Skip to content
2000
image of Exploring Mechanistic Insights by Carotenoids in Neuropathic and Inflammatory Pain

Abstract

Chronic pain, characterized by persistent discomfort and reduced quality of life, poses a significant challenge for individuals. Chronic pain is predominantly divided into central neuropathic pain, peripheral neuropathic pain, and inflammatory pain. Considering the multiple dysregulated pathways behind such pain conditions, researchers are exploring new multi-target agents that offer enhanced efficacy and reduced side effects of the present drugs. Carotenoids are natural pigments with antioxidant and anti-inflammatory properties found in various fruits, vegetables, and seafood. Through their mechanisms of action, carotenoids have shown promising efficacy in alleviating pain hypersensitivity, reducing inflammation and oxidative stress, and modulating pain-related signaling pathways. This comprehensive review delves into the potential of carotenoids and their derivatives as natural nutraceuticals for managing inflammation and relieving pain. In the current study, the mechanisms of action by which carotenoids exert their beneficial effects during preclinical and clinical studies are provided. This review could pave the road for the application of carotenoids for more pain-related clinical trials and further applications.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X371386250619064416
2025-07-02
2025-11-05
Loading full text...

Full text loading...

References

  1. Mercadante S. Pathophysiology of chronic pain. In:Textbook of palliative medicine and supportive care. Boca Raton, Florida CRC Press 2021 199 206 10.1201/9780429275524‑23
    [Google Scholar]
  2. Kuner R. Central mechanisms of pathological pain. Nat. Med. 2010 16 11 1258 1266 10.1038/nm.2231 20948531
    [Google Scholar]
  3. Schug S.A. Daly H.C. Stannard K.J. Pathophysiology of pain. 2018
    [Google Scholar]
  4. Colloca L. Ludman T. Bouhassira D. Baron R. Dickenson A.H. Yarnitsky D. Freeman R. Truini A. Attal N. Finnerup N.B. Eccleston C. Kalso E. Bennett D.L. Dworkin R.H. Raja S.N. Neuropathic pain. Nat. Rev. Dis. Primers 2017 3 1 17002 10.1038/nrdp.2017.2 28205574
    [Google Scholar]
  5. Harth M. Nielson W.R. Pain and affective distress in arthritis: Relationship to immunity and inflammation. Expert Rev. Clin. Immunol. 2019 15 5 541 552 10.1080/1744666X.2019.1573675 30669892
    [Google Scholar]
  6. Su Y.S. Sun W-H. Chen C-C. Molecular mechanism of inflammatory pain. World J. Anesthesiol. 2014 3 1 71 81 10.5313/wja.v3.i1.71
    [Google Scholar]
  7. Yam M.F. Loh Y.C. Tan C.S. Khadijah Adam S. Abdul Manan N. Basir R. General pathways of pain sensation and the major neurotransmitters involved in pain regulation. Int. J. Mol. Sci. 2018 19 8 2164 10.3390/ijms19082164 30042373
    [Google Scholar]
  8. Bräscher A.K. Becker S. Hoeppli M.E. Schweinhardt P. Different brain circuitries mediating controllable and uncontrollable pain. J. Neurosci. 2016 36 18 5013 5025 10.1523/JNEUROSCI.1954‑15.2016 27147654
    [Google Scholar]
  9. Cai Y.Q. Wang W. Paulucci-Holthauzen A. Pan Z.Z. Brain circuits mediating opposing effects on emotion and pain. J. Neurosci. 2018 38 28 6340 6349 10.1523/JNEUROSCI.2780‑17.2018 29941444
    [Google Scholar]
  10. Woo C.W. Roy M. Buhle J.T. Wager T.D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 2015 13 1 1002036 10.1371/journal.pbio.1002036 25562688
    [Google Scholar]
  11. Dueñas M. Ojeda B. Salazar A. Mico J.A. Failde I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 2016 9 457 467 10.2147/JPR.S105892 27418853
    [Google Scholar]
  12. Schweiggert R.M. Carle R. Carotenoid production by bacteria, microalgae, and fungi. In:Carotenoids: Nutrition, Analysis and Technology. Hoboken, New Jersey Wiley Online Library 2016 10.1002/9781118622223.ch12
    [Google Scholar]
  13. Zasowska-Nowak A. Nowak P.J. Cialkowska-Rysz A. Carotenoids in palliative care—is there any benefit from carotenoid supplementation in the adjuvant treatment of cancer-related symptoms? Nutrients 2022 14 15 3183 10.3390/nu14153183 35956359
    [Google Scholar]
  14. Fernandes A.S. Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. In: Progress in Carotenoid Research; IntechOpen: London, UK, 2018
    [Google Scholar]
  15. Beltran J.C.M. Stange C. Apocarotenoids: A new carotenoid-derived pathway. Carotenoids in Nature Subcellular Biochemistry. Cham Springer 2016 239 272 10.1007/978‑3‑319‑39126‑7_9
    [Google Scholar]
  16. Elkholy N.S. Shafaa M.W. Mohammed H.S. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 7 166150 10.1016/j.bbadis.2021.166150 33892079
    [Google Scholar]
  17. Eggersdorfer M. Wyss A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018 652 18 26 10.1016/j.abb.2018.06.001 29885291
    [Google Scholar]
  18. Crupi P. Faienza M.F. Naeem M.Y. Corbo F. Clodoveo M.L. Muraglia M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants 2023 12 5 1069 10.3390/antiox12051069 37237935
    [Google Scholar]
  19. Bogacz-Radomska L. Harasym J. β-Carotene—properties and production methods. Food Qual. Saf. 2018 2 2 69 74 10.1093/fqsafe/fyy004
    [Google Scholar]
  20. Zhao Z. Chen J. Ci F. Pang H. Cheng N. Xing A. α‐Carotene: A valuable carotenoid in biological and medical research. J. Sci. Food Agric. 2022 102 13 5606 5617 10.1002/jsfa.11966 35478460
    [Google Scholar]
  21. Shi J. Maguer M.L. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Food Sci. Nutr. 2000 40 1 1 42 10.1080/10408690091189275 10674200
    [Google Scholar]
  22. Maoka T. Carotenoids as natural functional pigments. J. Nat. Med. 2020 74 1 1 16 10.1007/s11418‑019‑01364‑x 31588965
    [Google Scholar]
  23. Arteni A.A. Fradot M. Galzerano D. Mendes-Pinto M.M. Sahel J.A. Picaud S. Robert B. Pascal A.A. Structure and conformation of the carotenoids in human retinal macular pigment. PLoS One 2015 10 8 0135779 10.1371/journal.pone.0135779 26313550
    [Google Scholar]
  24. Schultz C. Lutein as a contributing modulator of age-related macular degeneration. US Ophth. Rev. 2012 5 1 57 58 10.17925/USOR.2012.05.01.57
    [Google Scholar]
  25. Lee C-C. Astaxanthin: Sources, properties and benefits Handbook of Food Bioactive Ingredients: Properties and Applications Springer Cham 2023 687 727
    [Google Scholar]
  26. Felemban A. Braguy J. Zurbriggen M.D. Al-Babili S. Apocarotenoids involved in plant development and stress response. Front Plant. Sci. 2019 10 1168 10.3389/fpls.2019.01168 31611895
    [Google Scholar]
  27. Seba M. Apocarotenoids: A Brief Review. Int. J. Res. Rev. 2020 7 12 252 256
    [Google Scholar]
