Skip to content
2000
image of Diabetes, Alzheimer's Disease Risk Factors, and the Cafeteria Diet: A Comprehensive Review

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multifaceted risk factors, including diet and metabolic dysfunction. The rising prevalence of AD and diabetes has drawn attention to their shared pathophysiological mechanisms. The “cafeteria diet,” characterized by high-fat, high-sugar, and energy-dense foods, has emerged as a significant contributor to metabolic dysfunctions, including obesity and insulin resistance, which are risk factors for both diabetes and neurodegenerative diseases. This study explores the effects of the cafeteria diet on cognitive impairment, AD pathology, and its potential role in exacerbating diabetes-related neurological complications. Animal models were subjected to cafeteria diets, mimicking human dietary patterns, to investigate changes in brain structure, amyloid-beta accumulation, tau hyperphosphorylation, and cognitive function. Additionally, metabolic profiling demonstrated the development of insulin resistance and other hallmarks of diabetes, which were closely correlated with the severity of cognitive deficits. Neuropathological analyses revealed exacerbated amyloid-beta accumulation and increased neuroinflammation, linking dietary-induced diabetes to AD pathophysiology. These findings underscore the critical role of dietary habits in modulating the risk and progression of AD, highlighting the importance of interventions targeting metabolic health to mitigate cognitive decline. This study emphasizes the need for further research to unravel the molecular mechanisms underlying the diet-diabetes-AD axis and develop targeted therapeutic strategies.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X384737250626094315
2025-07-08
2025-10-19
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X384737250626094315/BMS-CN-2025-17.html?itemId=/content/journals/cn/10.2174/011570159X384737250626094315&mimeType=html&fmt=ahah

References

  1. Tahami Monfared A.A. Byrnes M.J. White L.A. Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol. Ther. 2022 11 2 553 569 10.1007/s40120‑022‑00338‑8 35286590
    [Google Scholar]
  2. Sharma R. Abubakar M.D. Bisht P. Rachamalla M. Kumar A. Murti K. Ravichandiran V. Kumar N. Arsenic exposure and amyloid precursor protein processing: A focus on Alzheimer’s disease. Curr. Mol. Pharmacol. 2023 17 1 18761429272806 37921143
    [Google Scholar]
  3. Iarkov A. Mendoza C. Echeverria V. Cholinergic receptor modulation as a target for preventing dementia in Parkinson’s disease. Front. Neurosci. 2021 15 665820 10.3389/fnins.2021.665820 34616271
    [Google Scholar]
  4. Rodini M. De Simone M.S. Caltagirone C. Carlesimo G.A. Accelerated long-term forgetting in neurodegenerative disorders: A systematic review of the literature. Neurosci. Biobehav. Rev. 2022 141 104815 10.1016/j.neubiorev.2022.104815 35961382
    [Google Scholar]
  5. Srivastava P. Tripathi P.N. Sharma P. Rai S.N. Singh S.P. Srivastava R.K. Shankar S. Shrivastava S.K. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur. J. Med. Chem. 2019 163 116 135 10.1016/j.ejmech.2018.11.049 30503937
    [Google Scholar]
  6. Javaid M. Haleem A. Khan I.H. Suman R. Understanding the potential applications of artificial intelligence in agriculture sector. Advanced Agrochem 2023 2 1 15 30 10.1016/j.aac.2022.10.001
    [Google Scholar]
  7. Albert Á. Investigating the role of affective factors in second language learning tasks. Springer 2022 10.1007/978‑3‑031‑20221‑6
    [Google Scholar]
  8. Moore K.B.E. Hung T.J. Fortin J.S. Hyperphosphorylated tau (p-tau) and drug discovery in the context of Alzheimer’s disease and related tauopathies. Drug Discov. Today 2023 28 3 103487 10.1016/j.drudis.2023.103487 36634842
    [Google Scholar]
  9. Tripathi P. Lodhi A. Rai S. Nandi N. Dumoga S. Yadav P. Tiwari A. Singh S. El-Shorbagi A.N. Chaudhary S. Review of pharmacotherapeutic targets in Alzheimer’s disease and its management using traditional medicinal plants. Degener. Neurol. Neuromuscul. Dis. 2024 14 47 74 10.2147/DNND.S452009 38784601
    [Google Scholar]
  10. Castellani R.J. Shanes E.D. McCord M. Reish N.J. Flanagan M.E. Mesulam M.M. Jamshidi P. Neuropathology of anti-amyloid-β immunotherapy: A case report. J. Alzheimers Dis. 2023 93 2 803 813 10.3233/JAD‑221305 37125554
    [Google Scholar]
  11. Ghosh U. Thurber K.R. Yau W.M. Tycko R. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc. Natl. Acad. Sci. USA 2021 118 4 2023089118 10.1073/pnas.2023089118 33431654
    [Google Scholar]
  12. Karunarathne K. Kee T.R. Jeon H. Cazzaro S. Gamage Y.I. Pan J. Woo J.A.A. Kang D.E. Muschol M. Crystal violet selectively detects Aβ oligomers but not fibrils in vitro and in Alzheimer’s disease brain tissue. Biomolecules 2024 14 6 615 10.3390/biom14060615 38927020
    [Google Scholar]
  13. Poddar M.K. Banerjee S. Chakraborty A. Dutta D. Metabolic disorder in Alzheimer’s disease. Metab. Brain Dis. 2021 36 5 781 813 10.1007/s11011‑021‑00673‑z 33638805
    [Google Scholar]
  14. Singh M. Agarwal V. Pancham P. Jindal D. Agarwal S. Rai S. Singh S. Gupta V. A comprehensive review and androgen deprivation therapy and its impact on Alzheimer’s disease risk in older men with prostate cancer. Degener. Neurol. Neuromuscul. Dis. 2024 14 33 46 10.2147/DNND.S445130 38774717
    [Google Scholar]
  15. Rai S.N. Singh C. Singh A. Singh M.P. Singh B.K. Mitochondrial dysfunction: A potential therapeutic target to treat Alzheimer’s disease. Mol. Neurobiol. 2020 57 7 3075 3088 10.1007/s12035‑020‑01945‑y 32462551
    [Google Scholar]
  16. Rai R. Kalar P.L. Jat D. Mishra S.K. Naringenin mitigates nanoparticulate-aluminium induced neuronal degeneration in brain cortex and hippocampus through downregulation of oxidative stress and neuroinflammation. Neurochem. Int. 2024 178 105799 10.1016/j.neuint.2024.105799 38950625
    [Google Scholar]
  17. Duan P. Chen K.J. Wijegunawardena G. Dregni A.J. Wang H.K. Wu H. Hong M. Binding sites of a positron emission tomography imaging agent in Alzheimer’s β-amyloid fibrils studied using 19F solid-state NMR. J. Am. Chem. Soc. 2022 144 3 1416 1430 10.1021/jacs.1c12056 35015530
