Skip to content
2000
image of Neuropharmacological Insights into Glutamate Homeostasis in Post-stroke Depression Regulated by Astrocytes

Abstract

Stroke patients often experience multiple functional impairments, including difficulties with swallowing, speech, cognition, and motor skills, which can lead to symptoms such as emotional distress and cognitive deficits. Approximately one-third of post-stroke patients may develop post-stroke depression (PSD), significantly hindering recovery and increasing the burden on families and healthcare systems. This review focuses on the underlying mechanisms of PSD, emphasizing the glutamatergic hypothesis. As the primary excitatory neurotransmitter, glutamate plays a central role in neural-signaling. However, excessive glutamate accumulation can cause neuronal damage, making it a key mechanism in the development of PSD. Astrocytes are crucial for maintaining glutamate homeostasis by clearing excess glutamate and regulating its synthesis and transport, thereby preventing excitotoxicity. Following a stroke, astrocytic dysfunction—characterized by overactivation and inflammatory responses—can exacerbate neuronal injury and further contribute to the emergence of depressive symptoms. This article also highlights potential therapeutic approaches targeting the glutamatergic system, such as NMDA receptor antagonists, AMPA receptor antagonists, and modulators of glutamate transporters, as well as other types (., Chinese medicine, herbal medicine, and targeted pathways acting on neurons). These strategies offer promising avenues for PSD treatment. Future studies should delve deeper into the molecular mechanisms by which astrocytes regulate glutamate homeostasis, providing a robust foundation for the precision treatment of post-stroke depression.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X379476250611052236
2025-06-30
2025-10-29
Loading full text...

Full text loading...

References

  1. Lekoubou A. Nguyen C. Kwon M. Nyalundja A.D. Agrawal A. Post-stroke everything. Curr. Neurol. Neurosci. Rep. 2023 23 11 785 800 10.1007/s11910‑023‑01308‑9 37837566
    [Google Scholar]
  2. Cai W. Mueller C. Li Y.J. Shen W.D. Stewart R. Post stroke depression and risk of stroke recurrence and mortality: A systematic review and meta-analysis. Ageing Res. Rev. 2019 50 102 109 10.1016/j.arr.2019.01.013 30711712
    [Google Scholar]
  3. Harciarek M. Mańkowska A. Hemispheric stroke: Mood disorders. Handb. Clin. Neurol. 2021 183 155 167 10.1016/B978‑0‑12‑822290‑4.00007‑4 34389115
    [Google Scholar]
  4. Zhang X. Zhang Y. Liu Y. Yao Q. Effectiveness of mirror therapy on upper limb function, activities of daily living, and depression in post-stroke depression patients. Turk. J. Phys. Med. Rehabil. 2021 67 3 365 369 10.5606/tftrd.2021.6635 34870125
    [Google Scholar]
  5. Das J. G K, R. Post stroke depression: The sequelae of cerebral stroke. Neurosci. Biobehav. Rev. 2018 90 104 114 10.1016/j.neubiorev.2018.04.005 29656030
    [Google Scholar]
  6. Zhou H. Wei Y.J. Xie G.Y. Research progress on post-stroke depression. Exp. Neurol. 2024 373 114660 10.1016/j.expneurol.2023.114660 38141804
    [Google Scholar]
  7. Zhan Q. Kong F. Mechanisms associated with post-stroke depression and pharmacologic therapy. Front. Neurol. 2023 14 1274709 10.3389/fneur.2023.1274709 38020612
    [Google Scholar]