  28. Böhm V. Lietz G. Olmedilla-Alonso B. Phelan D. Reboul E. Bánati D. Borel P. Corte-Real J. de Lera A.R. Desmarchelier C. Dulinska-Litewka J. Landrier J.F. Milisav I. Nolan J. Porrini M. Riso P. Roob J.M. Valanou E. Wawrzyniak A. Winklhofer-Roob B.M. Rühl R. Bohn T. From carotenoid intake to carotenoid blood and tissue concentrations – implications for dietary intake recommendations. Nutr. Rev. 2021 79 5 544 573 10.1093/nutrit/nuaa008 32766681
    [Google Scholar]
  29. Pain N. Central neuropathic pain. Pakistan Medlink Neurology 2008
    [Google Scholar]
  30. Shiao R. Lee-Kubli C.A. Neuropathic pain after spinal cord injury: Challenges and research perspectives. Neurotherapeutics 2018 15 3 635 653 10.1007/s13311‑018‑0633‑4 29736857
    [Google Scholar]
  31. Finnerup N.B. Kuner R. Jensen T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev. 2020 101 1 259 301 10.1152/physrev.00045.2019 32584191
    [Google Scholar]
  32. Latremoliere A. Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 2009 10 9 895 926 10.1016/j.jpain.2009.06.012 19712899
    [Google Scholar]
  33. Harte S.E. Harris R.E. Clauw D.J. The neurobiology of central sensitization. J. Appl. Biobehav. Res. 2018 23 2 12137 10.1111/jabr.12137
    [Google Scholar]
  34. Tang J. Bair M. Descalzi G. Reactive astrocytes: Critical players in the development of chronic pain. Front. Psychiatry 2021 12 682056 10.3389/fpsyt.2021.682056 34122194
    [Google Scholar]
  35. Gianò M. Franco C. Castrezzati S. Rezzani R. Involvement of oxidative stress and nutrition in the anatomy of orofacial pain. Int. J. Mol. Sci. 2023 24 17 13128 10.3390/ijms241713128 37685933
    [Google Scholar]
  36. Carrasco C. Naziroǧlu M. Rodríguez A.B. Pariente J.A. Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol. 2018 9 95 10.3389/fphys.2018.00095 29491840
    [Google Scholar]
  37. Zündorf G. Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid. Redox Signal. 2011 14 7 1275 1288 10.1089/ars.2010.3359 20615073
    [Google Scholar]
  38. Baev A.Y. Vinokurov A.Y. Novikova I.N. Dremin V.V. Potapova E.V. Abramov A.Y. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells 2022 11 4 706 10.3390/cells11040706 35203354
    [Google Scholar]
  39. Hagen E.M. Rekand T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015 4 1 51 65 10.1007/s40122‑015‑0033‑y 25744501
    [Google Scholar]
  40. Eide P.K. Pathophysiological mechanisms of central neuropathic pain after spinal cord injury. Spinal Cord 1998 36 9 601 612 10.1038/sj.sc.3100737 9773443
    [Google Scholar]
  41. Fakhri S. Dargahi L. Abbaszadeh F. Jorjani M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res. Bull. 2018 143 217 224 10.1016/j.brainresbull.2018.09.011 30243665
    [Google Scholar]
  42. Masoudi A. Jorjani M. Alizadeh M. Mirzamohammadi S. Mohammadi M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res. Bull. 2021 177 324 331 10.1016/j.brainresbull.2021.10.014 34688832
    [Google Scholar]
  43. Abbaszadeh F. Jorjani M. Joghataei M. Raminfard S. Mehrabi S. Astaxanthin ameliorates spinal cord edema and astrocyte activation via suppression of HMGB1/TLR4/NF-κB signaling pathway in a rat model of spinal cord injury. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 3075 3086 10.1007/s00210‑023‑02512‑7 37145127
    [Google Scholar]
  44. Masoudi A. Dargahi L. Abbaszadeh F. Pourgholami M.H. Asgari A. Manoochehri M. Jorjani M. Neuroprotective effects of astaxanthin in a rat model of spinal cord injury. Behav. Brain Res. 2017 329 104 110 10.1016/j.bbr.2017.04.026 28442361
    [Google Scholar]
  45. Abbaszadeh F. Jorjani M. Joghataei M.T. Mehrabi S. Astaxanthin modulates autophagy, apoptosis, and neuronal oxidative stress in a rat model of compression spinal cord injury. Neurochem. Res. 2022 47 7 2043 2051 10.1007/s11064‑022‑03593‑1 35435619
    [Google Scholar]
  46. Fakhri S. Dargahi L. Abbaszadeh F. Jorjani M. Effects of astaxanthin on sensory‐motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway. Eur. J. Pain 2019 23 4 750 764 10.1002/ejp.1342 30427581
    [Google Scholar]
  47. Fakhri S. Abbaszadeh F. Dargahi L. Pouriran R. Jorjani M. Astaxanthin ameliorates serum level and spinal expression of macrophage migration inhibitory factor following spinal cord injury. Behav. Pharmacol. 2022 33 7 505 512 10.1097/FBP.0000000000000698 36148838
    [Google Scholar]
  48. Mohaghegh Shalmani L. Valian N. Pournajaf S. Abbaszadeh F. Dargahi L. Jorjani M. Combination therapy with astaxanthin and epidermal neural crest stem cells improves motor impairments and activates mitochondrial biogenesis in a rat model of spinal cord injury. Mitochondrion 2020 52 125 134 10.1016/j.mito.2020.03.002 32151747
    [Google Scholar]
  49. Li S. Gao X. Zhang Q. Zhang X. Lin W. Ding W. Astaxanthin protects spinal cord tissues from apoptosis after spinal cord injury in rats. Ann. Transl. Med. 2021 9 24 1796 10.21037/atm‑21‑6356 35071490
    [Google Scholar]
  50. Bai W. The effect of astaxanthin (AST) on Neurotrophin-3 (NT-3) expression in rats after compressive spinal cord injury (SCI). Afr. J. Pharm. Pharmacol. 2012 6 34 2559 2564 10.5897/AJPP12.855
    [Google Scholar]
  51. Wilson-Gerwing T.D. Dmyterko M.V. Zochodne D.W. Johnston J.M. Verge V.M.K. Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J. Neurosci. 2005 25 3 758 767 10.1523/JNEUROSCI.3909‑04.2005 15659614
    [Google Scholar]
  52. Zhou L. Ouyang L. Lin S. Chen S. Liu Y. Zhou W. Wang X. Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int. Immunopharmacol. 2018 61 92 99 10.1016/j.intimp.2018.05.022 29857242
    [Google Scholar]
  53. Hua Y. Xu N. Ma T. Liu Y. Xu H. Lu Y. Anti-inflammatory effect of lycopene on experimental spinal cord ischemia injury via cyclooxygenase-2 suppression. Neuroimmunomodulation 2019 26 2 84 92 10.1159/000495466 30625493
    [Google Scholar]
  54. Zhang Q. Wang J. Gu Z. Zhang Q. Zheng H. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice. Biosci. Trends 2016 10 4 288 293 10.5582/bst.2016.01062 27357536
    [Google Scholar]
  55. Hu W. Wang H. Liu Z. Liu Y. Wang R. Luo X. Huang Y. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway. Neurosci. Lett. 2017 642 107 112 10.1016/j.neulet.2017.02.004 28163080
    [Google Scholar]
  56. Mohammad P.M. Farjah G.H. Karimipour M. Pourheidar B. Khadem A.M.H. Protective effect of lutein on spinal cord ischemia-reperfusion injury in rats. Iran. J. Basic Med. Sci. 2019 22 4 412 417 [PMID: 31168346
    [Google Scholar]
  57. Karami M. Bathaie S.Z. Tiraihi T. Habibi-Rezaei M. Arabkheradmand J. Faghihzadeh S. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP). Phytomedicine 2013 21 1 62 67 10.1016/j.phymed.2013.07.013 24051216
    [Google Scholar]
  58. Widyadharma I. Central post stroke pain: What are the new insights. Rom. J. Neurol. 2021 XX 1 1 7 10.37897/RJN.2021.1.4
    [Google Scholar]