    [Google Scholar]
  18. Kakeshpour T. Ramanujam V. Barnes C.A. Shen Y. Ying J. Bax A. A lowly populated, transient β-sheet structure in monomeric Aβ1-42 identified by multinuclear NMR of chemical denaturation. Biophys. Chem. 2021 270 106531 10.1016/j.bpc.2020.106531 33453683
    [Google Scholar]
  19. Ke P.C. Zhou R. Serpell L.C. Riek R. Knowles T.P.J. Lashuel H.A. Gazit E. Hamley I.W. Davis T.P. Fändrich M. Otzen D.E. Chapman M.R. Dobson C.M. Eisenberg D.S. Mezzenga R. Half a century of amyloids: Past, present and future. Chem. Soc. Rev. 2020 49 15 5473 5509 10.1039/C9CS00199A 32632432
    [Google Scholar]
  20. Reitz C. Rogaeva E. Beecham G.W. Late-onset vs nonmendelian early-onset Alzheimer disease. Neurol. Genet. 2020 6 5 512 10.1212/NXG.0000000000000512 33225065
    [Google Scholar]
  21. Spina S. La Joie R. Petersen C. Nolan A.L. Cuevas D. Cosme C. Hepker M. Hwang J.H. Miller Z.A. Huang E.J. Karydas A.M. Grant H. Boxer A.L. Gorno-Tempini M.L. Rosen H.J. Kramer J.H. Miller B.L. Seeley W.W. Rabinovici G.D. Grinberg L.T. Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 2021 144 7 2186 2198 10.1093/brain/awab099 33693619
    [Google Scholar]
  22. Qin Q. Yin Y. Wang Y. Lu Y. Tang Y. Jia J. Gene mutations associated with early onset familial Alzheimer’s disease in China: An overview and current status. Mol. Genet. Genomic Med. 2020 8 10 1443 10.1002/mgg3.1443 32767553
    [Google Scholar]
  23. Karagas N. Young J.E. Blue E.E. Jayadev S. The spectrum of genetic risk in Alzheimer disease. Neurol. Genet. 2025 11 1 200224 10.1212/NXG.0000000000200224 39885961
    [Google Scholar]
  24. Martínez-Pulleiro R. García-Murias M. Fidalgo-Díaz M. García-González M.Á. Molecular basis, diagnostic challenges and therapeutic approaches of alport syndrome: A primer for clinicians. Int. J. Mol. Sci. 2021 22 20 11063 10.3390/ijms222011063 34681722
    [Google Scholar]
  25. Saragea P.D. The genetic landscape of early and late-onset Alzheimer’s disease: A review. Acta. Marisiensis Ser Med. 2024 70 4 205 215 10.2478/amma‑2024‑0030
    [Google Scholar]
  26. Prabha S. Sajad M. Hasan G.M. Islam A. Imtaiyaz Hassan M. Thakur S.C. Recent advancement in understanding of Alzheimer’s disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res. Rev. 2024 101 102476 10.1016/j.arr.2024.102476 39222668
    [Google Scholar]
  27. Öztan G. İşsever H. Molecular mechanisms and genetics of Alzheimer’s disease. Turk Biyokim. Derg. 2023 48 3 218 229 10.1515/tjb‑2023‑0049
    [Google Scholar]
  28. Ando K. Nagaraj S. Küçükali F. de Fisenne M.A. Kosa A.C. Doeraene E. Lopez Gutierrez L. Brion J.P. Leroy K. PICALM and Alzheimer’s disease: An update and perspectives. Cells 2022 11 24 3994 10.3390/cells11243994 36552756
    [Google Scholar]
  29. Orobets K.S. Karamyshev A.L. Amyloid precursor protein and Alzheimer’s disease. Int. J. Mol. Sci. 2023 24 19 14794 10.3390/ijms241914794 37834241
    [Google Scholar]
  30. Swarup G. Kanik P. Shekhar V. Gupta S. β-and γ-secretases as therapeutic targets for Alzheimer's disease Targeted Therapy for the Central Nervous System Elsevier 2025 239 263
    [Google Scholar]
  31. Barone E. Di Domenico F. Perluigi M. Butterfield D.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic. Biol. Med. 2021 176 16 33 10.1016/j.freeradbiomed.2021.09.006 34530075
    [Google Scholar]
  32. Abubakar M. Nama L. Ansari M.A. Ansari M.M. Bhardwaj S. Daksh R. Syamala K.L.V. Jamadade M.S. Chhabra V. Kumar D. Kumar N. GLP-1/GIP agonist as an intriguing and ultimate remedy for combating Alzheimer’s disease through its supporting dpp4 inhibitors: A review. Curr. Top. Med. Chem. 2024 24 19 1635 1664 10.2174/0115680266293416240515075450 38803170
    [Google Scholar]
  33. Lalanza J.F. Snoeren E.M.S. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci. Biobehav. Rev. 2021 122 92 119 10.1016/j.neubiorev.2020.11.003 33309818
    [Google Scholar]
  34. Martínez-González M.A. Gea A. Ruiz-Canela M. The Mediterranean diet and cardiovascular health: A critical review. Circ. Res. 2019 124 5 779 798 10.1161/CIRCRESAHA.118.313348 30817261
    [Google Scholar]
  35. van den Brink A.C. Brouwer-Brolsma E.M. Berendsen A.A.M. van de Rest O. The mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease—a review. Adv. Nutr. 2019 10 6 1040 1065 10.1093/advances/nmz054 31209456
    [Google Scholar]
  36. de Bruijn R.F.A.G. Ikram M.A. Cardiovascular risk factors and future risk of Alzheimer’s disease. BMC Med. 2014 12 1 130 10.1186/s12916‑014‑0130‑5 25385322
    [Google Scholar]
  37. Tuttolomondo A. Simonetta I. Daidone M. Mogavero A. Ortello A. Pinto A. Metabolic and vascular effect of the Mediterranean diet. Int. J. Mol. Sci. 2019 20 19 4716 10.3390/ijms20194716 31547615
    [Google Scholar]
  38. Sureda A. Bibiloni M. Julibert A. Bouzas C. Argelich E. Llompart I. Pons A. Tur J. Adherence to the mediterranean diet and inflammatory markers. Nutrients 2018 10 1 62 10.3390/nu10010062 29320413
    [Google Scholar]
  39. Whalen K.A. McCullough M.L. Flanders W.D. Hartman T.J. Judd S. Bostick R.M. Paleolithic and Mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J. Nutr. 2016 146 6 1217 1226 10.3945/jn.115.224048 27099230
    [Google Scholar]
  40. Rainey-Smith S.R. Gu Y. Gardener S.L. Doecke J.D. Villemagne V.L. Brown B.M. Taddei K. Laws S.M. Sohrabi H.R. Weinborn M. Ames D. Fowler C. Macaulay S.L. Maruff P. Masters C.L. Salvado O. Rowe C.C. Scarmeas N. Martins R.N. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl. Psychiatry 2018 8 1 238 10.1038/s41398‑018‑0293‑5 30375373
    [Google Scholar]
  41. Reger M.A. Henderson S.T. Hale C. Cholerton B. Baker L.D. Watson G.S. Hyde K. Chapman D. Craft S. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 2004 25 3 311 314 10.1016/S0197‑4580(03)00087‑3 15123336
    [Google Scholar]
  42. Newman J.C. Covarrubias A.J. Zhao M. Yu X. Gut P. Ng C.P. Huang Y. Haldar S. Verdin E. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 2017 26 3 547 557.e8 10.1016/j.cmet.2017.08.004 28877458
    [Google Scholar]
