in viral infections: A promising link between inflammation, oxidative stress and autophagy. Front. Immunol. 2024 15 1352479 10.3389/fimmu.2024.1352479 38426093
    [Google Scholar]
  14. Xiao T.S. Fitzgerald K.A. The cGAS-STING pathway for DNA sensing. Mol. Cell 2013 51 2 135 139 10.1016/j.molcel.2013.07.004 23870141
    [Google Scholar]
  15. Gulen M.F. Samson N. Keller A. Schwabenland M. Liu C. Glück S. Thacker V.V. Favre L. Mangeat B. Kroese L.J. Krimpenfort P. Prinz M. Ablasser A. cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 2023 620 7973 374 380 10.1038/s41586‑023‑06373‑1 37532932
    [Google Scholar]
  16. Chen S. Li J. Yan L. Zhang X. Huang J. Zhou P. Electroacupuncture alleviates the symptom of depression in mice by regulating the cGAS-STING-NLRP3 signaling. Aging 2024 16 8 6731 6744 10.18632/aging.205596 38643466
    [Google Scholar]
  17. Miyata S. Ishino Y. Shimizu S. Tohyama M. Involvement of inflammatory responses in the brain to the onset of major depressive disorder due to stress exposure. Front. Aging Neurosci. 2022 14 934346 10.3389/fnagi.2022.934346 35936767
    [Google Scholar]
  18. Duan N. Zhang Y. Tan S. Sun J. Ye M. Gao H. Pu K. Wu M. Wang Q. Zhai Q. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol. Dis. 2022 169 105739 10.1016/j.nbd.2022.105739 35470042
    [Google Scholar]
  19. Liu X. Chen W. Wang C. Liu W. Hayashi T. Mizuno K. Hattori S. Fujisaki H. Ikejima T. Silibinin ameliorates depression/anxiety-like behaviors of Parkinson’s disease mouse model and is associated with attenuated STING-IRF3-IFN-β pathway activation and neuroinflammation. Physiol. Behav. 2021 241 113593 10.1016/j.physbeh.2021.113593 34536434
    [Google Scholar]
  20. Ma J. Wang P. Zhuang J. Son A.Y. Karius A.K. Syed A.M. Nishi M. Wu Z. Mori M.P. Kim Y.C. Hwang P.M. CHCHD4-TRIAP1 regulation of innate immune signaling mediates skeletal muscle adaptation to exercise. Cell Rep. 2024 43 1 113626 10.1016/j.celrep.2023.113626 38157298
    [Google Scholar]
  21. Gao Y. Ling Y. Wu H. Zhang P. Zhou J. Gu H. Yang J. Zhou Y. Zhong Z. Chi J. Swimming training attenuates doxorubicin induced cardiomyopathy by targeting the mir-17-3p/KEAP1/] NRF2 axis. Biochem. Biophys. Res. Commun. 2024 739 150568 10.1016/j.bbrc.2024.150568 39178797
    [Google Scholar]
  22. Ablasser A. Goldeck M. Cavlar T. Deimling T. Witte G. Röhl I. Hopfner K.P. Ludwig J. Hornung V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013 498 7454 380 384 10.1038/nature12306 23722158
    [Google Scholar]
  23. Ishikawa H. Barber G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008 455 7213 674 678 10.1038/nature07317 18724357
    [Google Scholar]
  24. Tanaka Y. Chen Z.J. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 2012 5 214 ra20 10.1126/scisignal.2002521 22394562
    [Google Scholar]
  25. Gui X. Yang H. Li T. Tan X. Shi P. Li M. Du F. Chen Z.J. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019 567 7747 262 266 10.1038/s41586‑019‑1006‑9 30842662
    [Google Scholar]
  26. Deng Z. Chong Z. Law C.S. Mukai K. Ho F.O. Martinu T. Backes B.J. Eckalbar W.L. Taguchi T. Shum A.K. A defect in COPI-mediated transport of STING causes immune dysregulation in COPA syndrome. J. Exp. Med. 2020 217 11 e20201045 10.1084/jem.20201045 32725126
    [Google Scholar]
  27. Chen Q. Sun L. Chen Z.J. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016 17 10 1142 1149 10.1038/ni.3558 27648547
    [Google Scholar]
  28. Schoggins J.W. MacDuff D.A. Imanaka N. Gainey M.D. Shrestha B. Eitson J.L. Mar K.B. Richardson R.B. Ratushny A.V. Litvak V. Dabelic R. Manicassamy B. Aitchison J.D. Aderem A. Elliott R.M. García-Sastre A. Racaniello V. Snijder E.J. Yokoyama W.M. Diamond M.S. Virgin H.W. Rice C.M. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014 505 7485 691 695 10.1038/nature12862 24284630