  59. Klit H. Finnerup N.B. Jensen T.S. Central post-stroke pain: Clinical characteristics, pathophysiology, and management. Lancet Neurol. 2009 8 9 857 868 10.1016/S1474‑4422(09)70176‑0 19679277
    [Google Scholar]
  60. Li H.L. Lin M. Tan X.P. Wang J.L. Role of sensory pathway injury in central post-stroke pain: A narrative review of its pathogenetic mechanism. J. Pain Res. 2023 16 1333 1343 10.2147/JPR.S399258 37101520
    [Google Scholar]
  61. Lu Y.P. Liu S.Y. Sun H. Wu X.M. Li J.J. Zhu L. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 2010 1360 40 48 10.1016/j.brainres.2010.09.016 20846510
    [Google Scholar]
  62. Pan L. Zhou Y. Li X. Wan Q. Yu L. Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of antioxidant defense pathway after stroke in rats. Brain Res. Bull. 2017 130 211 220 10.1016/j.brainresbull.2017.01.024 28161193
    [Google Scholar]
  63. Taheri F. Sattari E. Hormozi M. Ahmadvand H. Bigdeli M.R. Kordestani-Moghadam P. Anbari K. Milanizadeh S. Moghaddasi M. Dose-dependent effects of astaxanthin on ischemia/reperfusion induced brain injury in mcao model rat. Neurochem. Res. 2022 47 6 1736 1750 10.1007/s11064‑022‑03565‑5 35286515
    [Google Scholar]
  64. Nai Y. Liu H. Bi X. Gao H. Ren C. Protective effect of astaxanthin on acute cerebral infarction in rats. Hum. Exp. Toxicol. 2018 37 9 929 936 10.1177/0960327117745693 29216762
    [Google Scholar]
  65. Yang B. Zou M. Zhao L. Zhang Y.K.U.N. Astaxanthin attenuates acute cerebral infarction via Nrf-2/HO-1 pathway in rats. Curr. Res. Transl. Med. 2021 69 2 103271 10.1016/j.retram.2020.103271 33476935
    [Google Scholar]
  66. Shen H. Kuo C.C. Chou J. Delvolve A. Jackson S.N. Post J. Woods A.S. Hoffer B.J. Wang Y. Harvey B.K. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009 23 6 1958 1968 10.1096/fj.08‑123281 19218497
    [Google Scholar]
  67. Kuo M.H. Lee H.F. Tu Y.F. Lin L.H. Cheng Y.Y. Lee H.T. Astaxanthin ameliorates ischemic-hypoxic-induced neurotrophin receptor p75 upregulation in the endothelial cells of neonatal mouse brains. Int. J. Mol. Sci. 2019 20 24 6168 10.3390/ijms20246168 31817750
    [Google Scholar]
  68. Wang Y-L. Zhu X.L. Sun M.H. Dang Y.K. Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2019 23 3 135 143 [PMID: 31389584
    [Google Scholar]
  69. Li S.Y. Yang D. Fu Z.J. Woo T. Wong D. Lo A.C.Y. Lutein enhances survival and reduces neuronal damage in a mouse model of ischemic stroke. Neurobiol. Dis. 2012 45 1 624 632 10.1016/j.nbd.2011.10.008 22024715
    [Google Scholar]
  70. Yamagata K. Nakayama C. Suzuki K. Dietary β-carotene regulates interleukin-1β-induced expression of apolipoprotein E in astrocytes isolated from stroke-prone spontaneously hypertensive rats. Neurochem. Int. 2013 62 1 43 49 10.1016/j.neuint.2012.11.001 23147682
    [Google Scholar]
  71. Wei Y. Shen X.N. Mai J.Y. Shen H. Wang R.Z. Wu M. The effects of lycopene on reactive oxygen species and anoxic damage in ischemia reperfusion injury in rats. Chin. J. Prev. Med 2010 44 1 34 38 [PMID: 20388361
    [Google Scholar]
  72. Zhao Y. Xin Z. Li N. Chang S. Chen Y. Geng L. Chang H. Shi H. Chang Y.Z. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism. Free Radic. Biol. Med. 2018 124 1 11 10.1016/j.freeradbiomed.2018.05.082 29807160
    [Google Scholar]
  73. Duan Z. Li H. Qi X. Wei Y. Guo X. Li Y. Wu D. Tian M. Ma L. You C. Crocin attenuation of neurological deficits in a mouse model of intracerebral hemorrhage. Brain Res. Bull. 2019 150 186 195 10.1016/j.brainresbull.2019.05.023 31173858
    [Google Scholar]
  74. Wang F. Li W. Shen L. Jiang T. Xia J. You D. Hu S. Wang L. Wu X. Crocin alleviates intracerebral hemorrhage–induced neuronal ferroptosis by facilitating nrf2 nuclear translocation. Neurotox. Res. 2022 40 2 596 604 10.1007/s12640‑022‑00500‑y 35380368
    [Google Scholar]
  75. Huang Z. Xu J. Huang X. Sun G. Jiang R. Wu H. Shan X. Bao K. Wu Q. Wu H. Tao W. Crocin induces anti-ischemia in middle cerebral artery occlusion rats and inhibits autophagy by regulating the mammalian target of rapamycin. Eur. J. Pharmacol. 2019 857 172424 10.1016/j.ejphar.2019.172424 31150648
    [Google Scholar]
  76. Zhang X. Fan Z. Jin T. Crocin protects against cerebral- ischemia-induced damage in aged rats through maintaining the integrity of blood-brain barrier. Restor. Neurol. Neurosci. 2017 35 1 65 75 10.3233/RNN‑160696 28059805
    [Google Scholar]
  77. Vakili A. Einali M.R. Bandegi A.R. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014 23 1 106 113 10.1016/j.jstrokecerebrovasdis.2012.10.008 23182363
    [Google Scholar]
  78. Ochiai T. Shimeno H. Mishima K. Iwasaki K. Fujiwara M. Tanaka H. Shoyama Y. Toda A. Eyanagi R. Soeda S. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 4 578 584 10.1016/j.bbagen.2006.11.012 17215084
    [Google Scholar]
  79. Sarshoori J.R. Asadi M.H. Mohammadi M.T. Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran. J. Basic Med. Sci. 2014 17 11 895 902 [PMID: 25691932
    [Google Scholar]
  80. Oruc S. Gönül Y. Tunay K. Oruc O.A. Bozkurt M.F. Karavelioğlu E. Bağcıoğlu E. Coşkun K.S. Celik S. The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sci. 2016 154 79 86 10.1016/j.lfs.2016.04.028 27117584
    [Google Scholar]
  81. Hosseinzadeh H. Sadeghnia H.R. Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J. Pharm. Pharm. Sci. 2005 8 3 394 399 [PMID: 16401389
    [Google Scholar]
  82. Sadeghnia H.R. Shaterzadeh H. Forouzanfar F. Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol. 2017 3 3 206 213 10.5114/fn.2017.70485 28984113
    [Google Scholar]
  83. Murphy K.L. Bethea J.R. Fischer R. Neuropathic pain in multiple sclerosis–current therapeutic intervention and future treatment perspectives. Brisbane, Australia Exon Publications 2017 53 69 10.15586/codon.multiplesclerosis.2017.ch4
    [Google Scholar]
  84. Truini A. Barbanti P. Pozzilli C. Cruccu G. A mechanism-based classification of pain in multiple sclerosis. J. Neurol. 2013 260 2 351 367 10.1007/s00415‑012‑6579‑2 22760942
    [Google Scholar]
  85. Ghaaliq L.A. Paul Bedford J. Devina D.A. Pain associated with multiple sclerosis: Epidemiology, classification and management. Br. J. Neurosci. Nurs. 2012 8 5 267 274 10.12968/bjnn.2012.8.5.267
    [Google Scholar]
  86. Chrabąszcz K. Kołodziej M. Roman M. Pięta E. Piergies N. Rudnicka-Czerwiec J. Bartosik-Psujek H. Paluszkiewicz C. Cholewa M. Kwiatek W.M. Carotenoids contribution in rapid diagnosis of multiple sclerosis by Raman spectroscopy. Biochim. Biophys. Acta, Gen. Subj. 2023 1867 9 130395 10.1016/j.bbagen.2023.130395 37271406
    [Google Scholar]
  87. Ghasemi N. The evaluation of astaxanthin effects on differentiation of human adipose derived stem cells into oligodendrocyte precursor cells. Avicenna J. Med. Biotechnol. 2018 10 2 69 74 [PMID: 29849982
    [Google Scholar]