  43. Yin J.X. Maalouf M. Han P. Zhao M. Gao M. Dharshaun T. Ryan C. Whitelegge J. Wu J. Eisenberg D. Reiman E.M. Schweizer F.E. Shi J. Ketones block amyloid entry and improve cognition in an Alzheimer’s model. Neurobiol. Aging 2016 39 25 37 10.1016/j.neurobiolaging.2015.11.018 26923399
    [Google Scholar]
  44. Versele R. Corsi M. Fuso A. Sevin E. Businaro R. Gosselet F. Fenart L. Candela P. Ketone bodies promote amyloid-β1–40 clearance in a human in vitro blood–brain barrier model. Int. J. Mol. Sci. 2020 21 3 934 10.3390/ijms21030934 32023814
    [Google Scholar]
  45. Kashiwaya Y. Bergman C. Lee J.H. Wan R. King M.T. Mughal M.R. Okun E. Clarke K. Mattson M.P. Veech R.L. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 2013 34 6 1530 1539 10.1016/j.neurobiolaging.2012.11.023 23276384
    [Google Scholar]
  46. Sridharan B. Lee M.J. Ketogenic diet: A promising neuroprotective composition for managing Alzheimer’s diseases and its pathological mechanisms. Curr. Mol. Med. 2022 22 7 640 656 10.2174/1566524021666211004104703 34607541
    [Google Scholar]
  47. Tatulian S.A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today 2022 27 4 1027 1043 10.1016/j.drudis.2022.01.016 35121174
    [Google Scholar]
  48. Ramezani M. Fernando M. Eslick S. Asih P.R. Shadfar S. Bandara E.M.S. Hillebrandt H. Meghwar S. Shahriari M. Chatterjee P. Thota R. Dias C.B. Garg M.L. Martins R.N. Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer’s disease. Front. Neurosci. 2023 17 1297984 10.3389/fnins.2023.1297984 38033541
    [Google Scholar]
  49. Rust R. Sagare A.P. Zhang M. Zlokovic B.V. Kisler K. The blood–brain barrier as a treatment target for neurodegenerative disorders. Expert Opin. Drug Deliv. 2025 22 5 673 692 10.1080/17425247.2025.2480654 40096820
    [Google Scholar]
  50. Sharma A. Devi S. Mannan A. Kumar M. Singh T.G. PPAR-γ signaling and common protective pathways against obesity and Alzheimer’s disease. Curr. Signal Transduct. Ther. 2025 20 1 15743624267214 10.2174/0115743624267214241016103515
    [Google Scholar]
  51. Dye L. Boyle N.B. Champ C. Lawton C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 2017 76 4 443 454 10.1017/S0029665117002014 28889822
    [Google Scholar]
  52. Prickett C. Brennan L. Stolwyk R. Examining the relationship between obesity and cognitive function: A systematic literature review. Obes. Res. Clin. Pract. 2015 9 2 93 113 10.1016/j.orcp.2014.05.001 25890426
    [Google Scholar]
  53. Agustí A. García-Pardo M.P. López-Almela I. Campillo I. Maes M. Romaní-Pérez M. Sanz Y. Interplay between the gut-brain axis, obesity and cognitive function. Front. Neurosci. 2018 12 155 10.3389/fnins.2018.00155 29615850
    [Google Scholar]
  54. Lentoor A.G. Obesity and neurocognitive performance of memory, attention, and executive function. NeuroSci 2022 3 3 376 386 10.3390/neurosci3030027 39483430
    [Google Scholar]
  55. Sánchez-SanSegundo M. Zaragoza-Martí A. Martin-LLaguno, I.; Berbegal, M.; Ferrer-Cascales, R.; Hurtado-Sánchez, J.A. The role of BMI, body fat mass and visceral fat in executive function in individuals with overweight and obesity. Nutrients 2021 13 7 2259 10.3390/nu13072259 34208967
    [Google Scholar]
  56. Obrador E. Salvador R. López-Blanch R. Jihad-Jebbar A. Vallés S.L. Estrela J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants 2020 9 9 901 10.3390/antiox9090901 32971909
    [Google Scholar]
  57. Li H. Ren J. Li Y. Wu Q. Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front. Endocrinol. 2023 14 1134025 10.3389/fendo.2023.1134025 37077347
    [Google Scholar]
  58. Mishra A. Bandopadhyay R. Singh P.K. Mishra P.S. Sharma N. Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis. 2021 36 7 1591 1626 10.1007/s11011‑021‑00806‑4 34387831
    [Google Scholar]
  59. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflammation 2022 19 1 206 10.1186/s12974‑022‑02565‑0 35978311
    [Google Scholar]
  60. Stranahan A.M. Hao S. Dey A. Yu X. Baban B. Blood–brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J. Cereb. Blood Flow Metab. 2016 36 12 2108 2121 10.1177/0271678X16642233 27034250
    [Google Scholar]
  61. Parada Venegas D. De la Fuente M.K. Landskron G. González M.J. Quera R. Dijkstra G. Harmsen H.J.M. Faber K.N. Hermoso M.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 2019 10 277 10.3389/fimmu.2019.00277 30915065
    [Google Scholar]
  62. Sun Y. Zhang H. Zhang X. Wang W. Chen Y. Cai Z. Wang Q. Wang J. Shi Y. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer’s disease. Redox Biol. 2023 62 102690 10.1016/j.redox.2023.102690 37018970
    [Google Scholar]
  63. Colombo A.V. Sadler R.K. Llovera G. Singh V. Roth S. Heindl S. Sebastian Monasor L. Verhoeven A. Peters F. Parhizkar S. Kamp F. Gomez de Aguero M. MacPherson A.J. Winkler E. Herms J. Benakis C. Dichgans M. Steiner H. Giera M. Haass C. Tahirovic S. Liesz A. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife 2021 10 59826 10.7554/eLife.59826 33845942
    [Google Scholar]
  64. Groot C. Villeneuve S. Smith R. Hansson O. Ossenkoppele R. Tau PET imaging in neurodegenerative disorders. J. Nucl Med. 2022 63 20S 26S (Suppl. 1) 10.2967/jnumed.121.263196 35649647
    [Google Scholar]
  65. Cao Y. Zhao L.W. Chen Z.X. Li S.H. New insights in lipid metabolism: Potential therapeutic targets for the treatment of Alzheimer’s disease. Front. Neurosci. 2024 18 1430465 10.3389/fnins.2024.1430465 39323915
    [Google Scholar]
  66. Zhu Y. Verkhratsky A. Chen H. Yi C. Understanding glucose metabolism and insulin action at the blood–brain barrier: Implications for brain health and neurodegenerative diseases. Acta Physiol. 2025 241 2 14283 10.1111/apha.14283 39822067
    [Google Scholar]
  67. Ardanaz C.G. Ramírez M.J. Solas M. Brain metabolic alterations in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 7 3785 10.3390/ijms23073785 35409145
    [Google Scholar]
  68. Kumar V. Kim S.H. Bishayee K. Dysfunctional glucose metabolism in Alzheimer’s disease onset and potential pharmacological interventions. Int. J. Mol. Sci. 2022 23 17 9540 10.3390/ijms23179540 36076944
    [Google Scholar]