  8. Villa R.F. Ferrari F. Moretti A. Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacol. Ther. 2018 184 131 144 10.1016/j.pharmthera.2017.11.005 29128343
    [Google Scholar]
  9. Wang Z. Shi Y. Liu F. Jia N. Gao J. Pang X. Deng F. Diversiform etiologies for post-stroke depression. Front. Psychiatry 2019 9 761 10.3389/fpsyt.2018.00761 30728786
    [Google Scholar]
  10. Feng X. Ma X. Li J. Zhou Q. Liu Y. Song J. Liu J. Situ Q. Wang L. Zhang J. Lin F. Inflammatory pathogenesis of post-stroke depression. Aging Dis. 2024 16 1 209 238 38377025
    [Google Scholar]
  11. Guo J. Wang J. Sun W. Liu X. The advances of post-stroke depression: 2021 update. J. Neurol. 2022 269 3 1236 1249 10.1007/s00415‑021‑10597‑4 34052887
    [Google Scholar]
  12. Fioranelli M. Roccia M.G. Przybylek B. Garo M.L. The role of brain-derived neurotrophic factor (BDNF) in depression and cardiovascular disease: A systematic review. Life 2023 13 10 1967 10.3390/life13101967 37895349
    [Google Scholar]
  13. Robinson R.G. Jorge R.E. Post-stroke depression: A review. Am. J. Psychiatry 2016 173 3 221 231 10.1176/appi.ajp.2015.15030363 26684921
    [Google Scholar]
  14. Wen L. Yan C. Zheng W. Li Y. Wang Y. Qu M. Metabolic alterations and related biological functions of post-stroke depression in ischemic stroke patients. Neuropsychiatr. Dis. Treat. 2023 19 1555 1564 10.2147/NDT.S415141 37435550
    [Google Scholar]
  15. Volterra A. Meldolesi J. Astrocytes, from brain glue to communication elements: The revolution continues. Nat. Rev. Neurosci. 2005 6 8 626 640 10.1038/nrn1722 16025096
    [Google Scholar]
  16. Duman R.S. Aghajanian G.K. Synaptic dysfunction in depression: Potential therapeutic targets. Science 2012 338 6103 68 72 10.1126/science.1222939 23042884
    [Google Scholar]
  17. Gruenbaum B.F. Kutz R. Zlotnik A. Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther. Adv. Psychopharmacol. 2020 10 2045125320903951 10.1177/2045125320903951 32110376
    [Google Scholar]
  18. Andersen J.V. Markussen K.H. Jakobsen E. Schousboe A. Waagepetersen H.S. Rosenberg P.A. Aldana B.I. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021 196 108719 10.1016/j.neuropharm.2021.108719 34273389
    [Google Scholar]
  19. Armada-Moreira A. Gomes J.I. Pina C.C. Savchak O.K. Gonçalves-Ribeiro J. Rei N. Pinto S. Morais T.P. Martins R.S. Ribeiro F.F. Sebastião A.M. Crunelli V. Vaz S.H. Going the extra (synaptic) mile: Excitotoxicity as the road toward neurodegenerative diseases. Front. Cell. Neurosci. 2020 14 90 10.3389/fncel.2020.00090 32390802
    [Google Scholar]
  20. Dienel G.A. Astrocytic energetics during excitatory neurotransmission: What are contributions of glutamate oxidation and glycolysis? Neurochem. Int. 2013 63 4 244 258 10.1016/j.neuint.2013.06.015 23838211
    [Google Scholar]
  21. Hertz L. Chen Y. Integration between glycolysis and glutamate-glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate. Front. Integr. Nuerosci. 2017 11 18 10.3389/fnint.2017.00018 28890689
    [Google Scholar]
  22. Jammal L. Whalley B. Barkai E. Learning-induced modulation of the effect of neuroglial transmission on synaptic plasticity. J. Neurophysiol. 2018 119 6 2373 2379 10.1152/jn.00101.2018 29561201
    [Google Scholar]
  23. Hassel B. Pyruvate carboxylation in neurons. J. Neurosci. Res. 2001 66 5 755 762 10.1002/jnr.10044 11746399
    [Google Scholar]