  88. Lotfi A. Soleimani M. Ghasemi N. Astaxanthin reduces demyelination and oligodendrocytes death in a rat model of multiple sclerosis. Cell J. 2021 22 4 565 571 [PMID: 32347051
    [Google Scholar]
  89. Bidaran S. Study of the preventive and therapeutic effects of astaxanthin carotinoids on multiple sclerosis (MS) disease in C57BL/6 mice. Cell. Tiss J. 2018 9 3 279 291
    [Google Scholar]
  90. Deslauriers A.M. Afkhami-Goli A. Paul A.M. Bhat R.K. Acharjee S. Ellestad K.K. Noorbakhsh F. Michalak M. Power C. Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J. Immunol. 2011 187 9 4788 4799 10.4049/jimmunol.1004111 21964030
    [Google Scholar]
  91. Tashakori A. Hassanpour S. Vazir B. Protective effect of crocin on cuprizone-induced model of multiple sclerosis in mice. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 8 1713 1725 10.1007/s00210‑023‑02424‑6 36805765
    [Google Scholar]
  92. Yu Y. Wu D.M. Li J. Deng S.H. Liu T. Zhang T. He M. Zhao Y.Y. Xu Y. Bixin attenuates experimental autoimmune encephalomyelitis by suppressing TXNIP/NLRP3 inflammasome activity and activating NRF2 signaling. Front. Immunol. 2020 11 593368 10.3389/fimmu.2020.593368 33362775
    [Google Scholar]
  93. Shadisvaaran S. Chin K.Y. Mohd-Said S. Leong X.F. Therapeutic potential of bixin on inflammation: A mini review. Front. Nutr. 2023 10 1209248 10.3389/fnut.2023.1209248 37781110
    [Google Scholar]
  94. Robayo L.E. Govind V. Vastano R. Felix E.R. Fleming L. Cherup N.P. Widerström-Noga E. Multidimensional pain phenotypes after traumatic brain injury. Front. Pain Res. 2022 3 947562 10.3389/fpain.2022.947562 36061413
    [Google Scholar]
  95. Irvine K.A. Clark J.D. Chronic pain after traumatic brain injury: Pathophysiology and pain mechanisms. Pain Med. 2018 19 7 1315 1333 10.1093/pm/pnx153 29025157
    [Google Scholar]
  96. Meythaler J.M. Peduzzi J.D. Eleftheriou E. Novack T.A. Current concepts: Diffuse axonal injury-associated traumatic brain injury. Arch. Phys. Med. Rehabil. 2001 82 10 1461 1471 10.1053/apmr.2001.25137 11588754
    [Google Scholar]
  97. Hoffe B. Holahan M.R. Hyperacute excitotoxic mechanisms and synaptic dysfunction involved in traumatic brain injury. Front. Mol. Neurosci. 2022 15 831825 10.3389/fnmol.2022.831825 35283730
    [Google Scholar]
  98. Zhang X.S. Lu Y. Li W. Tao T. Peng L. Wang W.H. Gao S. Liu C. Zhuang Z. Xia D.Y. Hang C.H. Li W. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/] NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br. J. Pharmacol. 2021 178 5 1114 1132 10.1111/bph.15346 33326114
    [Google Scholar]
  99. Ji X. Peng D. Zhang Y. Zhang J. Wang Y. Gao Y. Lu N. Tang P. Astaxanthin improves cognitive performance in mice following mild traumatic brain injury. Brain Res. 2017 1659 88 95 10.1016/j.brainres.2016.12.031 28048972
    [Google Scholar]
  100. Fleischmann C. Shohami E. Trembovler V. Heled Y. Horowitz M. Cognitive effects of astaxanthin pretreatment on recovery from traumatic brain injury. Front. Neurol. 2020 11 999 10.3389/fneur.2020.00999 33178093
    [Google Scholar]
  101. Gao F. Wu X. Mao X. Niu F. Zhang B. Dong J. Liu B. Astaxanthin provides neuroprotection in an experimental model of traumatic brain injury via the Nrf2/HO-1 pathway. Am. J. Transl. Res. 2021 13 3 1483 1493 [PMID: 33841672
    [Google Scholar]
  102. Zhang M. Cui Z. Cui H. Cao Y. Wang Y. Zhong C. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016 17 1 60 10.1186/s12868‑016‑0295‑2 27581370
    [Google Scholar]
  103. Gunal M.Y. Sakul A.A. Caglayan A.B. Erten F. Kursun O.E.D. Kilic E. Sahin K. Protective effect of lutein/zeaxanthin isomers in traumatic brain injury in mice. Neurotox. Res. 2021 39 5 1543 1550 10.1007/s12640‑021‑00385‑3 34129176
    [Google Scholar]
  104. Tan D. Yu X. Chen M. Chen J. Xu J. Lutein protects against severe traumatic brain injury through anti-inflammation and antioxidative effects via ICAM-1/Nrf-2. Mol. Med. Rep. 2017 16 4 4235 4240 10.3892/mmr.2017.7040 28731190
    [Google Scholar]
  105. Chen P. Li L. Gao Y. Xie Z. Zhang Y. Pan Z. Tu Y. Wang H. Han Q. Hu X. Xin X. β-carotene provides neuroprotection after experimental traumatic brain injury via the Nrf2-ARE pathway. J. Integr. Neurosci. 2019 18 2 153 161 10.31083/j.jin.2019.02.120 31321956
    [Google Scholar]
  106. Chen S. Luo X. Yang L. Luo L. Hu Z. Wang J. Crocetin protects mouse brain from apoptosis in traumatic brain injury model through activation of autophagy. Brain Inj. 2024 38 7 524 530 10.1080/02699052.2024.2324022 38433503
    [Google Scholar]
  107. Salem M. Shaheen M. Tabbara A. Borjac J. Saffron extract and crocin exert anti-inflammatory and anti-oxidative effects in a repetitive mild traumatic brain injury mouse model. Sci. Rep. 2022 12 1 5004 10.1038/s41598‑022‑09109‑9 35322143
    [Google Scholar]
  108. Fakhri S. Abbaszadeh F. Dargahi L. Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018 136 1 20 10.1016/j.phrs.2018.08.012 30121358
    [Google Scholar]
  109. Murphy D. Lester D. Clay Smither F. Balakhanlou E. Peripheral neuropathic pain. NeuroRehabilitation 2020 47 3 265 283 10.3233/NRE‑208002 32986619
    [Google Scholar]
  110. Kocot-Kępska M. Zajączkowska R. Mika J. Wordliczek J. Dobrogowski J. Przeklasa-Muszyńska A. Peripheral mechanisms of neuropathic pain—The role of neuronal and non-neuronal interactions and their implications for topical treatment of neuropathic pain. Pharmaceuticals (Basel) 2021 14 2 77 10.3390/ph14020077 33498496
    [Google Scholar]
  111. Pacifico P. Coy-Dibley J.S. Miller R.J. Menichella D.M. Peripheral mechanisms of peripheral neuropathic pain. Front. Mol. Neurosci. 2023 16 1252442 10.3389/fnmol.2023.1252442 37781093
    [Google Scholar]
  112. White F.A. Jung H. Miller R.J. Chemokines and the pathophysiology of neuropathic pain. Proc. Natl. Acad. Sci. USA 2007 104 51 20151 20158 10.1073/pnas.0709250104 18083844
    [Google Scholar]
  113. Wei Z. Fei Y. Su W. Chen G. Emerging role of Schwann cells in neuropathic pain: Receptors, glial mediators and myelination. Front. Cell. Neurosci. 2019 13 116 10.3389/fncel.2019.00116 30971897
    [Google Scholar]
  114. Ji R.R. Chamessian A. Zhang Y.Q. Pain regulation by non-neuronal cells and inflammation. Science 2016 354 6312 572 577 10.1126/science.aaf8924 27811267
    [Google Scholar]
  115. Camara-Lemarroy C.R. Gonzalez-Moreno E.I. Guzman-de la Garza F.J. Fernandez-Garza N.E. Arachidonic acid derivatives and their role in peripheral nerve degeneration and regeneration. Sci World J. 2012 2012 1 1 7 10.1100/2012/168953 22997489
    [Google Scholar]
  116. Martini R. Fischer S. López-Vales R. David S. Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia 2008 56 14 1566 1577 10.1002/glia.20766 18803324
    [Google Scholar]