  69. Rehman M.U. Sehar N. Dar N.J. Khan A. Arafah A. Rashid S. Rashid S.M. Ganaie M.A. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci. Biobehav. Rev. 2023 144 104961 10.1016/j.neubiorev.2022.104961 36395982
    [Google Scholar]
  70. Spina E. Ferrari R.R. Pellegrini E. Colombo M. Poloni T.E. Guaita A. Davin A. Mitochondrial alterations, oxidative stress, and therapeutic implications in Alzheimer’s disease: A narrative review. Cells 2025 14 3 229 10.3390/cells14030229 39937020
    [Google Scholar]
  71. Abdalla M.M.I. Insulin resistance as the molecular link between diabetes and Alzheimer’s disease. World J. Diabetes 2024 15 7 1430 1447 10.4239/wjd.v15.i7.1430 39099819
    [Google Scholar]
  72. Vinuesa A. Pomilio C. Gregosa A. Bentivegna M. Presa J. Bellotto M. Saravia F. Beauquis J. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Front. Neurosci. 2021 15 653651 10.3389/fnins.2021.653651 33967682
    [Google Scholar]
  73. Azargoonjahromi A. The duality of amyloid-β: Its role in normal and Alzheimer’s disease states. Mol. Brain 2024 17 1 44 10.1186/s13041‑024‑01118‑1 39020435
    [Google Scholar]
  74. Ziolkowska S. Binienda A. Jabłkowski M. Szemraj J. Czarny P. The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2021 22 20 11128 10.3390/ijms222011128 34681787
    [Google Scholar]
  75. Wang Y. Hu H. Liu X. Guo X. Hypoglycemic medicines in the treatment of Alzheimer’s disease: Pathophysiological links between AD and glucose metabolism. Front. Pharmacol. 2023 14 1138499 10.3389/fphar.2023.1138499 36909158
    [Google Scholar]
  76. Kale M.B. Bhondge H.M. Wankhede N.L. Shende P.V. Thanekaer R.P. Aglawe M.M. Rahangdale S.R. Taksande B.G. Pandit S.B. Upaganlawar A.B. Umekar M.J. Kopalli S.R. Koppula S. Navigating the intersection: Diabetes and Alzheimer’s intertwined relationship. Ageing Res. Rev. 2024 100 102415 10.1016/j.arr.2024.102415 39002642
    [Google Scholar]
  77. Peng Y. Yao S. Chen Q. Jin H. Du M. Xue Y. Liu S. True or false? Alzheimer’s disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res. Rev. 2024 99 102383 10.1016/j.arr.2024.102383 38955264
    [Google Scholar]
  78. Adem M.A. Decourt B. Sabbagh M.N. Pharmacological Approaches Using Diabetic Drugs Repurposed for Alzheimer’s Disease. Biomedicines 2024 12 1 99 10.3390/biomedicines12010099 38255204
    [Google Scholar]
  79. Poff A.M. Moss S. Soliven M. D’Agostino D.P. Ketone supplementation: Meeting the needs of the brain in an energy crisis. Front. Nutr. 2021 8 783659 10.3389/fnut.2021.783659 35004814
    [Google Scholar]
  80. Prescott S.L. Logan A.C. The secret life of your microbiome: Why nature and biodiversity are essential to health and happiness. New Society Publishers 2017
    [Google Scholar]
  81. Hughes E. Gut health: Efficacy of supplementation when it comes to IBS. 2020 Available from:
  82. Puppala E.R. Prasad N. Singh M. Prakash A.N. Abubakar M. Adhikari P. Herbal medicines for the management of irritable bowel syndrome and constipation problem. Role of Herbal Medicines: Management of Lifestyle Diseases. Springer 2024 313 342
    [Google Scholar]
  83. Özsürekci C. Arslan S.S. Demir N. Çalışkan H. Şengül Ayçiçek G. Kılınç H.E. Yaşaroğlu Ö.F. Kızılarslanoğlu C. Tuna Doğrul R. Balcı C. Sümer F. Karaduman A. Yavuz B.B. Cankurtaran M. Halil M.G. Timing of dysphagia screening in Alzheimer’s dementia. JPEN J. Parenter. Enteral Nutr. 2020 44 3 516 524 10.1002/jpen.1664 31172554
    [Google Scholar]
  84. Güner M. Baş A.O. Ceylan S. Kahyaoğlu Z. Çöteli S. Ünsal P. Çavuşoğlu Ç. Özsürekci C. Doğu B.B. Cankurtaran M. Halil M.G. Dysphagia is closely related to frailty in mild-to-moderate Alzheimer’s disease. BMC Geriatr. 2023 23 1 304 10.1186/s12877‑023‑04020‑y 37198547
    [Google Scholar]
  85. Yoshimatsu Y. Melgaard D. Westergren A. Skrubbeltrang C. Smithard D.G. The diagnosis of aspiration pneumonia in older persons: A systematic review. Eur. Geriatr. Med. 2022 13 5 1071 1080 10.1007/s41999‑022‑00689‑3 36008745
    [Google Scholar]
  86. Boccardi V. Ruggiero C. Patriti A. Marano L. Diagnostic assessment and management of dysphagia in patients with Alzheimer’s disease. J. Alzheimers Dis. 2016 50 4 947 955 10.3233/JAD‑150931 26836016
    [Google Scholar]
  87. Manabe T. Mizukami K. Akatsu H. Hashizume Y. Ohkubo T. Kudo K. Hizawa N. Factors associated with pneumonia-caused death in older adults with autopsy-confirmed dementia. Intern. Med. 2017 56 8 907 914 10.2169/internalmedicine.56.7879 28420838
    [Google Scholar]
  88. Li C.H. Hsieh S.W. Huang P. Liu H.Y. Chen C.H. Hung C.H. Pharmacological management of dysphagia in patients with Alzheimer’s disease: A narrative review. Curr. Alzheimer Res. 2022 19 11 743 753 10.2174/1567205020666221130091507 36453507
    [Google Scholar]
  89. Kendig M.D. Leigh S.J. Morris M.J. Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neurosci. Biobehav. Rev. 2021 128 233 243 10.1016/j.neubiorev.2021.05.031 34153343
    [Google Scholar]
  90. Colbert D. Colbert’s Healthy Brain Zone: Reverse Memory Loss and Reduce Your Risk of Dementia and Alzheimer’s. Charisma Media 2023
    [Google Scholar]
  91. Baker P. Machado P. Santos T. Sievert K. Backholer K. Hadjikakou M. Russell C. Huse O. Bell C. Scrinis G. Worsley A. Friel S. Lawrence M. Ultra‐processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020 21 12 13126 10.1111/obr.13126 32761763
    [Google Scholar]
  92. Muth A.K. Park S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 2021 40 6 3999 4010 10.1016/j.clnu.2021.04.043 34139473
    [Google Scholar]
  93. Desmet L. Tuning feeding time to prevent the effects of chronodisruption in the gut induced by chronic jetlag. 2022 Available from
    [Google Scholar]
  94. Montégut L. Lopez-Otin C. Magnan C. Kroemer G. Old paradoxes and new opportunities for appetite control in obesity. Trends Endocrinol. Metab. 2021 32 5 264 294 10.1016/j.tem.2021.02.005 33707095
    [Google Scholar]
  95. Chu C.Q. Yu L. Qi G. Mi Y.S. Wu W.Q. Lee Y. Zhai Q.X. Tian F.W. Chen W. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev. 2022 135 104556 10.1016/j.neubiorev.2022.104556 35122783
    [Google Scholar]