  24. Salganicoff L. Koeppe R.E. Subcellular distribution ot pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain. J. Biol. Chem. 1968 243 12 3416 3420 10.1016/S0021‑9258(18)93324‑7 5656378
    [Google Scholar]
  25. Arnold P.K. Jackson B.T. Paras K.I. Brunner J.S. Hart M.L. Newsom O.J. Alibeckoff S.P. Endress J. Drill E. Sullivan L.B. Finley L.W.S. A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 2022 603 7901 477 481 10.1038/s41586‑022‑04475‑w 35264789
    [Google Scholar]
  26. Brekke E. Morken T.S. Walls A.B. Waagepetersen H. Schousboe A. Sonnewald U. Anaplerosis for glutamate synthesis in the neonate and in adulthood. Adv. Neurobiol. 2016 13 43 58 10.1007/978‑3‑319‑45096‑4_3 27885626
    [Google Scholar]
  27. Hertz L. Rothman D.L. Glucose, lactate, β-hydroxybutyrate, acetate, GABA, and succinate as substrates for synthesis of glutamate and GABA in the glutamine–glutamate/GABA cycle. Adv. Neurobiol. 2016 13 9 42 10.1007/978‑3‑319‑45096‑4_2 27885625
    [Google Scholar]
  28. Zhou Y. Danbolt N.C. GABA and glutamate transporters in brain. Front. Endocrinol. 2013 4 165 10.3389/fendo.2013.00165 24273530
    [Google Scholar]
  29. Leke R. Schousboe A. The glutamine transporters and their role in the glutamate/GABA–Glutamine Cycle. Adv. Neurobiol. 2016 13 223 257 10.1007/978‑3‑319‑45096‑4_8 27885631
    [Google Scholar]
  30. Chaudhry F.A. Schmitz D. Reimer R.J. Larsson P. Gray A.T. Nicoll R. Kavanaugh M. Edwards R.H. Glutamine uptake by neurons: Interaction of protons with system a transporters. J. Neurosci. 2002 22 1 62 72 10.1523/JNEUROSCI.22‑01‑00062.2002 11756489
    [Google Scholar]
  31. Kvamme E. Torgner I.A. Roberg B. Kinetics and localization of brain phosphate activated glutaminase. J. Neurosci. Res. 2001 66 5 951 958 10.1002/jnr.10041 11746423
    [Google Scholar]
  32. Piccirillo S. Magi S. Castaldo P. Preziuso A. Lariccia V. Amoroso S. NCX and EAAT transporters in ischemia: At the crossroad between glutamate metabolism and cell survival. Cell Calcium 2020 86 102160 10.1016/j.ceca.2020.102160 31962228
    [Google Scholar]
  33. Bak L.K. Schousboe A. Waagepetersen H.S. The glutamate/GABA‐glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 2006 98 3 641 653 10.1111/j.1471‑4159.2006.03913.x 16787421
    [Google Scholar]
  34. Danbolt N.C. Furness D.N. Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem. Int. 2016 98 29 45 10.1016/j.neuint.2016.05.009 27235987
    [Google Scholar]
  35. Rothstein J.D. Dykes-Hoberg M. Pardo C.A. Bristol L.A. Jin L. Kuncl R.W. Kanai Y. Hediger M.A. Wang Y. Schielke J.P. Welty D.F. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996 16 3 675 686 10.1016/S0896‑6273(00)80086‑0 8785064
    [Google Scholar]
  36. Zerangue N. Kavanaugh M.P. Flux coupling in a neuronal glutamate transporter. Nature 1996 383 6601 634 637 10.1038/383634a0 8857541
    [Google Scholar]
  37. Li L.L. Ke X.Y. Jiang C. Qin S.Q. Liu Y.Y. Xian X.H. Liu L.Z. He J.C. Chen Y.M. An H.F. Sun N. Hu Y.H. Wang Y. Zhang L.N. Lu Q.Y. Na +, K + ‐ATPase participates in the protective mechanism of rat cerebral ischemia‐reperfusion through the interaction with glutamate transporter‐1. Fundam. Clin. Pharmacol. 2021 35 5 870 881 10.1111/fcp.12652 33481320
    [Google Scholar]
  38. Mennerick S. Dhond R.P. Benz A. Xu W. Rothstein J.D. Danbolt N.C. Isenberg K.E. Zorumski C.F. Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. J. Neurosci. 1998 18 12 4490 4499 10.1523/JNEUROSCI.18‑12‑04490.1998 9614226