  117. Gheorghe R.O. Grosu A.V. Bica-Popi M. Ristoiu V. The Yin/Yang balance of communication between sensory neurons and macrophages in traumatic peripheral neuropathic pain. Int. J. Mol. Sci. 2022 23 20 12389 10.3390/ijms232012389 36293246
    [Google Scholar]
  118. Sleeper A.A. Cummins T.R. Dib-Hajj S.D. Hormuzdiar W. Tyrrell L. Waxman S.G. Black J.A. Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J. Neurosci. 2000 20 19 7279 7289 10.1523/JNEUROSCI.20‑19‑07279.2000 11007885
    [Google Scholar]
  119. Salzer I. Boehm S. Calcium-activated chloride channels: Potential targets for antinociceptive therapy. Int. J. Biochem. Cell Biol. 2019 111 37 41 10.1016/j.biocel.2019.04.006 31005634
    [Google Scholar]
  120. Li L. Si J-Q. Chen Q-Y. Tan C-Y. Wang Y. Ma K-T. Mechanism of persistent hyperalgesia in neuropathic pain caused by chronic constriction injury. Neural Regen. Res. 2019 14 6 1091 1098 10.4103/1673‑5374.250631 30762024
    [Google Scholar]
  121. Bridges D. Thompson S.W.N. Rice A.S.C. Mechanisms of neuropathic pain. Br. J. Anaesth. 2001 87 1 12 26 10.1093/bja/87.1.12 11460801
    [Google Scholar]
  122. Sumizono M. Yoshizato Y. Yamamoto R. Imai T. Tani A. Nakanishi K. Nakakogawa T. Matsuoka T. Matsuzaki R. Tanaka T. Sakakima H. Mechanisms of neuropathic pain and pain-relieving effects of exercise therapy in a rat neuropathic pain model. J. Pain Res. 2022 15 1925 1938 10.2147/JPR.S367818 35860420
    [Google Scholar]
  123. Bennett G.J. Models of neuropathic pain in the rat. Curr. Protoc. Pharmacol 2003 Chapter 5, Unit 532 10.1002/0471141755.ph0532s21
    [Google Scholar]
  124. Sharma K. Sharma D. Sharma M. Sharma N. Bidve P. Prajapati N. Kalia K. Tiwari V. Astaxanthin ameliorates behavioral and biochemical alterations in in-vitro and in-vivo model of neuropathic pain. Neurosci. Lett. 2018 674 162 170 10.1016/j.neulet.2018.03.030 29559419
    [Google Scholar]
  125. Zhang J. Effect of astaxanthin on neuropathic pain in rats and role of spinal heme oxygenase-1. Chin J. Anesthesiol 2020 450 454
    [Google Scholar]
  126. Ciapała K. Rojewska E. Pawlik K. Ciechanowska A. Mika J. Analgesic effects of fisetin, peimine, astaxanthin, artemisinin, bardoxolone methyl and 740 Y-P and their influence on opioid analgesia in a mouse model of neuropathic pain. Int. J. Mol. Sci. 2023 24 10 9000 10.3390/ijms24109000 37240346
    [Google Scholar]
  127. Jiang X. Yan Q. Liu F. Jing C. Ding L. Zhang L. Pang C. Chronic trans-astaxanthin treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with chronic pain. Neurosci. Lett. 2018 662 36 43 10.1016/j.neulet.2017.09.064 28982597
    [Google Scholar]
  128. Safakhah H.A. Taghavi T. Rashidy-Pour A. Vafaei A.A. Sokhanvar M. Mohebbi N. Rezaei-Tavirani M. Effects of saffron (Crocus sativus L.) stigma extract and its active constituent crocin on neuropathic pain responses in a rat model of chronic constriction injury. Iran. J. Pharm. Res. 2016 15 1 253 261 [PMID: 27610166
    [Google Scholar]
  129. Amin B. Hosseinzadeh H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012 83 5 888 895 10.1016/j.fitote.2012.03.022 22484092
    [Google Scholar]
  130. Safakhah H.A. Vafaei A.A. Tavasoli A. Jafari S. Ghanbari A. Role of muscarinic receptors in hypoalgesia induced by crocin in neuropathic pain rats. Sci World J. 2020 2020 1 1 7 10.1155/2020/4046256 33299384
    [Google Scholar]
  131. Vafaei A.A. Safakhah H.A. Jafari S. Tavasoli A. Rashidy-Pour A. Ghanbari A. Seyedinia S.A. Tarahomi P. Role of cannabinoid receptors in crocin-induced hypoalgesia in neuropathic pain in rats. J. Exp. Pharmacol. 2020 12 97 106 10.2147/JEP.S250738 32431552
    [Google Scholar]
  132. Safakhah H.A. Damghanian F. Bandegi A.R. Miladi-Gorji H. Effect of crocin on morphine tolerance and serum BDNF levels in a rat model of neuropathic pain. Pharmacol. Rep. 2020 72 2 305 313 10.1007/s43440‑020‑00071‑9 32112363
    [Google Scholar]
  133. Tahmasebi L. Bahrami F. Sahraei H. Shankayi Z. Shahyad S. Bahari Z. Interaction effects of intracerebroventricular injection of crocin with the α2-adrenoceptors on memory deficit and hippocampal synaptic plasticity following chronic pain in rat. Brain Res. Bull. 2022 190 168 178 10.1016/j.brainresbull.2022.10.007 36240907
    [Google Scholar]
  134. Zhao L. Tao X. Song T. Astaxanthin alleviates neuropathic pain by inhibiting the MAPKs and NF-κB pathways. Eur. J. Pharmacol. 2021 912 174575 10.1016/j.ejphar.2021.174575 34673033
    [Google Scholar]
  135. Zhang F.F. Morioka N. Kitamura T. Fujii S. Miyauchi K. Nakamura Y. Hisaoka-Nakashima K. Nakata Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci. 2016 155 116 122 10.1016/j.lfs.2016.05.021 27197028
    [Google Scholar]
  136. Goel R. Tyagi N. Potential contribution of antioxidant mechanism in the defensive effect of lycopene against partial sciatic nerve ligation induced behavioral, biochemical and histopathological modification in wistar rats. Drug Res. 2016 66 12 633 638 10.1055/s‑0042‑112364 27504866
    [Google Scholar]
  137. Marchettini P. Lacerenza M. Mauri E. Marangoni C. Painful peripheral neuropathies. Curr. Neuropharmacol. 2006 4 3 175 181 10.2174/157015906778019536 18615140
    [Google Scholar]
  138. D’amico A. Bertini E. Metabolic neuropathies and myopathies. Handb. Clin. Neurol. 2013 113 1437 1455 10.1016/B978‑0‑444‑59565‑2.00013‑7 23622366
    [Google Scholar]
  139. Straube R. Müller G. Voit-Bak K. Tselmin S. Julius U. Schatz U. Rietzsch H. Reichmann H. Chrousos G.P. Schürmann A. Jarc L. Ziemssen T. Siepmann T. Bornstein S.R. Metabolic and non-metabolic peripheral neuropathy: Is there a place for therapeutic apheresis? Horm. Metab. Res. 2019 51 12 779 784 10.1055/a‑1039‑1471 31826273
    [Google Scholar]
  140. Skapek S.X. Ferrari A. Gupta A.A. Lupo P.J. Butler E. Shipley J. Barr F.G. Hawkins D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers 2019 5 1 1 18 10.1038/s41572‑018‑0051‑2 30617281
    [Google Scholar]
  141. Yagihashi S. Mizukami H. Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J. Diabetes Investig. 2011 2 1 18 32 10.1111/j.2040‑1124.2010.00070.x 24843457
    [Google Scholar]
  142. Pop-Busui R. Ang L. Holmes C. Gallagher K. Feldman E.L. Inflammation as a therapeutic target for diabetic neuropathies. Curr. Diab. Rep. 2016 16 3 29 10.1007/s11892‑016‑0727‑5 26897744
    [Google Scholar]
  143. Ristikj-Stomnaroska D. Risteska-Nejashmikj V. Papazova M. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Open Access Maced. J. Med. Sci. 2019 7 14 2267 2270 10.3889/oamjms.2019.646 31592273
    [Google Scholar]
  144. Kanwugu O.N. Glukhareva T.V. Danilova I.G. Kovaleva E.G. Natural antioxidants in diabetes treatment and management: Prospects of astaxanthin. Crit. Rev. Food Sci. Nutr. 2022 62 18 5005 5028 10.1080/10408398.2021.1881434 33591215