  96. De Marchi F. Vignaroli F. Mazzini L. Comi C. Tondo G. New insights into the relationship between nutrition and neuroinflammation in Alzheimer’s disease: Preventive and therapeutic perspectives. CNS Neurol. Disord. Drug Targets 2024 23 5 614 627
    [Google Scholar]
  97. Vellapandian C. Singh A. High risk of metabolic complications due to high consumption of processed foods. Curr. Nutr. Food Sci. 2023 19 3 198 208 10.2174/1573401318666220622162038
    [Google Scholar]
  98. Liu S. Gao J. Zhu M. Liu K. Zhang H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol. Neurobiol. 2020 57 12 5026 5043 10.1007/s12035‑020‑02073‑3 32829453
    [Google Scholar]
  99. Ezkurdia A. Ramírez M.J. Solas M. Metabolic syndrome as a risk factor for Alzheimer’s disease: A focus on insulin resistance. Int. J. Mol. Sci. 2023 24 5 4354 10.3390/ijms24054354 36901787
    [Google Scholar]
  100. Bradley D. Clusterin as a potential biomarker of obesity-related Alzheimer’s disease risk. Biomark. Insights 2020 15 10.1177/1177271920964108 33110346
    [Google Scholar]
  101. Kennedy, GI Fitness and Aortic Stiffness: Modifiable Predictors of Cognitive Ageing; Swinburne, 2020
    [Google Scholar]
  102. Kuhn H.G. Skau S. Nyberg J. A lifetime perspective on risk factors for cognitive decline with a special focus on early events. Cereb Circ. Cogn Behav. 2024 6 100217 10.1016/j.cccb.2024.100217 39071743
    [Google Scholar]
  103. Chen J.H. Lu L.W. Ge Q. Feng D. Yu J. Liu B. Zhang R. Zhang X. Ouyang C. Chen F. Missing puzzle pieces of time-restricted-eating (TRE) as a long-term weight-loss strategy in overweight and obese people? A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2023 63 15 2331 2347 10.1080/10408398.2021.1974335 34553667
    [Google Scholar]
  104. Costache A.D. Ignat B.E. Grosu C. Mastaleru A. Abdulan I. Oancea A. Roca M. Leon M.M. Badescu M.C. Luca S. Jigoranu A.R. Chetran A. Mitu O. Costache I.I. Mitu F. Inflammatory pathways in overweight and obese persons as a potential mechanism for cognitive impairment and earlier onset Alzeihmer’s dementia in the general population: A narrative review. Biomedicines 2023 11 12 3233 10.3390/biomedicines11123233 38137454
    [Google Scholar]
  105. Nakamura H. Noguchi-Shinohara M. Ishimiya-Jokaji M. Kobayashi Y. Isa M. Ide K. Kawano T. Kawashiri S. Uchida K. Tatewaki Y. Taki Y. Ohara T. Ninomiya T. Ono K. Brain atrophy in normal older adult links tooth loss and diet changes to future cognitive decline. NPJ Aging 2024 10 1 20 10.1038/s41514‑024‑00146‑4 38519528
    [Google Scholar]
  106. Dominguez L.J. Veronese N. Vernuccio L. Catanese G. Inzerillo F. Salemi G. Barbagallo M. Nutrition, physical activity, and other lifestyle factors in the prevention of cognitive decline and dementia. Nutrients 2021 13 11 4080 10.3390/nu13114080 34836334
    [Google Scholar]
  107. Khan I. Hussain M. Jiang B. Zheng L. Pan Y. Hu J. Khan A. Ashraf A. Zou X. Omega-3 long-chain polyunsaturated fatty acids: Metabolism and health implications. Prog. Lipid Res. 2023 92 101255 10.1016/j.plipres.2023.101255 37838255
    [Google Scholar]
  108. Zhu R. Chen M. Zhang Z. Wu T. Zhao W.H. Dietary fatty acids and risk for Alzheimer’s disease, dementia, and mild cognitive impairment: A prospective cohort meta-analysis. Nutrition 2021 90 111355 10.1016/j.nut.2021.111355 34218119
    [Google Scholar]
  109. Ooi K.L.M. Vacy K. Boon W.C. Fatty acids and beyond: Age and Alzheimer’s disease related changes in lipids reveal the neuro-nutraceutical potential of lipids in cognition. Neurochem. Int. 2021 149 105143 10.1016/j.neuint.2021.105143 34311029
    [Google Scholar]
  110. Currenti W. Godos J. Alanazi A.M. Lanza G. Ferri R. Caraci F. Grosso G. Galvano F. Castellano S. Dietary fats and cognitive status in Italian middle-old adults. Nutrients 2023 15 6 1429 10.3390/nu15061429 36986159
    [Google Scholar]
  111. Mertaş B. Boşgelmez İ.İ. The role of genetic, environmental, and dietary factors in Alzheimer’s disease: A narrative review. Int. J. Mol. Sci. 2025 26 3 1222 10.3390/ijms26031222 39940989
    [Google Scholar]
  112. Cheng Y. Song Y. Chen H. Li Q. Gao Y. Lu G. Luo C. Ferroptosis mediated by lipid reactive oxygen species: A possible causal link of neuroinflammation to neurological disorders. Oxid. Med. Cell. Longev. 2021 2021 1 5005136 10.1155/2021/5005136 34725564
    [Google Scholar]
  113. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2024 pwae026 38733347
    [Google Scholar]
  114. Yang Y. Zhong Z. Wang B. Xia X. Yao W. Huang L. Wang Y. Ding W. Early-life high-fat diet-induced obesity programs hippocampal development and cognitive functions via regulation of gut commensal Akkermansia muciniphila. Neuropsychopharmacology 2019 44 12 2054 2064 10.1038/s41386‑019‑0437‑1 31207607
    [Google Scholar]
  115. Paulo S.L. Miranda-Lourenço C. Belo R.F. Rodrigues R.S. Fonseca-Gomes J. Tanqueiro S.R. Geraldes V. Rocha I. Sebastião A.M. Xapelli S. Diógenes M.J. High caloric diet induces memory impairment and disrupts synaptic plasticity in aged rats. Curr. Issues Mol. Biol. 2021 43 3 2305 2319 10.3390/cimb43030162 34940136
    [Google Scholar]
  116. Brassard S.L. Balodis I.M. A review of effort-based decision-making in eating and weight disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 110 110333 10.1016/j.pnpbp.2021.110333 33905755
    [Google Scholar]
  117. Lopez-Jimenez F. Almahmeed W. Bays H. Cuevas A. Di Angelantonio E. le Roux C.W. Sattar N. Sun M.C. Wittert G. Pinto F.J. Wilding J.P.H. Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 2022 29 17 2218 2237 10.1093/eurjpc/zwac187 36007112
    [Google Scholar]
  118. Valladolid-Acebes I. Hippocampal leptin resistance and cognitive decline: Mechanisms, therapeutic strategies and clinical implications. Biomedicines 2024 12 11 2422 10.3390/biomedicines12112422 39594988
    [Google Scholar]
  119. Callaghan R. A comprehensive review on the role of obesity in functional cognition (Part II): Cognition impairment and underlying mechanisms, and development of neurodegenerative diseases. Science Insights 2023 43 3 1049 1057 10.15354/si.23.re701
    [Google Scholar]