    [Google Scholar]
  39. Petr G.T. Sun Y. Frederick N.M. Zhou Y. Dhamne S.C. Hameed M.Q. Miranda C. Bedoya E.A. Fischer K.D. Armsen W. Wang J. Danbolt N.C. Rotenberg A. Aoki C.J. Rosenberg P.A. Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J. Neurosci. 2015 35 13 5187 5201 10.1523/JNEUROSCI.4255‑14.2015 25834045
    [Google Scholar]
  40. Bianchi M.G. Bardelli D. Chiu M. Bussolati O. Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell. Mol. Life Sci. 2014 71 11 2001 2015 10.1007/s00018‑013‑1484‑0 24162932
    [Google Scholar]
  41. Gincel D. Regan M.R. Jin L. Watkins A.M. Bergles D.E. Rothstein J.D. Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis. Exp. Neurol. 2007 203 1 205 212 10.1016/j.expneurol.2006.08.016 17022974
    [Google Scholar]
  42. Arriza J.L. Eliasof S. Kavanaugh M.P. Amara S.G. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 1997 94 8 4155 4160 10.1073/pnas.94.8.4155 9108121
    [Google Scholar]
  43. Gonçalves-Ribeiro J. Pina C.C. Sebastião A.M. Vaz S.H. Glutamate transporters in hippocampal LTD/LTP: Not just prevention of excitotoxicity. Front. Cell. Neurosci. 2019 13 357 10.3389/fncel.2019.00357 31447647
    [Google Scholar]
  44. Pajarillo E. Rizor A. Lee J. Aschner M. Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019 161 107559 10.1016/j.neuropharm.2019.03.002 30851309
    [Google Scholar]
  45. Niswender C.M. Conn P.J. Metabotropic glutamate receptors: Physiology, pharmacology, and disease. Annu. Rev. Pharmacol. Toxicol. 2010 50 1 295 322 10.1146/annurev.pharmtox.011008.145533 20055706
    [Google Scholar]
  46. Wang X. Li Y.H. Li M.H. Lu J. Zhao J.G. Sun X.J. Zhang B. Ye J.L. Glutamate level detection by magnetic resonance spectroscopy in patients with post-stroke depression. Eur. Arch. Psychiatry Clin. Neurosci. 2012 262 1 33 38 10.1007/s00406‑011‑0209‑3 21424280
    [Google Scholar]
  47. Cheng S.Y. Zhao Y.D. Li J. Chen X.Y. Wang R.D. Zeng J.W. Plasma levels of glutamate during stroke is associated with development of post-stroke depression. Psychoneuroendocrinology 2014 47 126 135 10.1016/j.psyneuen.2014.05.006 25001962
    [Google Scholar]
  48. Han F. Shioda N. Moriguchi S. Qin Z.H. Fukunaga K. Downregulation of glutamate transporters is associated with elevation in extracellular glutamate concentration following rat microsphere embolism. Neurosci. Lett. 2008 430 3 275 280 10.1016/j.neulet.2007.11.021 18079058
    [Google Scholar]
  49. Christensen P.C. Samadi-Bahrami Z. Pavlov V. Stys P.K. Moore G.R.W. Ionotropic glutamate receptor expression in human white matter. Neurosci. Lett. 2016 630 1 8 10.1016/j.neulet.2016.07.030 27443784
    [Google Scholar]
  50. Ullian E.M. Sapperstein S.K. Christopherson K.S. Barres B.A. Control of synapse number by glia. Science 2001 291 5504 657 661 10.1126/science.291.5504.657 11158678
    [Google Scholar]
  51. Mao R. Zong N. Hu Y. Chen Y. Xu Y. Neuronal death mechanisms and therapeutic strategy in ischemic stroke. Neurosci. Bull. 2022 38 10 1229 1247 10.1007/s12264‑022‑00859‑0 35513682
    [Google Scholar]
  52. Idunkova A. Lacinova L. Dubiel-Hoppanova L. Stress, depression, and hippocampus: From biochemistry to electrophysiology. Gen. Physiol. Biophys. 2023 42 2 107 122 10.4149/gpb_2023001 36896941
    [Google Scholar]