    [Google Scholar]
  145. Kuhad A. Chopra K. Lycopene ameliorates thermal hyperalgesia and cold allodynia in STZ-induced diabetic rat. Indian J. Exp. Biol. 2008 46 2 108 111
    [Google Scholar]
  146. Kuhad A. Sharma S. Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pain 2008 12 5 624 632 10.1016/j.ejpain.2007.10.008 18055235
    [Google Scholar]
  147. Icel E. Icel A. Uçak T. Karakurt Y. Elpeze B. Keskin Ç.F. Süleyman H. The effects of lycopene on alloxan induced diabetic optic neuropathy. Cutan. Ocul. Toxicol. 2019 38 1 88 92 10.1080/15569527.2018.1530258 30277087
    [Google Scholar]
  148. Paramakrishnan N. Chavan L. Lim K.G. Paramaswaran Y. Muthuraman A. Reversal of neuralgia effect of beta carotene in streptozotocin-associated diabetic neuropathic pain in female zebrafish via matrix metalloprotease-13 inhibition. Pharmaceuticals 2023 16 2 157 10.3390/ph16020157 37259308
    [Google Scholar]
  149. Gasparin A.T. Rosa E.S. Jesus C.H.A. Guiloski I.C. da Silva de Assis H.C. Beltrame O.C. Dittrich R.L. Pacheco S.D.G. Zanoveli J.M. da Cunha J.M. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res. 2021 1767 147557 10.1016/j.brainres.2021.147557 34107278
    [Google Scholar]
  150. Raafat K. Aboul-Ela M. El-Lakany A. Phytochemical and anti-neuropathic investigations of Crocus sativusvia alleviating inflammation, oxidative stress and pancreatic beta-cells regeneration. Chin. Herb. Med. 2019 12 1 47 55 [PMID: 36117567
    [Google Scholar]
  151. Kashyap J. Olanrewaju O.A. Mahar K. Israni M. Bai R. Kumar N. Kumari K. Shadmani S. Bashir M.A. Elharif M. Varrassi G. Kumar S. Khatri M. Muzammil M.A. Sharma R. Ullah F. Neurological manifestations of infectious diseases: Insights from recent cases. Cureus 2023 15 12 51256 10.7759/cureus.51256 38288186
    [Google Scholar]
  152. Boegle A.K. Narayanaswami P. Infectious neuropathies. Continuum (N. Y.) 2023 29 5 1418 1443 10.1212/CON.0000000000001334 37851037
    [Google Scholar]
  153. Akhaddar A. Herpes zoster virus (Shingles) infection. Atlas of Sciatica: Etiologies, Diagnosis, and Management. Cham Springer 2024 1011 1014
    [Google Scholar]
  154. Wulff E.A. Wang A.K. Simpson D.M. HIV-associated peripheral neuropathy: Epidemiology, pathophysiology and treatment. Drugs 2000 59 6 1251 1260 10.2165/00003495‑200059060‑00005 10882161
    [Google Scholar]
  155. Metwally R.A. El-Sersy N.A. El Sikaily A. Sabry S.A. Ghozlan H.A. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci. Rep. 2022 12 1 18203 10.1038/s41598‑022‑22897‑4 36307503
    [Google Scholar]
  156. Santoyo S. Jaime L. Plaza M. Herrero M. Rodriguez-Meizoso I. Ibañez E. Reglero G. Antiviral compounds obtained from microalgae commonly used as carotenoid sources. J. Appl. Phycol. 2012 24 4 731 741 10.1007/s10811‑011‑9692‑1
    [Google Scholar]
  157. Li Q. Jia M. Song H. Peng J. Zhao W. Zhang W. Astaxanthin inhibits sting carbonylation and enhances antiviral responses. J. Immunol. 2024 212 7 1188 1195 10.4049/jimmunol.2300306 38391298
    [Google Scholar]
  158. Smith J.A. STING, the endoplasmic reticulum, and mitochondria: Is three a crowd or a conversation? Front. Immunol. 2021 11 611347 10.3389/fimmu.2020.611347 33552072
    [Google Scholar]
  159. Yum S. Li M. Fang Y. Chen Z.J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl. Acad. Sci. USA 2021 118 14 2100225118 10.1073/pnas.2100225118 33785602
    [Google Scholar]
  160. Li Q. Wu P. Du Q. Hanif U. Hu H. Li K. cGAS–STING, an important signaling pathway in diseases and their therapy. MedComm 2024 5 4 511 10.1002/mco2.511 38525112
    [Google Scholar]
  161. Zhang K. Huang Q. Li X. Zhao Z. Hong C. Sun Z. Deng B. Li C. Zhang J. Wang S. The cGAS-STING pathway in viral infections: A promising link between inflammation, oxidative stress and autophagy. Front. Immunol. 2024 15 1352479 10.3389/fimmu.2024.1352479 38426093
    [Google Scholar]
  162. Pennisi R. Trischitta P. Tamburello M.P. Barreca D. Mandalari G. Sciortino M.T. Mechanistic understanding of the antiviral properties of pistachios and zeaxanthin against HSV-1. Viruses 2023 15 8 1651 10.3390/v15081651 37631995
    [Google Scholar]
  163. Soleymani S. Zabihollahi R. Shahbazi S. Bolhassani A. Antiviral effects of saffron and its major ingredients. Curr. Drug Deliv. 2018 15 5 698 704 10.2174/1567201814666171129210654 29189153
    [Google Scholar]
  164. Coodley G.O. Coodley M.K. Serum carotenoids, vitamin a and vitamin e in HIV infected patients. J. Nutr. Immunol. 1996 4 3 25 37
    [Google Scholar]
  165. Kaio D.J. Rondó P.H. Souza J.M. Firmino A.V. Luzia L.A. Segurado A.A. Vitamin A and beta-carotene concentrations in adults with HIV/AIDS on highly active antiretroviral therapy. J. Nutr. Sci. Vitaminol. 2013 59 6 496 502 10.3177/jnsv.59.496 24477245
    [Google Scholar]
  166. Patrick L. Nutrients and HIV: Part one--beta carotene and selenium. Alternat. Med. Rev. J. Clin. Therapeut 1999 4 6 403 413
    [Google Scholar]
  167. Melikian G. Mmiro F. Ndugwa C. Perry R. Jackson J.B. Garrett E. Tielsch J. Semba R.D. Relation of vitamin A and carotenoid status to growth failure and mortality among ugandan infants with human immunodeficiency virus. Nutrition 2001 17 7-8 567 572 10.1016/S0899‑9007(01)00567‑6 11448574
    [Google Scholar]
  168. Sheehan N.L. Heeswijk R.P.G. Foster B.C. Akhtar H. Singhal N. Seguin I. DelBalso L. Bourbeau M. Chauhan B.M. Boulassel M.R. Burger D.M. Lalonde R.G. Cameron D.W. The effect of β-carotene supplementation on the pharmacokinetics of nelfinavir and its active metabolite M8 in HIV-1-infected patients. Molecules 2012 17 1 688 702 10.3390/molecules17010688 22241465
    [Google Scholar]
  169. Starobova H. Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 2017 10 174 10.3389/fnmol.2017.00174 28620280
    [Google Scholar]
  170. Chine V.B. Au N.P.B. Kumar G. Ma C.H.E. Targeting axon integrity to prevent chemotherapy-induced peripheral neuropathy. Mol. Neurobiol. 2019 56 5 3244 3259 10.1007/s12035‑018‑1301‑8 30117103
    [Google Scholar]
  171. Canta A. Pozzi E. Carozzi V. Mitochondrial dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). Toxics 2015 3 2 198 223 10.3390/toxics3020198 29056658
    [Google Scholar]
  172. Chen X. Gan Y. Au N.P.B. Ma C.H.E. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front. Mol. Neurosci. 2024 17 1345811 10.3389/fnmol.2024.1345811 38660386
    [Google Scholar]
  173. Avallone A. Bimonte S. Cardone C. Cascella M. Cuomo A. Pathophysiology and therapeutic perspectives for chemotherapy-induced peripheral neuropathy. Anticancer Res. 2022 42 10 4667 4678 10.21873/anticanres.15971 36191965
    [Google Scholar]
  174. Mirahmadi M. Azimi-Hashemi S. Saburi E. Kamali H. Pishbin M. Hadizadeh F. Potential inhibitory effect of lycopene on prostate cancer. Biomed. Pharmacother. 2020 129 110459 10.1016/j.biopha.2020.110459 32768949