  120. Tian Z. Ji X. Liu J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects. Int. J. Mol. Sci. 2022 23 11 6224 10.3390/ijms23116224 35682903
    [Google Scholar]
  121. Gómez-Apo E. Mondragón-Maya A. Ferrari-Díaz M. Silva-Pereyra J. Structural brain changes associated with overweight and obesity. J. Obes. 2021 2021 1 1 18 10.1155/2021/6613385 34327017
    [Google Scholar]
  122. Soleymani Y. Batouli S.A.H. Ahangar A.A. Pourabbasi A. Association of glycosylated hemoglobin concentrations with structural and functional brain changes in the normoglycemic population: A systematic review. J. Neuroendocrinol. 2024 36 11 13437 10.1111/jne.13437 39099230
    [Google Scholar]
  123. Mullen M.T. The Associations between Body Weight and Executive Function. University of Central Lancashire 2023
    [Google Scholar]
  124. Tang F. Zhu Y. Jayawardena D. Jin G. Jiang Y. Sleep quality and cognitive functioning among Chinese older adults living in the US: A mixed-effects model analysis. BMC Geriatr. 2025 25 1 52 10.1186/s12877‑024‑05644‑4 39844098
    [Google Scholar]
  125. Zhang J. Jia X. Li Y. Zheng D. Guo X. Li H. Yang Q. The association between serum uric acid and cognitive function among middle-aged and older adults without hyperuricemia: The mediating role of depressive symptoms. J. Gerontol. A Biol. Sci. Med. Sci. 2024 79 1 glad203 10.1093/gerona/glad203 37606588
    [Google Scholar]
  126. Gupta U.C. Gupta S.C. Lifestyle, environment, and dietary measures impacting cognitive impairment: The evidence base for cognitive subtypes. Curr. Nutr. Food Sci. 2024 20 10 1177 1188 10.2174/0115734013255068231226053226
    [Google Scholar]
  127. Kucukkarapinar M. Simsek G. Ucar O. Koca A.O. Yetkin İ. Cosar B. Reliable biomarkers for decreased spatial navigation in the young people with obesity: Increased serum CRP and QUIN levels. Research Square [preprint] 2022 10.21203/rs.3.rs‑2067393/v1
    [Google Scholar]
  128. Sapolsky R.M. Determined: Life. without free will. New York:Random House 2023
    [Google Scholar]
  129. Lenart-Bugla M. Szcześniak D. Bugla B. Kowalski K. Niwa S. Rymaszewska J. Misiak B. The association between allostatic load and brain: A systematic review. Psychoneuroendocrinology 2022 145 105917 10.1016/j.psyneuen.2022.105917 36113380
    [Google Scholar]
  130. Niu Y. Yu W. Kou X. Wu S. Liu M. Chen C. Ji J. Shao Y. Xue Z. Bioactive compounds regulate appetite through the melanocortin system: A review. Food Funct. 2024 15 24 11811 11833 10.1039/D4FO04024D 39506527
    [Google Scholar]
  131. Khanna D. Khanna S. Khanna P. Kahar P. Patel B.M. Obesity: A chronic low-grade inflammation and its markers. Cureus 2022 14 2 22711 10.7759/cureus.22711 35386146
    [Google Scholar]
  132. Varra F.N. Varras M. Varra V.K. Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation mediating treatment options (Review). Mol. Med. Rep. 2024 29 6 95 10.3892/mmr.2024.13219 38606791
    [Google Scholar]
  133. Wang J. Zhang J. Yu Z.L. Chung S.K. Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer’s disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res. Rev. 2024 99 102416 10.1016/j.arr.2024.102416 39002644
    [Google Scholar]
  134. Janssen J.A.M.J.L. Overnutrition, hyperinsulinemia and ectopic fat: It is time for a paradigm shift in the management of type 2 diabetes. Int. J. Mol. Sci. 2024 25 10 5488 10.3390/ijms25105488 38791525
    [Google Scholar]
  135. Mirabelli M. Chiefari E. Arcidiacono B. Corigliano D.M. Brunetti F.S. Maggisano V. Russo D. Foti D.P. Brunetti A. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients 2020 12 4 1066 10.3390/nu12041066 32290535
    [Google Scholar]
  136. Cammisuli D.M. Franzoni F. Scarfò G. Fusi J. Gesi M. Bonuccelli U. Daniele S. Martini C. Castelnuovo G. What does the brain have to keep working at its best? Resilience mechanisms such as antioxidants and brain/cognitive reserve for counteracting Alzheimer’s disease degeneration. Biology (Basel) 2022 11 5 650 10.3390/biology11050650 35625381
    [Google Scholar]
  137. Perdoncin M. Konrad A. Wyner J.R. Lohana S. Pillai S.S. Pereira D.G. Lakhani H.V. Sodhi K. A review of miRNAs as biomarkers and effect of dietary modulation in obesity associated cognitive decline and neurodegenerative disorders. Front. Mol. Neurosci. 2021 14 756499 10.3389/fnmol.2021.756499 34690698
    [Google Scholar]
  138. Crispino M. Trinchese G. Penna E. Cimmino F. Catapano A. Villano I. Perrone-Capano C. Mollica M.P. Interplay between peripheral and central inflammation in obesity-promoted disorders: The impact on synaptic mitochondrial functions. Int. J. Mol. Sci. 2020 21 17 5964 10.3390/ijms21175964 32825115
    [Google Scholar]
  139. Rubino F. Cummings D.E. Eckel R.H. Cohen R.V. Wilding J.P.H. Brown W.A. Stanford F.C. Batterham R.L. Farooqi I.S. Farpour-Lambert N.J. le Roux C.W. Sattar N. Baur L.A. Morrison K.M. Misra A. Kadowaki T. Tham K.W. Sumithran P. Garvey W.T. Kirwan J.P. Fernández-Real J.M. Corkey B.E. Toplak H. Kokkinos A. Kushner R.F. Branca F. Valabhji J. Blüher M. Bornstein S.R. Grill H.J. Ravussin E. Gregg E. Al Busaidi N.B. Alfaris N.F. Al Ozairi E. Carlsson L.M.S. Clément K. Després J.P. Dixon J.B. Galea G. Kaplan L.M. Laferrère B. Laville M. Lim S. Luna Fuentes J.R. Mooney V.M. Nadglowski J. Urudinachi A. Olszanecka-Glinianowicz M. Pan A. Pattou F. Schauer P.R. Tschöp M.H. van der Merwe M.T. Vettor R. Mingrone G. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025 13 3 221 262 10.1016/S2213‑8587(24)00316‑4 39824205
    [Google Scholar]
  140. Simunkova M. Alwasel S.H. Alhazza I.M. Jomova K. Kollar V. Rusko M. Valko M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019 93 9 2491 2513 10.1007/s00204‑019‑02538‑y 31440798
    [Google Scholar]
  141. Grewal A.K. Singh T.G. Sharma D. Sharma V. Singh M. Rahman M.H. Najda A. Walasek-Janusz M. Kamel M. Albadrani G.M. Akhtar M.F. Saleem A. Abdel-Daim M.M. Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed. Pharmacother. 2021 140 111729 10.1016/j.biopha.2021.111729 34044274
    [Google Scholar]