  53. Pignataro G. Sirabella R. Anzilotti S. Di Renzo G. Annunziato L. Does Na+/Ca2+ exchanger, NCX, represent a new druggable target in stroke intervention? Transl. Stroke Res. 2014 5 1 145 155 10.1007/s12975‑013‑0308‑8 24323727
    [Google Scholar]
  54. Frank D. Gruenbaum B.F. Zlotnik A. Semyonov M. Frenkel A. Boyko M. Pathophysiology and current drug treatments for post-stroke depression: A review. Int. J. Mol. Sci. 2022 23 23 15114 10.3390/ijms232315114 36499434
    [Google Scholar]
  55. Naghavi F.S. Koffman E.E. Lin B. Du J. Post-stroke neuronal circuits and mental illnesses. Int. J. Physiol. Pathophysiol. Pharmacol. 2019 11 1 1 11 30911356
    [Google Scholar]
  56. Kang N. Xu J. Xu Q. Nedergaard M. Kang J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J. Neurophysiol. 2005 94 6 4121 4130 10.1152/jn.00448.2005 16162834
    [Google Scholar]
  57. Wang S. Yuan Y. Xia W. Li F. Huang Y. Zhou Y. Guo Y. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats’ response to chronic mild stress and the effects of Notch signaling. PLoS One 2012 7 8 e42828 10.1371/journal.pone.0042828 22912748
    [Google Scholar]
  58. Mauch D.H. Nägler K. Schumacher S. Göritz C. Müller E.C. Otto A. Pfrieger F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001 294 5545 1354 1357 10.1126/science.294.5545.1354 11701931
    [Google Scholar]
  59. Zhou B. Zuo Y.X. Jiang R.T. Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci. Ther. 2019 25 6 665 673 10.1111/cns.13123 30929313
    [Google Scholar]
  60. Zhang Y. Qi Y. Gao Y. Chen W. Zhou T. Zang Y. Li J. Astrocyte metabolism and signaling pathways in the CNS. Front. Neurosci. 2023 17 1217451 10.3389/fnins.2023.1217451 37732313
    [Google Scholar]
  61. Kwon H.S. Koh S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener. 2020 9 1 42 10.1186/s40035‑020‑00221‑2 33239064
    [Google Scholar]
  62. Bergersen L.H. Morland C. Ormel L. Rinholm J.E. Larsson M. Wold J.F.H. Røe Å.T. Stranna A. Santello M. Bouvier D. Ottersen O.P. Volterra A. Gundersen V. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 2012 22 7 1690 1697 10.1093/cercor/bhr254 21914633
    [Google Scholar]
  63. Bezzi P. Gundersen V. Galbete J.L. Seifert G. Steinhäuser C. Pilati E. Volterra A. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 2004 7 6 613 620 10.1038/nn1246 15156145
    [Google Scholar]
  64. Banasr M. Duman R. Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol. Disord. Drug Targets 2007 6 5 311 320 10.2174/187152707783220929 18045159
    [Google Scholar]
  65. Martinez-Lozada Z. Guillem A.M. Robinson M.B. Transcriptional regulation of glutamate transporters. Adv. Pharmacol. 2016 76 103 145 10.1016/bs.apha.2016.01.004 27288076
    [Google Scholar]
  66. Raju K. Doulias P.T. Evans P. Krizman E.N. Jackson J.G. Horyn O. Daikhin Y. Nissim I. Yudkoff M. Nissim I. Sharp K.A. Robinson M.B. Ischiropoulos H. Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Sci. Signal. 2015 8 384 ra68 10.1126/scisignal.aaa4312 26152695
    [Google Scholar]
  67. de Ceglia R. Ledonne A. Litvin D.G. Lind B.L. Carriero G. Latagliata E.C. Bindocci E. Di Castro M.A. Savtchouk I. Vitali I. Ranjak A. Congiu M. Canonica T. Wisden W. Harris K. Mameli M. Mercuri N. Telley L. Volterra A. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023 622 7981 120 129 10.1038/s41586‑023‑06502‑w 37674083
    [Google Scholar]
  68. Patabendige A. Singh A. Jenkins S. Sen J. Chen R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int. J. Mol. Sci. 2021 22 8 4280 10.3390/ijms22084280 33924191