    [Google Scholar]
  29. Gao D. Wu J. Wu Y.T. Du F. Aroh C. Yan N. Sun L. Chen Z.J. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 2013 341 6148 903 906 10.1126/science.1240933 23929945
    [Google Scholar]
  30. Dobbs N. Burnaevskiy N. Chen D. Gonugunta V.K. Alto N.M. Yan N. STING activation by translocation from the er is associated with infection and autoinflammatory disease. Cell Host Microbe 2015 18 2 157 168 10.1016/j.chom.2015.07.001 26235147
    [Google Scholar]
  31. Gujral S. Aizenstein H. Reynolds C.F. Butters M.A. Erickson K.I. Exercise effects on depression: Possible neural mechanisms. Gen. Hosp. Psychiatry 2017 49 2 10 10.1016/j.genhosppsych.2017.04.012 29122145
    [Google Scholar]
  32. Peng W. Chen Z. Yin L. Jia Z. Gong Q. Essential brain structural alterations in major depressive disorder: A voxel-wise meta-analysis on first episode, medication-naive patients. J. Affect. Disord. 2016 199 114 123 10.1016/j.jad.2016.04.001 27100056
    [Google Scholar]
  33. Zhou X. Wang J. Yu L. Qiao G. Qin D. Yuen-Kwan L.B. Ren F. Wu J. Wu A. Mitophagy and cGAS–STING crosstalk in neuroinflammation. Acta Pharm. Sin. B 2024 14 8 3327 3361 10.1016/j.apsb.2024.05.012 39220869
    [Google Scholar]
  34. Wang A. Chen C. Mei C. Liu S. Xiang C. Fang W. Zhang F. Xu Y. Chen S. Zhang Q. Bai X. Lin A. Neculai D. Xia B. Ye C. Zou J. Liang T. Feng X.H. Li X. Shen C. Xu P. Innate immune sensing of lysosomal dysfunction drives multiple lysosomal storage disorders. Nat. Cell Biol. 2024 26 2 219 234 38253667
    [Google Scholar]
  35. Gao D. Hao J.P. Li B.Y. Zheng C.C. Miao B.B. Zhang L. Li Y.L. Li L. Li X.J. Zhang L. Tetrahydroxy stilbene glycoside ameliorates neuroinflammation for Alzheimer’s disease via cGAS-STING. Eur. J. Pharmacol. 2023 953 175809 37328043
    [Google Scholar]
  36. Pandey G.N. Rizavi H.S. Zhang H. Bhaumik R. Ren X. Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J. Psychiatry Neurosci. 2018 43 6 376 385 10.1503/jpn.170192 30371993
    [Google Scholar]
  37. Köbe T. Witte A.V. Schnelle A. Lesemann A. Fabian S. Tesky V.A. Pantel J. Flöel A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage 2016 131 226 238 26433119
    [Google Scholar]
  38. Nishuty N.L. Khandoker M.M.H. Karmoker J.R. Ferdous S. Shahriar M. Qusar M.M.A.S. Islam M.S. Kadir M.F. Islam M.R. Evaluation of serum interleukin-6 and c-reactive protein levels in drug-naïve major depressive disorder patients. Cureus 2019 11 1 e3868 30899619
    [Google Scholar]
  39. Basso F.G. Pansani T.N. Turrioni A.P.S. Soares D.G. de Souza Costa C.A. Hebling J. Tumor necrosis factor-α and interleukin (IL)-1β IL-6, and IL-8 impair in vitro migration and induce apoptosis of gingival fibroblasts and epithelial cells, delaying wound healing. J. Periodontol. 2016 87 8 990 996 10.1902/jop.2016.150713 27063996
    [Google Scholar]
  40. Franklin T.C. Xu C. Duman R.S. Depression and sterile inflammation: Essential role of danger associated molecular patterns. Brain Behav. Immun. 2018 72 2 13 10.1016/j.bbi.2017.10.025 29102801
    [Google Scholar]
  41. Hayley S. Hakim A.M. Albert P.R. Depression, dementia and immune dysregulation. Brain 2021 144 3 746 760 10.1093/brain/awaa405 33279966
    [Google Scholar]
  42. Wang L. Wang R. Liu L. Qiao D. Baldwin D.S. Hou R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav. Immun. 2019 79 24 38 10.1016/j.bbi.2019.02.021 30797959
    [Google Scholar]
  43. Rosenblat J.D. McIntyre R.S. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials. J. Affect. Disord. 2018 227 219 225 10.1016/j.jad.2017.10.042 29102836
    [Google Scholar]