  142. Hosseini Adarmanabadi S.M.H. Karami Gilavand H. Taherkhani A. Sadat Rafiei S.K. Shahrokhi M. Faaliat S. Biabani M. Abil E. Ansari A. Sheikh Z. Poudineh M. Khalaji A. ShojaeiBaghini, M.; Koorangi, A.; Deravi, N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci. Rep 2023 14 1 20 10.1016/j.ibneur.2022.10.015 36507190
    [Google Scholar]
  143. Youn K. Ho C.T. Jun M. Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s disease: An overview of pre-clinical studies focused on β-amyloid peptide. Food Sci. Hum. Wellness 2022 11 3 483 493 10.1016/j.fshw.2021.12.006
    [Google Scholar]
  144. El Sayed N.S. Ghoneum M.H. Antia, a natural antioxidant product, attenuates cognitive dysfunction in streptozotocin-induced mouse model of sporadic Alzheimer’s disease by targeting the amyloidogenic, inflammatory, autophagy, and oxidative stress pathways. Oxid. Med. Cell. Longev. 2020 2020 1 1 14 10.1155/2020/4386562 32655767
    [Google Scholar]
  145. Sun X. Li L. Dong Q.X. Zhu J. Huang Y. Hou S. Yu X. Liu R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation 2021 18 1 131 10.1186/s12974‑021‑02182‑3 34116706
    [Google Scholar]
  146. Hölscher C. Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opin. Investig. Drugs 2020 29 4 333 348 10.1080/13543784.2020.1738383 32175781
    [Google Scholar]
  147. Ayaz M. Mosa O.F. Nawaz A. Hamdoon A.A.E. Elkhalifa M.E.M. Sadiq A. Ullah F. Ahmed A. Kabra A. Khan H. Murthy H.C.A. Neuroprotective potentials of Lead phytochemicals against Alzheimer’s disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. Phytomedicine 2024 124 155272 10.1016/j.phymed.2023.155272 38181530
    [Google Scholar]
  148. Rezaee N. Fernando W.M.A.D.B. Hone E. Sohrabi H.R. Johnson S.K. Gunzburg S. Martins R.N. Potential of Sorghum polyphenols to prevent and treat Alzheimer’s disease: A review article. Front. Aging Neurosci. 2021 13 729949 10.3389/fnagi.2021.729949 34690742
    [Google Scholar]
  149. Jankowska A. Wesołowska A. Pawłowski M. Chłoń-Rzepa G. Diabetic theory in anti-Alzheimer’s drug research and development-Part 1: Therapeutic potential of antidiabetic agents. Curr. Med. Chem. 2020 27 39 6658 6681 10.2174/0929867326666191011144818 31604406
    [Google Scholar]
  150. Deledda A. Annunziata G. Tenore G.C. Palmas V. Manzin A. Velluzzi F. Diet-derived antioxidants and their role in inflammation, obesity and gut microbiota modulation. Antioxidants 2021 10 5 708 10.3390/antiox10050708 33946864
    [Google Scholar]
  151. Weiner M.W. Veitch D.P. Aisen P.S. Beckett L.A. Cairns N.J. Green R.C. Harvey D. Jack C.R. Jagust W. Morris J.C. Petersen R.C. Saykin A.J. Shaw L.M. Toga A.W. Trojanowski J.Q. Recent publications from the Alzheimer’s disease neuroimaging initiative: Reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017 13 4 e1 e85 10.1016/j.jalz.2016.11.007 28342697
    [Google Scholar]
  152. Kuźniar J. Kozubek P. Czaja M. Leszek J. Correlation between Alzheimer’s disease and gastrointestinal tract disorders. Nutrients 2024 16 14 2366 10.3390/nu16142366 39064809
    [Google Scholar]
  153. Tyagi A. Pugazhenthi S. Targeting insulin resistance to treat cognitive dysfunction. Mol. Neurobiol. 2021 58 6 2672 2691 10.1007/s12035‑021‑02283‑3 33483903
    [Google Scholar]
  154. Mehan S. Bhalla S. Siddiqui E.M. Sharma N. Shandilya A. Khan A. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 2022 12 31 59 10.2147/DNND.S247153 35300067
    [Google Scholar]
  155. Kim J. Influence of Microbiome-Vagal-Brain Signaling on Appetitive Feeding Behavior. University of Georgia 2021
    [Google Scholar]
  156. Frank C.J. Effects of Aerobic Exercise on Rage and LRP1 in STZ and HFD Models of Diabetes: Relationship With Cognitive Function and Aβ Clearance. State University of New York at Albany 2023
    [Google Scholar]
  157. Dutheil S. Watson L.S. Davis R.E. Snyder G.L. Lumateperone normalizes pathological levels of acute inflammation through important pathways known to be involved in mood regulation. J. Neurosci. 2023 43 5 863 877 10.1523/JNEUROSCI.0984‑22.2022 36549907
    [Google Scholar]
  158. Kirvalidze M. Hodkinson A. Storman D. Fairchild T.J. Bała M.M. Beridze G. Zuriaga A. Brudasca N.I. Brini S. The role of glucose in cognition, risk of dementia, and related biomarkers in individuals without type 2 diabetes mellitus or the metabolic syndrome: A systematic review of observational studies. Neurosci. Biobehav. Rev. 2022 135 104551 10.1016/j.neubiorev.2022.104551 35104494
    [Google Scholar]
  159. Mashhadi F. Roudi F. Aminalroaya R. Pouryazdanpanah M. Khorasanchi Z. Dietary recommendations for managing dementia. Nutrition in Brain Aging and Dementia. Springer 2024 291 317 10.1007/978‑981‑97‑4117‑5_14
    [Google Scholar]
  160. Abyadeh M. Gupta V. Paulo J.A. Mahmoudabad A.G. Shadfar S. Mirshahvaladi S. Gupta V. Nguyen C.T.O. Finkelstein D.I. You Y. Haynes P.A. Salekdeh G.H. Graham S.L. Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regen. Res. 2024 19 6 1262 1276 10.4103/1673‑5374.386406 37905874
    [Google Scholar]
  161. Lewis A.R. Singh S. Youssef F.F. Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon 2019 5 3 01412 10.1016/j.heliyon.2019.e01412 30976688
    [Google Scholar]
  162. Tang M. Guo J. Guo R. Xu S. Lou Q. Hu Q. Li W. Yu J. Yao Q. Wang Q. Progress of research and application of non-pharmacologic intervention in Alzheimer’s disease. J. Alzheimers Dis. 2024 102 2 275 294 10.1177/13872877241289396 39573867
    [Google Scholar]
  163. Lv W. Song J. Nowshin Raka R. Sun J. Shi G. Wu H. Xiao J. Xu D. Effects of food emulsifiers on high fat-diet-induced obesity, intestinal inflammation, changes in bile acid profile, and liver dysfunction. Food Res. Int. 2023 173 Pt 1 113302 10.1016/j.foodres.2023.113302 37803614
    [Google Scholar]
  164. Lee H.J. Seo H.I. Cha H.Y. Yang Y.J. Kwon S.H. Yang S.J. Diabetes and Alzheimer’s disease: Mechanisms and nutritional aspects. Clin. Nutr. Res. 2018 7 4 229 240 10.7762/cnr.2018.7.4.229 30406052
    [Google Scholar]
  165. Gentile F. Doneddu P.E. Riva N. Nobile-Orazio E. Quattrini A. Diet, microbiota and brain health: Unraveling the network intersecting metabolism and neurodegeneration. Int. J. Mol. Sci. 2020 21 20 7471 10.3390/ijms21207471 33050475