    [Google Scholar]
  69. Zamanian J.L. Xu L. Foo L.C. Nouri N. Zhou L. Giffard R.G. Barres B.A. Genomic analysis of reactive astrogliosis. J. Neurosci. 2012 32 18 6391 6410 10.1523/JNEUROSCI.6221‑11.2012 22553043
    [Google Scholar]
  70. Haileselassie B. Joshi A.U. Minhas P.S. Mukherjee R. Andreasson K.I. Mochly-Rosen D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. J. Neuroinflammation 2020 17 1 36 10.1186/s12974‑019‑1689‑8 31987040
    [Google Scholar]
  71. Boghdadi A.G. Teo L. Bourne J.A. The neuroprotective role of reactive astrocytes after central nervous system injury. J. Neurotrauma 2020 37 5 681 691 10.1089/neu.2019.6938 32031052
    [Google Scholar]
  72. Sofroniew M.V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 2015 7 2 a020420 10.1101/cshperspect.a020420 25380660
    [Google Scholar]
  73. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  74. Cravello L. Caltagirone C. Spalletta G. The SNRI venlafaxine improves emotional unawareness in patients with post‐stroke depression. Hum. Psychopharmacol. 2009 24 4 331 336 10.1002/hup.1021 19330795
    [Google Scholar]
  75. Li N. Lee B. Liu R.J. Banasr M. Dwyer J.M. Iwata M. Li X.Y. Aghajanian G. Duman R.S. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010 329 5994 959 964 10.1126/science.1190287 20724638
    [Google Scholar]
  76. Preskorn S.H. Baker B. Kolluri S. Menniti F.S. Krams M. Landen J.W. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol. 2008 28 6 631 637 10.1097/JCP.0b013e31818a6cea 19011431
    [Google Scholar]
  77. Stahl S.M. Dextromethorphan/Bupropion: A novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity. CNS Spectr. 2019 24 5 461 466 10.1017/S1092852919001470 31566163
    [Google Scholar]
  78. Réus G.Z. Stringari R.B. Kirsch T.R. Fries G.R. Kapczinski F. Roesler R. Quevedo J. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: Further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res. Bull. 2010 81 6 585 589 10.1016/j.brainresbull.2009.11.013 19954760
    [Google Scholar]
  79. Poleszak E. Wlaź P. Kędzierska E. Nieoczym D. Wróbel A. Fidecka S. Pilc A. Nowak G. NMDA/glutamate mechanism of antidepressant-like action of magnesium in forced swim test in mice. Pharmacol. Biochem. Behav. 2007 88 2 158 164 10.1016/j.pbb.2007.07.018 17825400
    [Google Scholar]
  80. Ibrahim L. DiazGranados, N.; Jolkovsky, L.; Brutsche, N.; Luckenbaugh, D.A.; Herring, W.J.; Potter, W.Z.; Zarate, C.A. A Randomized, placebo-controlled, crossover pilot trial of the oral selective NR2B antagonist MK-0657 in patients with treatment-resistant major depressive disorder. J. Clin. Psychopharmacol. 2012 32 4 551 557 10.1097/JCP.0b013e31825d70d6 22722512
    [Google Scholar]
  81. Zarate C.A. Mathews D. Ibrahim L. Chaves J.F. Marquardt C. Ukoh I. Jolkovsky L. Brutsche N.E. Smith M.A. Luckenbaugh D.A. A randomized trial of a low-trapping nonselective N-methyl-D-aspartate channel blocker in major depression. Biol. Psychiatry 2013 74 4 257 264 10.1016/j.biopsych.2012.10.019 23206319
    [Google Scholar]
  82. Dang Y.H. Ma X.C. Zhang J.C. Ren Q. Wu J. Gao C.G. Hashimoto K. Targeting of NMDA receptors in the treatment of major depression. Curr. Pharm. Des. 2014 20 32 5151 5159 10.2174/1381612819666140110120435 24410564
    [Google Scholar]