  44. Bai S. Guo W. Feng Y. Deng H. Li G. Nie H. Guo G. Yu H. Ma Y. Wang J. Chen S. Jing J. Yang J. Tang Y. Tang Z. Efficacy and safety of anti-inflammatory agents for the treatment of major depressive disorder: A systematic review and meta-analysis of randomised controlled trials. J. Neurol. Neurosurg. Psychiatry 2020 91 1 21 32 10.1136/jnnp‑2019‑320912 31658959
    [Google Scholar]
  45. Pan Y. Chen X.Y. Zhang Q.Y. Kong L.D. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav. Immun. 2014 41 90 100 10.1016/j.bbi.2014.04.007 24859041
    [Google Scholar]
  46. Zhu L. Nang C. Luo F. Pan H. Zhang K. Liu J. Zhou R. Gao J. Chang X. He H. Qiu Y. Wang J. Long H. Liu Y. Yan T. Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol. Behav. 2016 163 184 192 10.1016/j.physbeh.2016.04.051 27133730
    [Google Scholar]
  47. Huang Y. Xu W. Zhou R. NLRP3 inflammasome activation and cell death. Cell. Mol. Immunol. 2021 18 9 2114 2127 10.1038/s41423‑021‑00740‑6 34321623
    [Google Scholar]
  48. Komleva Y.K. Lopatina O.L. Gorina Y.V. Chernykh A.I. Trufanova L.V. Vais E.F. Kharitonova E.V. Zhukov E.L. Vahtina L.Y. Medvedeva N.N. Salmina A.B. Expression of NLRP3 inflammasomes in neurogenic niche contributes to the effect of spatial learning in physiological conditions but not in alzheimer’s type neurodegeneration. Cell. Mol. Neurobiol. 2022 42 5 1355 1371 10.1007/s10571‑020‑01021‑y 33392919
    [Google Scholar]
  49. Zhang C. Yang Y. Gao Y. Sun D. NaF-induced neurotoxicity via activation of the IL-1β/JNK signaling pathway. Toxicology 2022 469 153132 10.1016/j.tox.2022.153132 35172196
    [Google Scholar]
  50. Zhang Y. Liu L. Liu Y.Z. Shen X.L. Wu T.Y. Zhang T. Wang W. Wang Y.X. Jiang C.L. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int. J. Neuropsychopharmacol. 2015 18 8 pyv006 10.1093/ijnp/pyv006 25603858
    [Google Scholar]
  51. Chang L. Graham P.H. Ni J. Hao J. Bucci J. Cozzi P.J. Li Y. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit. Rev. Oncol. Hematol. 2015 96 3 507 517 10.1016/j.critrevonc.2015.07.005 26253360
    [Google Scholar]
  52. de Oliveira Mann C.C. Orzalli M.H. King D.S. Kagan J.C. Lee A.S.Y. Kranzusch P.J. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep. 2019 27 4 1165 1175.e5 10.1016/j.celrep.2019.03.098 31018131
    [Google Scholar]
  53. Hou Y. Liang H. Rao E. Zheng W. Huang X. Deng L. Zhang Y. Yu X. Xu M. Mauceri H. Arina A. Weichselbaum R.R. Fu Y.X. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 2018 49 3 490 503.e4 10.1016/j.immuni.2018.07.008 30170810
    [Google Scholar]
  54. Wang W. Hu D. Wu C. Feng Y. Li A. Liu W. Wang Y. Chen K. Tian M. Xiao F. Zhang Q. Shereen M.A. Chen W. Pan P. Wan P. Wu K. Wu J. STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection. PLoS Pathog. 2020 16 3 e1008335 10.1371/journal.ppat.1008335 32187211
    [Google Scholar]
  55. Liu Y. Song, N.; Yao, H.; Jiang, S.; Wang, Y.; Zheng, Y.; Zhou, Y.; Ding, J.; Hu, G.; Lu, M. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression. J. Neuroinflammation 2022 19 1 240 10.1186/s12974‑022‑02597‑6 36183107
    [Google Scholar]
  56. Zhu J. Sun T. Zhang J. Liu Y. Wang D. Zhu H. Yao H. Ding J. Hu G. Lu M. Drd2 biased agonist prevents neurodegeneration against NLRP3 inflammasome in Parkinson’s disease model via a β-arrestin2-biased mechanism. Brain Behav. Immun. 2020 90 259 271 10.1016/j.bbi.2020.08.025 32861720
    [Google Scholar]
  57. Murawska-Ciałowicz, E.; Wiatr, M.; Ciałowicz, M.; Gomes de Assis, G.; Borowicz, W.; Rocha-Rodrigues, S.; Paprocka-Borowicz, M.; Marques, A. BDNF impact on biological markers of depression—role of physical exercise and training. Int. J. Environ. Res. Public Health 2021 18 14 7553 10.3390/ijerph18147553 34300001
    [Google Scholar]
  58. Alizadeh P.H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav. Brain Res. 2024 459 114791 10.1016/j.bbr.2023.114791 38048912