    [Google Scholar]
  175. Greenlee H. Hershman D.L. Shi Z. Kwan M.L. Ergas I.J. Roh J.M. Kushi L.H. BMI, lifestyle factors and taxane-induced neuropathy in breast cancer patients: The pathways study. J. Natl. Cancer Inst. 2017 109 2 djw206 10.1093/jnci/djw206 27794123
    [Google Scholar]
  176. Zhang Y-H. Inflammatory pain: Mechanisms, assessment, and intervention. Lausanne, Switzerland Frontiers Media, SA 2023 1286215
    [Google Scholar]
  177. Botting R.M. Botting J.H. Pathogenesis and mechanisms of inflammation and pain: An overview. Clin. Drug Investig. 2000 19 Suppl. 2 1 7 10.2165/00044011‑200019002‑00001
    [Google Scholar]
  178. Kidd B.L. Urban L.A. Mechanisms of inflammatory pain. Br. J. Anaesth. 2001 87 1 3 11 10.1093/bja/87.1.3 11460811
    [Google Scholar]
  179. Ricciotti E. FitzGerald G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011 31 5 986 1000 10.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  180. Teixeira-Santos L. Albino-Teixeira A. Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res. 2020 162 105280 10.1016/j.phrs.2020.105280 33161139
    [Google Scholar]
  181. Zhang R.-X. Ren K. Animal models of inflammatory pain Animal Models of Inflammatory Pain 2011 23 40 10.1007/978‑1‑60761‑880‑5_2
    [Google Scholar]
  182. McGinnis A. Wang M. Ji R-R. Animal models of pain and anti-inflammatory treatments. Neuroimmune Interactions in Pain: Mechanisms and Therapeutics. Ji R-R. Cheng J. Ji J. Cham Springer International Publishing 2023 43 85 10.1007/978‑3‑031‑29231‑6_3
    [Google Scholar]
  183. Zhang W. Lyu J. Xu J. Zhang P. Zhang S. Chen Y. Wang Y. Chen G. The related mechanism of complete Freund’s adjuvant‐induced chronic inflammation pain based on metabolomics analysis. Biomed. Chromatogr. 2021 35 4 5020 10.1002/bmc.5020 33159321
    [Google Scholar]
  184. Sawynok J. Liu X.J. The formalin test: Characteristics and usefulness of the model. Rev. Analg. 2003 7 2 145 163 10.3727/000000003783992982
    [Google Scholar]
  185. Menéndez L. Lastra A. Hidalgo A. Baamonde A. The analgesic effect induced by capsaicin is enhanced in inflammatory states. Life Sci. 2004 74 26 3235 3244 10.1016/j.lfs.2003.11.019 15094324
    [Google Scholar]
  186. Huang Z. Kraus V.B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 2016 12 2 123 129 10.1038/nrrheum.2015.158 26656661
    [Google Scholar]
  187. Noh A.S.M. Chuan T.D. Khir N.A.M. Zin A.A.M. Ghazali A.K. Long I. Ab Aziz C.B. Ismail C.A.N. Effects of different doses of complete Freund’s adjuvant on nociceptive behaviour and inflammatory parameters in polyarthritic rat model mimicking rheumatoid arthritis. PLoS One 2021 16 12 0260423 10.1371/journal.pone.0260423 34879087
    [Google Scholar]
  188. Ismail C.A.N. Mohd N.A.S. Tan D.C. Mohamed K.N.A. Shafin N. A review on Complete Freund’s Adjuvant-induced arthritic rat model: Factors leading to its success. IIUM Med. J. Malaysia 2022 21 4 10.31436/imjm.v21i4.2026
    [Google Scholar]
  189. Kumar A. Dhaliwal N. Dhaliwal J. Dharavath R.N. Chopra K. Astaxanthin attenuates oxidative stress and inflammatory responses in complete Freund-adjuvant-induced arthritis in rats. Pharmacol. Rep. 2020 72 1 104 114 10.1007/s43440‑019‑00022‑z 32016833
    [Google Scholar]
  190. Zhao L. Tao X. Wan C. Dong D. Wang C. Xi Q. Liu Y. Song T. Astaxanthin alleviates inflammatory pain by regulating the p38 mitogen-activated protein kinase and nuclear factor-erythroid factor 2-related factor/heme oxygenase-1 pathways in mice. Food Funct. 2021 12 24 12381 12394 10.1039/D1FO02326H 34825683
    [Google Scholar]
  191. Syoji Y. Kobayashi R. Miyamura N. Hirohara T. Kubota Y. Uotsu N. Yui K. Shimazu Y. Takeda M. Suppression of hyperexcitability of trigeminal nociceptive neurons associated with inflammatory hyperalgesia following systemic administration of lutein via inhibition of cyclooxygenase-2 cascade signaling. J. Inflamm. 2018 15 1 24 10.1186/s12950‑018‑0200‑0 30498399
    [Google Scholar]
  192. Zhao Q. Yang F. Meng L. Chen D. Wang M. Lu X. Chen D. Jiang Y. Xing N. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF‐κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020 8 3 747 755 10.1111/andr.12747 31880092
    [Google Scholar]
  193. Rashidi K. The combined effect of curcumin and crocin on the reduction of inflammatory responses in arthritic rats. Curr. Med. Chem. 2023 31 28 4562 4577 10.2174/0929867330666230409003744 37031388
    [Google Scholar]
  194. Hu Y. Liu X. Xia Q. Yin T. Bai C. Wang Z. Du L. Li X. Wang W. Sun L. Liu Y. Zhang H. Deng L. Chen Y. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis in Freund’s complete adjuvant-induced arthritis in rats. Phytomedicine 2019 53 223 233 10.1016/j.phymed.2018.07.005 30668402
    [Google Scholar]
  195. Qiao Q. Yao D. Wang Y. Zhang S. Chen G. Transcrocetin meglumine salt inhibits spinal glial cell-mediated proinflammatory cytokines and attenuates complete freund’s adjuvant-induced inflammatory pain. Neuroimmunomodulation 2023 30 1 315 324 10.1159/000534607 37899033
    [Google Scholar]
  196. Cellat M. İşler C.T. Kutlu T. Kuzu M. Etyemez M. Alakuş H. Güvenç M. Investigation of the effects of safranal on the experimentally created rheumatoid arthritis model in rats. J. Biochem. Mol. Toxicol. 2022 36 9 23140 10.1002/jbt.23140 35674002
    [Google Scholar]
  197. Hunskaar S. Hole K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987 30 1 103 114 10.1016/0304‑3959(87)90088‑1 3614974
    [Google Scholar]
  198. Mohammadi S. Fakhri S. Mohammadi-Farani A. Farzaei M.H. Abbaszadeh F. Astaxanthin engages the l-arginine/NO/ cGMP/KATP channel signaling pathway toward antinociceptive effects. Behav. Pharmacol. 2021 32 8 607 614 10.1097/FBP.0000000000000655 34561366
    [Google Scholar]
  199. Firdous A.P. Kuttan G. Kuttan R. Anti-inflammatory potential of carotenoid meso -zeaxanthin and its mode of action. Pharm. Biol. 2015 53 7 961 967 10.3109/13880209.2014.950673 25739325
    [Google Scholar]
  200. Pacheco S.D.G. Gasparin A.T. Jesus C.H.A. Sotomaior B.B. Ventura A.C.S.S.B. Redivo D.D.B. Cabrini D.A. Gaspari D.J.F. Miguel M.D. Miguel O.G. da Cunha J.M. Antinociceptive and anti-inflammatory effects of bixin, a carotenoid extracted from the seeds of Bixa orellana. Planta Med. 2019 85 16 1216 1224 10.1055/a‑1008‑1238 31546267
    [Google Scholar]
  201. Tamaddonfard E. Hamzeh-Gooshchi N. Effect of crocin on the morphine‐induced antinociception in the formalin test in rats. Phytother. Res. 2010 24 3 410 413 10.1002/ptr.2965 19653196
    [Google Scholar]
  202. Mikoni N.A. Sanchez-Migallon Guzman D. Beaufrere H. Paul-Murphy J.R. Carrageenan-induced inflammation elicits behavioral changes in cockatiels (Nymphicus hollandicus) for potential pain scale development. Am. J. Vet. Res. 2023 84 10 1 11 10.2460/ajvr.23.03.0052 37586693