  83. Sowa-Kućma M. Legutko B. Szewczyk B. Novak K. Znojek P. Poleszak E. Papp M. Pilc A. Nowak G. Antidepressant-like activity of zinc: Further behavioral and molecular evidence. J. Neural Transm. (Vienna) 2008 115 12 1621 1628 10.1007/s00702‑008‑0115‑7 18766297
    [Google Scholar]
  84. Jiménez-Sánchez L. Campa L. Auberson Y.P. Adell A. The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology 2014 39 11 2673 2680 10.1038/npp.2014.123 24871546
    [Google Scholar]
  85. Wolak M. Siwek A. Szewczyk B. Poleszak E. Pilc A. Popik P. Nowak G. Involvement of NMDA and AMPA receptors in the antidepressant-like activity of antidepressant drugs in the forced swim test. Pharmacol. Rep. 2013 65 4 991 997 10.1016/S1734‑1140(13)71080‑6 24145093
    [Google Scholar]
  86. Nakamura K. Tanaka Y. Antidepressant-like effects of aniracetam in aged rats and its mode of action. Psychopharmacology (Berl.) 2001 158 2 205 212 10.1007/s002130100849 11702095
    [Google Scholar]
  87. Knapp R.J. Goldenberg R. Shuck C. Cecil A. Watkins J. Miller C. Crites G. Malatynska E. Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur. J. Pharmacol. 2002 440 1 27 35 10.1016/S0014‑2999(02)01338‑9 11959085
    [Google Scholar]
  88. Szewczyk B. Poleszak E. Sowa-Kućma M. Wróbel A. Słotwiński S. Listos J. Wlaź P. Cichy A. Siwek A. Dybała M. Gołembiowska K. Pilc A. Nowak G. The involvement of NMDA and AMPA receptors in the mechanism of antidepressant-like action of zinc in the forced swim test. Amino Acids 2010 39 1 205 217 10.1007/s00726‑009‑0412‑y 19956994
    [Google Scholar]
  89. Li X. Tizzano J.P. Griffey K. Clay M. Lindstrom T. Skolnick P. Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 2001 40 8 1028 1033 10.1016/S0028‑3908(00)00194‑5 11406194
    [Google Scholar]
  90. Molina-Hernández M. Tellez-Alcántara N.P. Pérez-García J. Olivera-Lopez J.I. Jaramillo M.T. Antidepressant-like and anxiolytic-like actions of the mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of male Wistar rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006 30 6 1129 1135 10.1016/j.pnpbp.2006.04.022 16759778
    [Google Scholar]
  91. Lovinger D.M. McCool B.A. Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. J. Neurophysiol. 1995 73 3 1076 1083 10.1152/jn.1995.73.3.1076 7608756
    [Google Scholar]
  92. Kłak K. Pałucha A. Brański P. Sowa M. Pilc A. Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 2007 32 2 169 172 10.1007/s00726‑006‑0316‑z 16868652
    [Google Scholar]
  93. Palucha A. Klak K. Branski P. van der Putten H. Flor P.J. Pilc A. Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology (Berl.) 2007 194 4 555 562 10.1007/s00213‑007‑0856‑2 17622518
    [Google Scholar]
  94. Pałucha A. Tatarczyńska E. Brański P. Szewczyk B. Wierońska J.M. Kłak K. Chojnacka-Wójcik E. Nowak G. Pilc A. Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 2004 46 2 151 159 10.1016/j.neuropharm.2003.09.006 14680755
    [Google Scholar]
  95. Kang S. Li J. Bekker A. Ye J.H. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 2018 129 47 56 10.1016/j.neuropharm.2017.11.013 29128307
    [Google Scholar]
  96. Chen J. Yao L. Xu B. Qian K. Wang H. Liu Z. Wang X. Wang G. Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2014 34 6 838 844 10.1007/s11596‑014‑1362‑5 25480579
    [Google Scholar]
  97. Shwartz A. Betzer O. Kronfeld N. Kazimirsky G. Cazacu S. Finniss S. Lee H.K. Motiei M. Dagan S.Y. Popovtzer R. Brodie C. Yadid G. Therapeutic effect of astroglia-like mesenchymal stem cells expressing glutamate transporter in a genetic rat model of depression. Theranostics 2017 7 10 2690 2703 10.7150/thno.18914 28819456