    [Google Scholar]
  59. Arida R.M. Teixeira-Machado L. The contribution of physical exercise to brain resilience. Front. Behav. Neurosci. 2021 14 626769 10.3389/fnbeh.2020.626769 33584215
    [Google Scholar]
  60. Hartmann T.E. Robertson C.V. Miller T.D. Hunter J.R. Skein M. Associations between exercise, inflammation and symptom severity in those with mental health disorders. Cytokine 2021 146 155648 10.1016/j.cyto.2021.155648 34320459
    [Google Scholar]
  61. Maria Michel T. Pülschen D. Thome J. The role of oxidative stress in depressive disorders. Curr. Pharm. Des. 2012 18 36 5890 5899 10.2174/138161212803523554 22681168
    [Google Scholar]
  62. Culmsee C. Michels S. Scheu S. Arolt V. Dannlowski U. Alferink J. Mitochondria, microglia, and the immune system—how are they linked in affective disorders? Front. Psychiatry 2019 9 739 10.3389/fpsyt.2018.00739 30687139
    [Google Scholar]
  63. Palta P. Samuel L.J. Miller E.R. Szanton S.L. Depression and oxidative stress: Results from a meta-analysis of observational studies. Psychosom. Med. 2014 76 1 12 19 10.1097/PSY.0000000000000009 24336428
    [Google Scholar]
  64. Savage K. Gogarty L. Lea A. Deleuil S. Nolidin K. Croft K. Stough C. The relationship between F 2 -isoprostanes plasma levels and depression symptoms in healthy older adults. Antioxidants 2022 11 5 822 10.3390/antiox11050822 35624687
    [Google Scholar]
  65. Parul; Mishra, A.; Singh, S.; Singh, S.; Tiwari, V.; Chaturvedi, S.; Wahajuddin, M.; Palit, G.; Shukla, S. Chronic unpredictable stress negatively regulates hippocampal neurogenesis and promote anxious depression-like behavior via upregulating apoptosis and inflammatory signals in adult rats. Brain Res. Bull. 2021 172 164 179 10.1016/j.brainresbull.2021.04.017 33895271
    [Google Scholar]
  66. Montanari M. Martella G. Bonsi P. Meringolo M. Autism spectrum disorder: Focus on glutamatergic neurotransmission. Int. J. Mol. Sci. 2022 23 7 3861 10.3390/ijms23073861 35409220
    [Google Scholar]
  67. Ji N. Lei M. Chen Y. Tian S. Li C. Zhang B. How oxidative stress induces depression? ASN Neuro 2023 15 1 17590914231181037 10.1177/17590914231181037 37331994
    [Google Scholar]
  68. Martins-de-Souza D. Guest P.C. Harris L.W. Vanattou-Saifoudine N. Webster M.J. Rahmoune H. Bahn S. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl. Psychiatry 2012 2 3 e87 10.1038/tp.2012.13 22832852
    [Google Scholar]
  69. Chang C.C. Jou S.H. Lin T.T. Lai T.J. Liu C.S. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 2015 10 5 e0125855 10.1371/journal.pone.0125855 25946463
    [Google Scholar]
  70. Gong Y. Chai Y. Ding J.H. Sun X.L. Hu G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 2011 488 1 76 80 21070835
    [Google Scholar]
  71. Fan J.B. Miyauchi-Ishida S. Arimoto K. Liu D. Yan M. Liu C.W. Győrffy, B.; Zhang, D.E.; Type, I. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc. Natl. Acad. Sci. USA 2015 112 46 14313 14318 26515094
    [Google Scholar]
  72. Hayman T.J. Baro M. MacNeil T. Phoomak. C.; Aung, T.N.; Cui. W.; Leach. K.; Iyer, R.; Challa, S.; Sandoval-Schaefer, T.; Burtness, B.A.; Rimm, D.L.; Contessa. J.N. STING enhancescell death through regulation of reactive oxygen species and DNA damage. Nat. Commun. 2021 12 1 2327 10.1038/s41467‑021‑22572‑8
    [Google Scholar]
  73. Jia M. Qin D. Zhao C. Chai L. Yu Z. Wang W. Tong L. Lv L. Wang Y. Rehwinkel J. Yu J. Zhao W. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat. Immunol. 2020 21 7 727 735 10.1038/s41590‑020‑0699‑0 32541831
    [Google Scholar]
  74. Chen J. Zhu T. Yu D. Yan B. Zhang Y. Jin J. Yang Z. Zhang B. Hao X. Chen Z. Yan C. Yu J. Moderate intensity of treadmill exercise rescues TBI-induced ferroptosis, neurodegeneration, and cognitive impairments via suppressing STING pathway. Mol. Neurobiol. 2023 60 9 4872 4896 10.1007/s12035‑023‑03379‑8 37193866