    [Google Scholar]
  203. Maryam S. Khan M.R. Shah S.A. Zahra Z. Batool R. Zai J.A. Evaluation of anti-inflammatory potential of the leaves of Wendlandia heynei (Schult.) Santapau & Merchant in Sprague Dawley rat. J. Ethnopharmacol. 2019 238 111849 10.1016/j.jep.2019.111849 30953822
    [Google Scholar]
  204. Kuedo Z. Sangsuriyawong A. Klaypradit W. Tipmanee V. Chonpathompikunlert P. Effects of astaxanthin from Litopenaeus vannamei on carrageenan-induced edema and pain behavior in mice. Molecules 2016 21 3 382 10.3390/molecules21030382 27007359
    [Google Scholar]
  205. Bignotto L. Rocha J. Sepodes B. Eduardo-Figueira M. Pinto R. Chaud M. de Carvalho J. Moreno H. Mota-Filipe H. Anti-inflammatory effect of lycopene on carrageenan-induced paw oedema and hepatic ischaemia-reperfusion in the rat. Br. J. Nutr. 2009 102 1 126 133 10.1017/S0007114508137886 19203414
    [Google Scholar]
  206. Tamaddonfard E. Farshid A.A. Eghdami K. Samadi F. Erfanparast A. Comparison of the effects of crocin, safranal and diclofenac on local inflammation and inflammatory pain responses induced by carrageenan in rats. Pharmacol. Rep. 2013 65 5 1272 1280 10.1016/S1734‑1140(13)71485‑3 24399723
    [Google Scholar]
  207. Xu G.L. Li G. Ma H.P. Zhong H. Liu F. Ao G.Z. Preventive effect of crocin in inflamed animals and in LPS-challenged RAW 264.7 cells. J. Agric. Food Chem. 2009 57 18 8325 8330 10.1021/jf901752f 19754168
    [Google Scholar]
  208. Fattori V. Hohmann M. Rossaneis A. Pinho-Ribeiro F. Verri W. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016 21 7 844 10.3390/molecules21070844 27367653
    [Google Scholar]
  209. Tamaddonfard E. Tamaddonfard S. Pourbaba S. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats. Avicenna J. Phytomed. 2015 5 5 450 457 [PMID: 26468465
    [Google Scholar]
  210. Banji D. Banji O.J.F. Reddy M. Annamalai A.R. Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. J. Trace Elem. Med. Biol. 2013 27 3 230 235 10.1016/j.jtemb.2013.01.001 23380154
    [Google Scholar]
  211. Mazgaeen L. Gurung P. Recent advances in lipopolysaccharide recognition systems. Int. J. Mol. Sci. 2020 21 2 379 10.3390/ijms21020379 31936182
    [Google Scholar]
  212. Skrzypczak-Wiercioch A. Sałat K. Lipopolysaccharide-induced model of neuroinflammation: Mechanisms of action, research application and future directions for its use. Molecules 2022 27 17 5481 10.3390/molecules27175481 36080253
    [Google Scholar]
  213. Tucureanu M.M. Rebleanu D. Constantinescu C.A. Deleanu M. Voicu G. Butoi E. Calin M. Manduteanu I. Lipopolysaccharide-induced inflammation in monocytes/macrophages is blocked by liposomal delivery of Gi-protein inhibitor. Int. J. Nanomedicine 2017 13 63 76 10.2147/IJN.S150918 29317816
    [Google Scholar]
  214. Calil I.L. Zarpelon A.C. Guerrero A.T.G. Alves-Filho J.C. Ferreira S.H. Cunha F.Q. Cunha T.M. Verri W.A. Lipopolysaccharide induces inflammatory hyperalgesia triggering a TLR4/MyD88-dependent cytokine cascade in the mice paw. PLoS One 2014 9 3 90013 10.1371/journal.pone.0090013 24595131
    [Google Scholar]
  215. Nürnberger F. Ott D. Claßen R. Rummel C. Roth J. Leisengang S. Systemic lipopolysaccharide challenge induces inflammatory changes in rat dorsal root ganglia: An ex vivo study. Int. J. Mol. Sci. 2022 23 21 13124 10.3390/ijms232113124 36361909
    [Google Scholar]
  216. Dray A. Inflammatory mediators of pain. Br. J. Anaesth. 1995 75 2 125 131 10.1093/bja/75.2.125 7577246
    [Google Scholar]
  217. Ronchetti S. Migliorati G. Delfino D.V. Association of inflammatory mediators with pain perception. Biomed. Pharmacother. 2017 96 1445 1452 10.1016/j.biopha.2017.12.001 29217162
    [Google Scholar]
  218. Park D.R. Ko R. Kwon S.H. Min B. Yun S.H. Kim M.H. Minatelli J. Hill S. Lee S.Y. FlexPro MD, a mixture of krill oil, astaxanthin, and hyaluronic acid, suppresses lipopolysaccharide-induced inflammatory cytokine production through inhibition of NF-κB. J. Med. Food 2016 19 12 1196 1203 10.1089/jmf.2016.3787 27982753
    [Google Scholar]
  219. Kouchaki E. Rafiei H. Ghaderi A. Azadchehr M.J. Safa F. Omidian K. Khodabakhshi A. Vahid F. Rezapoor-Kafteroodi B. Banafshe H.R. Safa N. Effects of crocin on inflammatory biomarkers and mental health status in patients with multiple sclerosis: A randomized, double-blinded clinical trial. Mult. Scler. Relat. Disord. 2024 83 105454 10.1016/j.msard.2024.105454 38306888
    [Google Scholar]
  220. Ghiasian M. Khamisabadi F. Kheiripour N. Karami M. Haddadi R. Ghaleiha A. Taghvaei B. Oliaie S.S. Salehi M. Samadi P. Ranjbar A. Effects of crocin in reducing DNA damage, inflammation, and oxidative stress in multiple sclerosis patients: A double‐blind, randomized, and placebo‐controlled trial. J. Biochem. Mol. Toxicol. 2019 33 12 22410 10.1002/jbt.22410 31617649
    [Google Scholar]
  221. Rezaeimanesh N. Rafiee P. Saeedi R. Khosravian P. Sahraian M.A. Eskandarieh S. Moghadasi A.N. Jahromi S.R. The effect of crocin-selenium nanoparticles on the cognition and oxidative stress markers of multiple sclerosis patients: A randomized triple-blinded placebo-controlled clinical trial. Biometals 2024 37 2 305 319 10.1007/s10534‑023‑00548‑z 37917350
    [Google Scholar]
  222. Martell S.G. Kim J. Cannavale C.N. Mehta T.D. Erdman J.W. Adamson B. Motl R.W. Khan N.A. Randomized, placebo-controlled, single-blind study of lutein supplementation on carotenoid status and cognition in persons with multiple sclerosis. J. Nutr. 2023 153 8 2298 2311 10.1016/j.tjnut.2023.06.027 37364683
    [Google Scholar]
  223. Bozorgi H. Ghahremanfard F. Motaghi E. Zamaemifard M. Zamani M. Izadi A. Effectiveness of crocin of saffron (Crocus sativus L.) against chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. J. Ethnopharmacol. 2021 281 114511 10.1016/j.jep.2021.114511 34390797
    [Google Scholar]
  224. Ansari M.S. Gupta N.P. A comparison of lycopene and orchidectomy vs. orchidectomy alone in the management of advanced prostate cancer. BJU Int. 2003 92 4 375 378 10.1046/j.1464‑410X.2003.04370.x 12930422
    [Google Scholar]
  225. Ansari M. Gupta N. Lycopene: A novel drug therapy in hormone refractory metastatic prostate cancer. Urol. Oncol. 2004 22 5 415 420 10.1016/S1078‑1439(04)00122‑X 15464923
    [Google Scholar]
  226. Fakhri S. Abdian S. Zarneshan S.N. Moradi S.Z. Farzaei M.H. Abdollahi M. Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. Int. J. Nanomedicine 2022 17 299 331 10.2147/IJN.S347187 35095273
    [Google Scholar]
/content/journals/cn/10.2174/011570159X371386250619064416
Loading
/content/journals/cn/10.2174/011570159X371386250619064416
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test