    [Google Scholar]
  98. Liu F. Wu J. Gong Y. Wang P. Zhu L. Tong L. Chen X. Ling Y. Huang C. Harmine produces antidepressant-like effects via restoration of astrocytic functions. Prog Neuropsychopharmacol Biol. Psychiatry 2017 79 Pt B 258 267 10.1016/j.pnpbp.2017.06.012
    [Google Scholar]
  99. Bezzi P. Domercq M. Brambilla L. Galli R. Schols D. De Clercq E. Vescovi A. Bagetta G. Kollias G. Meldolesi J. Volterra A. CXCR4-activated astrocyte glutamate release via TNFα: Amplification by microglia triggers neurotoxicity. Nat. Neurosci. 2001 4 7 702 710 10.1038/89490 11426226
    [Google Scholar]
  100. Fan J. Guo F. Mo R. Chen L.Y. Mo J.W. Lu C.L. Ren J. Zhong Q.L. Kuang X.J. Wen Y.L. Gu T.T. Liu J.M. Li S.J. Fang Y.Y. Zhao C. Gao T.M. Cao X. O-GlcNAc transferase in astrocytes modulates depression-related stress susceptibility through glutamatergic synaptic transmission. J. Clin. Invest. 2023 133 7 e160016 10.1172/JCI160016 36757814
    [Google Scholar]
  101. Takahashi K. Murasawa H. Yamaguchi K. Yamada M. Nakatani A. Yoshida M. Iwai T. Inagaki M. Yamada M. Saitoh A. Riluzole rapidly attenuates hyperemotional responses in olfactory bulbectomized rats, an animal model of depression. Behav. Brain Res. 2011 216 1 46 52 10.1016/j.bbr.2010.07.002 20620171
    [Google Scholar]
  102. Domin H. Konieczny J. Cieślik P. Pochwat B. Wyska E. Szafarz M. Lenda T. Biała D. Gąsior Ł. Śmiałowska M. Szewczyk B. The antidepressant-like and glioprotective effects of the Y2 receptor antagonist SF-11 in the astroglial degeneration model of depression in rats: Involvement of glutamatergic inhibition. Behav. Brain Res. 2024 457 114729 10.1016/j.bbr.2023.114729 37871655
    [Google Scholar]
  103. Zhao A. Ma B. Xu L. Yao M. Zhang Y. Xue B. Ren J. Chang D. Liu J. Jiedu tongluo granules ameliorates post-stroke depression rat model via regulating NMDAR/BDNF signaling pathway. Front. Pharmacol. 2021 12 662003 10.3389/fphar.2021.662003 34093193
    [Google Scholar]
  104. Pan X. Cheng L. Zeng J. Jiang X. Zhou P. Three-needle electroacupuncture ameliorates depressive-like behaviors in a mouse model of post-stroke depression by promoting excitatory synapse formation via the NGL-3/L1cam pathway. Brain Res. 2024 1841 149087 10.1016/j.brainres.2024.149087 38871241
    [Google Scholar]
  105. Jiang M.Q. Yu S.P. Wei Z.Z. Zhong W. Cao W. Gu X. Wu A. McCrary M.R. Berglund K. Wei L. Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke. Front. Aging Neurosci. 2021 13 612856 10.3389/fnagi.2021.612856 33841125
    [Google Scholar]
  106. Mead G.E. Hsieh C.F. Lee R. Kutlubaev M. Claxton A. Hankey G.J. Hackett M. Selective serotonin reuptake inhibitors for stroke recovery: A systematic review and meta-analysis. Stroke 2013 44 3 844 850 10.1161/STROKEAHA.112.673947 23362083
    [Google Scholar]
  107. Asmaro K. Elzib H. Pawloski J. Ding Y. Antidepressant pharmacotherapy and poststroke motor rehabilitation: A review of neurophysiologic mechanisms and clinical relevance. Brain Circ. 2019 5 2 62 67 10.4103/bc.bc_3_19 31334358
    [Google Scholar]
/content/journals/cn/10.2174/011570159X379476250611052236
Loading
/content/journals/cn/10.2174/011570159X379476250611052236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test