    [Google Scholar]
  75. Calabrese V. Guagliano E. Sapienza M. Panebianco M. Calafato S. Puleo E. Pennisi G. Mancuso C. Allan Butterfield D. Stella A.G. Redox regulation of cellular stress response in aging and neurodegenerative disorders: Role of vitagenes. Neurochem. Res. 2007 32 4-5 757 773 10.1007/s11064‑006‑9203‑y 17191135
    [Google Scholar]
  76. Piantadosi C.A. Carraway M.S. Babiker A. Suliman H.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res. 2008 103 11 1232 1240 10.1161/01.RES.0000338597.71702.ad 18845810
    [Google Scholar]
  77. Calabrese V. Colombrita C. Guagliano E. Sapienza M. Ravagna A. Cardile V. Scapagnini G. Santoro A.M. Mangiameli A. Butterfield D.A. Stella A.M.G. Rizzarelli E. Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem. Res. 2005 30 6-7 797 807 10.1007/s11064‑005‑6874‑8 16187215
    [Google Scholar]
  78. Calabrese V. Scapagnini G. Ravagna A. Bella R. Butterfield D.A. Calvani M. Pennisi G. Giuffrida Stella A.M. Disruption of thiol homeostasis and nitrosative stress in the cerebrospinal fluid of patients with active multiple sclerosis: Evidence for a protective role of acetylcarnitine. Neurochem. Res. 2003 28 9 1321 1328 10.1023/A:1024984013069 12938853
    [Google Scholar]
  79. Zhao W. Zhao S. Wei R. Wang Z. Zhang F. Zong F. Zhang H.T. cGAS/STING signaling pathway-mediated microglial activation in the PFC underlies chronic ethanol exposure-induced anxiety-like behaviors in mice. Int. Immunopharmacol. 2024 134 112185 10.1016/j.intimp.2024.112185 38701540
    [Google Scholar]
  80. Liu W. Zhong X. Yi Y. Xie L. Zhou W. Cao W. Chen L. Prophylactic effects of betaine on depression and anxiety behaviors in mice with dextran sulfate sodium-induced colitis. J. Agric. Food Chem. 2024 72 38 21041 21051 10.1021/acs.jafc.4c05547 39276097
    [Google Scholar]
  81. Xu K. Wang M. Wang H. Zhao S. Tu D. Gong X. Li W. Liu X. Zhong L. Chen J. Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J. Adv. Res. 2024 59 79 96 10.1016/j.jare.2023.06.003 37321346
    [Google Scholar]
  82. Osborne L.M. Payne J.L. Sherer M.L. Sabunciyan S. Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy. Mol. Psychiatry 2022 27 11 4526 4535 10.1038/s41380‑022‑01794‑2 36138128
    [Google Scholar]
  83. Jernigan C.S. Goswami D.B. Austin M.C. Iyo A.H. Chandran A. Stockmeier C.A. Karolewicz B. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011 35 7 1774 1779 10.1016/j.pnpbp.2011.05.010 21635931
    [Google Scholar]
  84. Huang X. Wu H. Jiang R. Sun G. Shen J. Ma M. Ma C. Zhang S. Huang Z. Wu Q. Chen G. Tao W. The antidepressant effects of ɑ-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur. J. Pharmacol. 2018 833 1 7 10.1016/j.ejphar.2018.05.020 29782858
    [Google Scholar]
  85. Karege F. Perroud N. Burkhardt S. Fernandez R. Ballmann E. La Harpe R. Malafosse A. Alterations in phosphatidylinositol 3-kinase activity and PTEN phosphatase in the prefrontal cortex of depressed suicide victims. Neuropsychobiology 2011 63 4 224 231 10.1159/000322145 21422769
    [Google Scholar]
  86. He J. Ren Z. Xia W. Zhou C. Bi B. Yu W. Zuo L. Identification of key genes and crucial pathways for major depressive disorder using peripheral blood samples and chronic unpredictable mild stress rat models. PeerJ 2021 9 e11694 10.7717/peerj.11694 34414022
    [Google Scholar]
  87. Zhuo J. Chen B. Sun C. Jiang T. Chen Z. Liu Y. Nie J. Yang H. Zheng J. Lai X. Su Z. Li C. Li Y. Patchouli alcohol protects against chronic unpredictable mild stress-induced depressant-like behavior through inhibiting excessive autophagy via activation of mTOR signaling pathway. Biomed. Pharmacother. 2020 127 110115 10.1016/j.biopha.2020.110115 32244196