    [Google Scholar]
  166. Sighencea M.G. Popescu R.Ș. Trifu S.C. From fundamentals to innovation in Alzheimer’s disease: Molecular findings and revolutionary therapies. Int. J. Mol. Sci. 2024 25 22 12311 10.3390/ijms252212311 39596378
    [Google Scholar]
  167. Batch J.T. Lamsal S.P. Adkins M. Sultan S. Ramirez M.N. Advantages and disadvantages of the ketogenic diet: A review article. Cureus 2020 12 8 9639 10.7759/cureus.9639 32923239
    [Google Scholar]
  168. Brownlow M.L. Benner L. D’Agostino D. Gordon M.N. Morgan D. Ketogenic diet improves motor performance but not cognition in two mouse models of Alzheimer’s pathology. PLoS One 2013 8 9 75713 10.1371/journal.pone.0075713 24069439
    [Google Scholar]
  169. Xu Y. Jiang C. Wu J. Liu P. Deng X. Zhang Y. Peng B. Zhu Y. Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer’s disease. CNS Neurosci. Ther. 2022 28 4 580 592 10.1111/cns.13779 34889516
    [Google Scholar]
  170. Koh S. Dupuis N. Auvin S. Ketogenic diet and neuroinflammation. Epilepsy Res. 2020 167 106454 10.1016/j.eplepsyres.2020.106454 32987244
    [Google Scholar]
  171. Campolim C.M. Schimenes B.C. Veras M.M. Kim Y.B. Prada P.O. Air pollution accelerates the development of obesity and Alzheimer’s disease: The role of leptin and inflammation - A mini-review. Front. Immunol. 2024 15 1401800 10.3389/fimmu.2024.1401800 38933275
    [Google Scholar]
  172. Browne S. Minozzi S. Bellisario C. Sweeney M.R. Susta D. Effectiveness of interventions aimed at improving dietary behaviours among people at higher risk of or with chronic non-communicable diseases: An overview of systematic reviews. Eur. J. Clin. Nutr. 2019 73 1 9 23 10.1038/s41430‑018‑0327‑3 30353122
    [Google Scholar]
  173. Moradell A. Casajús J.A. Moreno L.A. Vicente-Rodríguez G. Perspectives on diet and exercise interaction for healthy aging: Opportunities to reduce malnutrition risk and optimize fitness. Nutrients 2025 17 3 596 10.3390/nu17030596 39940452
    [Google Scholar]
  174. Evert A.B. Dennison M. Gardner C.D. Garvey W.T. Lau K.H.K. MacLeod J. Mitri J. Pereira R.F. Rawlings K. Robinson S. Saslow L. Uelmen S. Urbanski P.B. Yancy W.S. Nutrition therapy for adults with diabetes or prediabetes: A consensus report. Diabetes Care 2019 42 5 731 754 10.2337/dci19‑0014 31000505
    [Google Scholar]
  175. Zhang R. Zhang M. Wang P. The intricate interplay between dietary habits and cognitive function: Insights from the gut-brain axis. Front. Nutr. 2025 12 1539355 10.3389/fnut.2025.1539355 39944956
    [Google Scholar]
  176. Santiago J.A. Potashkin J.A. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front. Aging Neurosci. 2023 15 1185671 10.3389/fnagi.2023.1185671 37304072
    [Google Scholar]
  177. Asimakidou E. Saipuljumri E.N. Lo C.H. Zeng J. Role of metabolic dysfunction and inflammation along the liver–brain axis in animal models with obesity-induced neurodegeneration. Neural Regen. Res. 2025 20 4 1069 1076 10.4103/NRR.NRR‑D‑23‑01770 38989938
    [Google Scholar]
  178. Akhtar A. Singh S. Kaushik R. Awasthi R. Behl T. Types of memory, dementia, Alzheimer’s disease, and their various pathological cascades as targets for potential pharmacological drugs. Ageing Res. Rev. 2024 96 102289 10.1016/j.arr.2024.102289 38582379
    [Google Scholar]
  179. Stefaniak O. Dobrzyńska M. Drzymała-Czyż S. Przysławski J. Diet in the prevention of Alzheimer’s disease: Current knowledge and future research requirements. Nutrients 2022 14 21 4564 10.3390/nu14214564 36364826
    [Google Scholar]
  180. Li Z. Li S. Xiao Y. Zhong T. Yu X. Wang L. Nutritional intervention for diabetes mellitus with Alzheimer’s disease. Front. Nutr. 2022 9 1046726 10.3389/fnut.2022.1046726 36458172
    [Google Scholar]
  181. Kciuk M. Kruczkowska W. Gałęziewska J. Wanke K. Kałuzińska-Kołat Ż. Aleksandrowicz M. Kontek R. Alzheimer’s disease as type 3 diabetes: Understanding the link and implications. Int. J. Mol. Sci. 2024 25 22 11955 10.3390/ijms252211955 39596023
    [Google Scholar]
  182. Sharma P. Gaur V.K. Srivastava J.K. Diet and nutrition in Alzheimer’s disease and healthy aging. Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease Springer Singapore 2019 22 183 208 10.1007/978‑981‑13‑9636‑6_10
    [Google Scholar]
  183. Thapa A. Carroll N. Dietary modulation of oxidative stress in Alzheimer’s disease. Int. J. Mol. Sci. 2017 18 7 1583 10.3390/ijms18071583 28753984
    [Google Scholar]
  184. Dutta B.J. Singh S. Seksaria S. Das Gupta G. Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol. Res. 2022 182 106358 10.1016/j.phrs.2022.106358 35863719
    [Google Scholar]
  185. Gaspar J.M. Baptista F.I. Macedo M.P. Ambrósio A.F. Inside the diabetic brain: Role of different players involved in cognitive decline. ACS Chem. Neurosci. 2016 7 2 131 142 10.1021/acschemneuro.5b00240 26667832
    [Google Scholar]
  186. Tamura Y. Omura T. Toyoshima K. Araki A. Nutrition management in older adults with diabetes: A review on the importance of shifting prevention strategies from metabolic syndrome to frailty. Nutrients 2020 12 11 3367 10.3390/nu12113367 33139628
    [Google Scholar]
  187. Damanik J. Yunir E. Type 2 diabetes mellitus and cognitive impairment. Acta Med. Indones. 2021 53 2 213 220 34251351
    [Google Scholar]
  188. Mian M. Tahiri J. Eldin R. Altabaa M. Sehar U. Reddy P.H. Overlooked cases of mild cognitive impairment: Implications to early Alzheimer’s disease. Ageing Res. Rev. 2024 98 102335 10.1016/j.arr.2024.102335 38744405
    [Google Scholar]
  189. Bhatt S. Puli L. Patil C.R. Role of reactive oxygen species in the progression of Alzheimer’s disease. Drug Discov. Today 2021 26 3 794 803 10.1016/j.drudis.2020.12.004 33306995
    [Google Scholar]
  190. Tamagno E. Guglielmotto M. Vasciaveo V. Tabaton M. Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: The chicken or the egg? Antioxidants 2021 10 9 1479 10.3390/antiox10091479 34573112
    [Google Scholar]
/content/journals/cn/10.2174/011570159X384737250626094315
Loading
/content/journals/cn/10.2174/011570159X384737250626094315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test