    [Google Scholar]
  88. Lu J.J. Wu P.F. He J.G. Li Y.K. Long L.H. Yao X.P. Yang J.H. Chen H.S. Zhang X.N. Hu Z.L. Chen Z. Wang F. Chen J.G. BNIP3L/NIX-mediated mitophagy alleviates passive stress-coping behaviors induced by tumor necrosis factor-&#945. Mol. Psychiatry 2023 28 12 5062 5076 10.1038/s41380‑023‑02008‑z 36914810
    [Google Scholar]
  89. Saitoh T. Fujita N. Hayashi T. Takahara K. Satoh T. Lee H. Matsunaga K. Kageyama S. Omori H. Noda T. Yamamoto N. Kawai T. Ishii K. Takeuchi O. Yoshimori T. Akira S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 2009 106 49 20842 20846 10.1073/pnas.0911267106 19926846
    [Google Scholar]
  90. Liang Q. Seo G.J. Choi Y.J. Kwak M.J. Ge J. Rodgers M.A. Shi M. Leslie B.J. Hopfner K.P. Ha T. Oh B.H. Jung J.U. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 2014 15 2 228 238 10.1016/j.chom.2014.01.009 24528868
    [Google Scholar]
  91. Martin M. Hiroyasu A. Guzman R.M. Roberts S.A. Goodman A.G. Analysis of drosophila sting reveals an evolutionarily conserved antimicrobial function. Cell Rep. 2018 23 12 3537 3550.e6 10.1016/j.celrep.2018.05.029 29924997
    [Google Scholar]
  92. Liu D. Wu H. Wang C. Li Y. Tian H. Siraj S. Sehgal S.A. Wang X. Wang J. Shang Y. Jiang Z. Liu L. Chen Q. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019 26 9 1735 1749 10.1038/s41418‑018‑0251‑z 30568238
    [Google Scholar]
  93. Wu J. Chen Y.J. Dobbs N. Sakai T. Liou J. Miner J.J. Yan N. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 2019 216 4 867 883 10.1084/jem.20182192 30886058
    [Google Scholar]
  94. Fujii C. Zorumski C.F. Izumi Y. Endoplasmic reticulum stress, autophagy, neuroinflammation, and sigma 1 receptors as contributors to depression and its treatment. Neural Regen. Res. 2024 19 10 2202 2211 10.4103/1673‑5374.391334 38488553
    [Google Scholar]
  95. Zhang X. Liu J. Zhong S. Zhang Z. Zhou Q. Yang J. Chang X. Wang H.J.E. Exposure to manganese induces autophagy-lysosomal pathway dysfunction-mediated tauopathy by activating the cGAS-STING pathway in the brain. Environ. Health 2024 12 2 199 212 10.1021/envhealth.4c00176 40012869
    [Google Scholar]
  96. Racette B.A. Nelson G. Dlamini W.W. Hershey T. Prathibha P. Turner J.R. Checkoway H. Sheppard L. Searles N.S. Depression and anxiety in a manganese-exposed community. Neurotoxicology 2021 85 222 233 10.1016/j.neuro.2021.05.017 34087333
    [Google Scholar]
  97. Fattal O. Link J. Quinn K. Cohen B.H. Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 2007 12 6 429 438 10.1017/S1092852900015303 17545953
    [Google Scholar]
  98. Shu X. Sun Y. Sun X. Zhou Y. Bian Y. Shu Z. Ding J. Lu M. Hu G. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 2019 10 8 577 10.1038/s41419‑019‑1813‑9 31371719
    [Google Scholar]
  99. Xu W. Gao W. Guo Y. Xue F. Di L. Fang S. Fan L. He Y. Zhou Y. Xie X. Pang X. Targeting mitophagy for depression amelioration: A novel therapeutic strategy. Front. Neurosci. 2023 17 1235241 10.3389/fnins.2023.1235241 37869512
    [Google Scholar]
  100. Gan H. Ma Q. Hao W. Yang N. Chen Z.S. Deng L. Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol. Res. 2024 202 107112 10.1016/j.phrs.2024.107112 38403256
    [Google Scholar]
  101. Berglund R. Guerreiro-Cacais A.O. Adzemovic M.Z. Zeitelhofer M. Lund H. Ewing E. Ruhrmann S. Nutma E. Parsa R. Thessen-Hedreul M. Amor S. Harris R.A. Olsson T. Jagodic M. Microglial autophagy–associated phagocytosis is essential for recovery from neuroinflammation. Sci. Immunol. 2020 5 52 eabb5077 10.1126/sciimmunol.abb5077 33067381
    [Google Scholar]
  102. Rong Y. Liu W. Wang J. Fan J. Luo Y. Li L. Kong F. Chen J. Tang P. Cai W. Neural stem cell-derived small extracellular vesicles attenuate apoptosis and neuroinflammation after traumatic spinal cord injury by activating autophagy. Cell Death Dis. 2019 10 5 340 10.1038/s41419‑019‑1571‑8 31000697
    [Google Scholar]
  103. Cheng J. Liao Y. Dong Y. Hu H. Yang N. Kong X. Li S. Li X. Guo J. Qin L. Yu J. Ma C. Li J. Li M. Tang B. Yuan Z. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy 2020 16 12 2193 2205 10.1080/15548627.2020.1719723 32003282
    [Google Scholar]
  104. Tang M. Liu T. Jiang P. Dang R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol. Res. 2021 168 105586 10.1016/j.phrs.2021.105586 33812005
    [Google Scholar]
  105. Levine B. Mizushima N. Virgin H.W. Autophagy in immunity and inflammation. Nature 2011 469 7330 323 335 10.1038/nature09782 21248839
    [Google Scholar]
  106. Bhatti J.S. Bhatti G.K. Reddy P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 5 1066 1077 10.1016/j.bbadis.2016.11.010 27836629
    [Google Scholar]
  107. Abelaira H.M. Réus G.Z. Neotti M.V. Quevedo J. The role of mTOR in depression and antidepressant responses. Life Sci. 2014 101 1-2 10 14 10.1016/j.lfs.2014.02.014 24582593
    [Google Scholar]
  108. Li N. Lee B. Liu R.J. Banasr M. Dwyer J.M. Iwata M. Li X.Y. Aghajanian G. Duman R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010 329 5994 959 964 10.1126/science.1190287 20724638
    [Google Scholar]
  109. Zhong P. Wang W. Pan B. Liu X. Zhang Z. Long J.Z. Zhang H. Cravatt B.F. Liu Q. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology 2014 39 7 1763 1776 10.1038/npp.2014.24 24476943
    [Google Scholar]
  110. liu, S.; Li, T.; Liu, H.; Wang, X.; bo, S.; Xie, Y.; Bai, X.; Wu, L.; Wang, Z.; Liu, D. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex. Behav. Brain Res. 2016 302 191 199 10.1016/j.bbr.2016.01.037 26801825
    [Google Scholar]
  111. Song Y. Cao H. Zuo C. Gu Z. Huang Y. Miao J. Fu Y. Guo Y. Jiang Y. Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed. Pharmacother. 2023 167 115652 10.1016/j.biopha.2023.115652 37801903
    [Google Scholar]
  112. Li D. Zheng J. Wang M. Feng L. Ren Z. Liu Y. Yang N. Zuo P. Changes of TSPO-mediated mitophagy signaling pathway in learned helplessness mice. Psychiatry Res. 2016 245 141 147 10.1016/j.psychres.2016.02.068 27543827
    [Google Scholar]
  113. Wei Q. Zhou W. Zheng J. Li D. Wang M. Feng L. Huang W. Yang N. Han M. Ma X. Liu Y. Antidepressant effects of 3-(3,4-methylenedioxy-5-trifluoromethyl phenyl)-2E-propenoic acid isobutyl amide involve TSPO-mediated mitophagy signalling pathway. Basic Clin. Pharmacol. Toxicol. 2020 127 5 380 388 10.1111/bcpt.13452 32511877
    [Google Scholar]
  114. Wang S. Tan J. Zhang Q. Cytosolic escape of mitochondrial DNA triggers cGAS-STING pathway-dependent neuronal panoptosis in response to intermittent hypoxia. Neurochem. Res. 2024 49 8 2228 2248 10.1007/s11064‑024‑04151‑7 38833090
    [Google Scholar]
  115. Jiang G. Wang Y. Liu Q. Gu T. Liu S. Yin A. Zhang L. Autophagy: A new mechanism for esketamine as a depression therapeutic. Neuroscience 2022 498 214 223 10.1016/j.neuroscience.2022.05.014 35597333
    [Google Scholar]
  116. Aghaie F. Moradifar F. Hosseini A. Rapamycin attenuates depression and anxiety-like behaviors through modulation of the NLRP3 pathway in pentylenetetrazole-kindled male Wistar rats. Fundam. Clin. Pharmacol. 2021 35 6 1045 1054 10.1111/fcp.12689 33930202
    [Google Scholar]
  117. Hu Z. Li X. Yang Y. Zhang Z. Ding S. High-intensity interval training ameliorates high-fat diet-induced metabolic disorders via the cyclic GMP-AMP synthase-stimulator of interferon gene signaling pathway. Int. J. Mol. Sci. 2023 24 18 13840 10.3390/ijms241813840 37762143
    [Google Scholar]
  118. Xu Z. Ma Z. Zhao X. Zhang B. Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway. Mol. Cell. Biochem. 2024 479 12 3459 3470 10.1007/s11010‑024‑04950‑0 38388792
    [Google Scholar]
  119. Coluzzi E. Colamartino M. Cozzi R. Leone S. Meneghini C. O’Callaghan N. Sgura A. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 2014 9 10 e110963 10.1371/journal.pone.0110963 25354277
    [Google Scholar]
  120. Alves H. Munoz-Najar U. De Wit J. Renard A.J.S. Hoeijmakers J.H.J. Sedivy J.M. Van Blitterswijk C. De Boer J. A link between the accumulation of DNA damage and loss of multi-potency of human mesenchymal stromal cells. J. Cell. Mol. Med. 2010 14 12 2729 2738 10.1111/j.1582‑4934.2009.00931.x 19818093
    [Google Scholar]
  121. Shen X. Caramaschi D. Adams M.J. Walker R.M. Min J.L. Kwong A. Hemani G. Barbu M.C. Whalley H.C. Harris S.E. Deary I.J. Morris S.W. Cox S.R. Relton C.L. Marioni R.E. Evans K.L. McIntosh A.M. DNA methylome-wide association study of genetic risk for depression implicates antigen processing and immune responses. Genome Med. 2022 14 1 36 10.1186/s13073‑022‑01039‑5 35354486
    [Google Scholar]
  122. Bai J. Liu F. Nuclear cGAS: Sequestration and beyond. Protein Cell 2022 13 2 90 101 10.1007/s13238‑021‑00869‑0 34374004
    [Google Scholar]
  123. Pathare G.R. Decout A. Glück S. Cavadini S. Makasheva K. Hovius R. Kempf G. Weiss J. Kozicka Z. Guey B. Melenec P. Fierz B. Thomä N.H. Ablasser A. Structural mechanism of cGAS inhibition by the nucleosome. Nature 2020 587 7835 668 672 10.1038/s41586‑020‑2750‑6 32911482
    [Google Scholar]
  124. Li T. Huang T. Du M. Chen X. Du F. Ren J. Chen Z.J. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 2021 371 6535 eabc5386 10.1126/science.abc5386 33542149
    [Google Scholar]
  125. Wu Y. Song K. Hao W. Li J. Wang L. Li S. Nuclear soluble cGAS senses double-stranded DNA virus infection. Commun. Biol. 2022 5 1 433 10.1038/s42003‑022‑03400‑1 35538147
    [Google Scholar]
  126. Song J.X. Villagomes D. Zhao H. Zhu M. cGAS in nucleus: The link between immune response and DNA damage repair. Front. Immunol. 2022 13 1076784 10.3389/fimmu.2022.1076784 36591232
    [Google Scholar]
  127. Liu H. Zhang H. Wu X. Ma D. Wu J. Wang L. Jiang Y. Fei Y. Zhu C. Tan R. Jungblut P. Pei G. Dorhoi A. Yan Q. Zhang F. Zheng R. Liu S. Liang H. Liu Z. Yang H. Chen J. Wang P. Tang T. Peng W. Hu Z. Xu Z. Huang X. Wang J. Li H. Zhou Y. Liu F. Yan D. Kaufmann S.H.E. Chen C. Mao Z. Ge B. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 2018 563 7729 131 136 10.1038/s41586‑018‑0629‑6 30356214
    [Google Scholar]
  128. Jiang H. Xue X. Panda S. Kawale A. Hooy R.M. Liang F. Sohn J. Sung P. Gekara N.O. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J. 2019 38 21 e102718 10.15252/embj.2019102718 31544964
    [Google Scholar]
  129. Śliwiński T. Kwiatkowski D. Kacperska D. Kawczyńska D. Talarowska M. Orzechowska A. Bielecka-Kowalska A. Szemraj J. Gałecki P. Śliwiński T. Elevated level of DNA damage and impaired repair of oxidative DNA damage in patients with recurrent depressive disorder. Med. Sci. Monit 2015 21 412 418 10.12659/MSM.892317 25656523
    [Google Scholar]
  130. Forsberg K. Aalling N. Wörtwein G. Loft S. Møller P. Hau J. Hageman I. Jørgensen M.B. Jørgensen A. Dynamic regulation of cerebral DNA repair genes by psychological stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015 778 37 43 10.1016/j.mrgentox.2014.12.003 25726146
    [Google Scholar]
  131. Maletic V. Robinson M. Oakes T. Iyengar S. Ball S.G. Russell J. Neurobiology of depression: An integrated view of key findings. Int. J. Clin. Pract. 2007 61 12 2030 2040 10.1111/j.1742‑1241.2007.01602.x 17944926
    [Google Scholar]
/content/journals/cn/10.2174/011570159X386374250623095520
Loading
/content/journals/cn/10.2174/011570159X386374250623095520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test